
AWARD: Approximation-aWAre Restore in Further Scaling
DRAM

Xianwei Zhang, Youtao Zhang, Bruce Childers
Computer Science Department

University of Pittsburgh, PA, USA
{xianeizhang}@cs.pitt.edu

Jun Yang
Electrical and Computer Engineering Department

University of Pittsburgh, PA, USA
juy9@pitt.edu

ABSTRACT
DRAM further scaling becomes more and more challeng-
ing, making restore operation an serious issue in the near
future. Fortunately, a wide range of modern applications
are able to tolerate error or inexactness, providing a new
dimension to mitigate the slow-restore issue. And thus, we
can trade-off acceptable QoS loss in those applications to
accelerate restore operations, and further to achieve perfor-
mance and energy improvements. In this extended research
abstract, we briefly explore DRAM restore-based approxi-
mate computing, and present a preliminary evaluation on
impacts of quality-of-service (QoS) degradation and perfor-
mance speedup. We show that restore-based approximate
computing is a challenging work, and dedicated error cor-
rection/tolerance techniques are needed to balance QoS and
performance.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories—
Dynamic Memory (DRAM); B.3.3 [Memory Structures]:
Performance Analysis and Design Aids

Keywords
DRAM Scaling, Slow Restore, Approximate Computing

1. INTRODUCTION
This section presents brief introductions on DRAM scaling

issues and approximate computing works.

1.1 DRAM Scaling
As the de facto standard memory, DRAM’s great suc-

cess is tremendously contributed by its continuous scaling
to maintain growth on density, energy efficiency and band-
width, etc. However, after decades’ scaling, DRAM nowa-
days has entered into 20nm [23], which faces significant chal-
lenges, including more leaky cells [22], slow sensing and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MEMSYS ’16 October 03-06, 2016, Alexandria, VA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4305-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989127

restoring operations, severer process variations [7] and dis-
turbance [16].

To tackle the scaling issues, whereas significant researches
have been put into retention and refresh [11, 18, 5], and
sensing [17, 28, 27], no explorations have been performed
on restoring until recently [15, 30, 31]. Among the prior
arts, Kang et al. [15] first raised the slow restore issue; and,
ChunkRemap [30] was later proposed to utilize chunk remap-
ping to lower restore timings; Zhang et al. mitigated slow
restore issue with early truncation designs[31]. All of those
slow-restore solutions lie on hardware and architectural lev-
els, which are completely unaware of the features of running
programs.

1.2 Approximate Computing
Energy and power are increasing concerns in modern com-

puter systems, and much energy is spent on guaranteeing
correctness [25]. Nevertheless, many applications have in-
trinsic resilience to runtime errors [8, 25], providing good
opportunities to explore energy-accuracy tradeoff. For in-
stance, in domains like machine learning and computer vi-
sion, algorithms are usually heuristic based, and thus the
final results are not 100% accurate. The algorithm can func-
tion much better, if the execution time and power consump-
tion can be significantly brought down, while the output
accuracy has a slight decrease.

Previous works on approximate computing performed ex-
plorations on both hardware [6, 19, 26, 12, 14, 13] and soft-
ware [4, 25, 3]. Among them, there is significant research on
efficient memory system, which is also the focus of our ex-
ploration. Flikker [19] refreshes approximate data at lower
rates to save DRAM refresh energy, which was recently ex-
tended by [20] and [24]. Esmaeilzadeh et al [9] proposed to
apply dual voltage to SRAM array to balance energy and
accuracy; Drowsy caches [10] reduces the supply voltage to
save power; and, papers [26] and [12] applied approximate
computing to optimize PCM lifetime and density.

1.3 Contributions
By exploiting program features, we can find more efficient

and innovative ways to mitigate the slow restore issue. And,
instead of getting efficient approximate storage [20, 12], our
work here applies approximate computing to improve restore
operation, which is on the critical path and has runtime im-
pacts on programs. Compared to refresh-based approxima-
tion designs [19, 20, 24], it is more challenging to control
the QoS in restore scenario, but the expected improvements
are also much higher because restore directly contributes to
access latency. This research abstract presents our pioneer-

Table 1: Sampled tWR cumulative distribution in DRAM chips. (in Byte units)

tWR(ns) ≥ 35 ≥ 30 ≥ 25 ≥ 20 ≥ 15 ≥ 14 ≥ 13 ≥ 12 ≥ 11
perc(%) ≈0 0.01 0.03 0.05 0.44 1.45 4.59 13.59 36.76

ing studies on approximation-aware restore, and outlines the
directions to perform further explorations.

2. MOTIVATION AND DESIGN
Table 1 shows the sampled tWR 1 distribution. From the

table, we can see that while the worst-case value can be as
large as 35ns, only 0.44% fall beyond the 15ns specification
value, and over 95% are below 13ns. Accordingly, if the
slow-to-restore cells can be tolerated by the applications,
then we can accelerate accesses by applying lower restore
timings instead of the original worst-case ones, as illustrated
by Figure 1.

From the figure we can see that whereas worst-case deter-
mined strategy gives ’25’/’25’/’26’ for the rows, lower values
of ’20’/’13’/’22’ can be achieved by sacrificing the very-slow
ones, and only several faults (’0’) are injected. We also know
that the fault locations cause errors with 50% probability,
i.e., bit flip only happens when original bit is ’1’, and hence
the impact of those faulty bits is very limited.

Restore	Map Mask	Map

20

13

22

16 15 25 18 20 19

11 13 18 12 25 10

23 21 15 26 19 22

1 1 0 1 1 1

1 1 0 1 0 1

0 1 1 0 1 1

Figure 1: Generate mask map (’1’ is precise, ’0’ is
fault) by lowering row-level restore goals in original
DRAM restore map (circled values are the worst
timings, in nano-second, in the rows).

Nevertheless, the portion of slow-to-restore cells, as re-
ported in Table 1, are much higher than that of leaky ones
[18], and thus restore-based approximation are expected to
have much larger impact than refresh-based ones [20, 24].
Moreover, differing form previous approximate proposals of
using memory as storage [12, 20], approximated restore tim-
ings here impact the run-time computations, e.g., flips of
sign and exponential bits in floating points may totally change
the values and final outputs.

3. EXPERIMENTAL METHODOLOGY
The general goal of approximate computing is to achieve

performance and energy improvements with acceptable quality-
of-service (QoS) degradation. Accordingly, we adopt a two-
phase methodology [21] to evaluate the proposed design. In
first phase, a Pin-based simulator is used to instrument the
beforehand annotated programs; during runtime, all loads

1tWR is write recovery time, which is the restore timing of
write operation. The specification value has been kept at
15ns from DDR to DDR4 [30]. Values were collected follow-
ing prior work [30].

and stores of integer and floating-point variables are cap-
tured, and the values of approximated ones are clobbered
on-the-fly. For value change, the memory restore/mask map
is accessed to inject faults into precise memory operands.
Address mapping, allocation and data cache are also in-
cluded in the Pintool, and thus we are capable to sweep
over different allocation strategies and various restore goals
to examine the quality of approximate results.

In the first phase, applications are executed to the end to
output the final results; meanwhile, instructions are traced
out as input to our second-phase simulation. In the second
phase, conventional simulators are used to collect perfor-
mance and energy values. Apparently, both phases should
be involved into the evaluations, and hence we choose QoS
and performance as the metrics. As for QoS metric, we com-
pare the results of approximate execution against those of
precise, and application-specific metric is used [25, 21]. For
instance, QoS of blackscholes, a financial analysis applica-
tion from PARSEC 3.0, is measured using the percentage of
different prices between precise and approximate runs.

4. PRELIMINARY EVALUATION
Our preliminary evaluation was designed to study the ef-

fects of approximation-aware restore on application output
quality (QoS). Benchmarks kmeans [29], blackscholes [29],
raytracer [1] and scimarks [2] were evaluated, which comes
from different domains, including machine learning, financial
analysis and scientific computing, etc. And, the QoS metrics
generally follow [29] and [25]. The configurations were sim-
plified by setting a low restore goal for the whole memory
system, and further random page mapping was adopted.

kmeans blackscholes raytracer sor lu smm0

20

40

60

80

100

Q
oS

 d
eg
ra
da
tio

n
(%

)

0.
21

0.
02

0.
08

0.
47

0.
0

0.
020.
7

0.
17

0.
16 3.
46

46
.4
9

0.
091.
62

0.
9

0.
31

15
.2
8

58
.1
3

0.
451.
65

0.
91

0.
33

15
.7

61
.3
6

0.
551.
82

1.
01

0.
37

18
.7
5

71
.2

0.
634.
48 4.
98

1.
0

50
.2

90
.9
5

3.
47

24
.2

52
.7
8

4.
69

93
.9
2 10
0.
0

42
.8
2

tWR-32
tWR-30
tWR-25
tWR-20

tWR-18
tWR-15
tWR-12

Figure 2: QoS of different restoring goals. For each
benchmark, results are presented in tWR descending
order. QoS loss values are labelled over each bar.

The collected QoS results are reported in Figure 2 by
sweeping a series of restoring goals. Clearly, we can see that
by decreasing restoring timings, QoS degradation gradually
goes up, and the most serious degradation is reached at the
lowest timing, i.e. tWR=12. Further, even quite high re-
store timings can lead to unacceptable QoS loss, e.g., lu suf-
fers from 46.49% loss at tWR=30 and sor sees 15.28% loss
at tWR=25. Nevertheless, low power consumption and high
performance gains can only be effectively achieved at low re-

store timings [30, 31]. As a result, it is a super challenging
work to achieve both acceptable QoS and energy/performance
improvements.

5. CONCLUSION AND FUTURE WORK
The preliminary results imply that it is challenging to

strike a balance between performance/energy improvements
and QoS loss. To achieve acceptable QoS, conservative re-
store approximation and dedicated correction techniques should
be utilized to protect the important bits. In addition, higher
level techniques like memory allocation and data remapping
can be used to constraint the impacts of faulty locations.

We plan to leverage a combination of techniques to im-
plement generalized approximation-aware restore, have de-
tailed hardware and software designs, and perform the eval-
uations across a wider spectrum of applications.

6. REFERENCES
[1] Raytracer:

http://www.planet-source-code.com/vb/scripts/
raytracer. http://www.planet-source-code.com/vb/
scripts/ShowCode.asp?txtCodeId=5590&lngWId=2.

[2] SciMark2. http://math.nist.gov/scimark2/.

[3] S. Achour and M. C. Rinard. Approximate
computation with outlier detection in Topaz. In
OOPSLA, pages 711–730, 2015.

[4] W. Baek, T. M. Chilimbi, et al. Green: a framework
for supporting energy-conscious programming using
controlled approximation. In PLDI, pages 198–209,
2010.

[5] I. Bhati, Z. Chishti, et al. Flexible auto-refresh:
Enabling scalable and energy-efficient DRAM refresh
reductions. In ISCA, pages 235–246, 2015.

[6] L. N. Chakrapani, B. E. S. Akgul, et al. Ultra-efficient
(embedded) SOC architectures based on probabilistic
CMOS (PCMOS) technology. In DATE, pages
1110–1115, 2006.

[7] B. R. Childers, J. Yang, et al. Achieving yield, density
and performance effective DRAM at extreme
technology sizes. In MEMSYS, pages 78–84, 2015.

[8] M. d. Kruijf, S. Nomura, et al. Relax: an architectural
framework for software recovery of hardware faults. In
ISCA, pages 497–508, 2011.

[9] H. Esmaeilzadeh, A. Sampson, et al. Architecture
support for disciplined approximate programming. In
ASPLOS, pages 301–312, 2012.

[10] K. Flautner, N. S. Kim, et al. Drowsy caches: Simple
techniques for reducing leakage power. In ISCA, pages
148–157, 2002.

[11] M. Ghosh and H. S. Lee. Smart refresh: An enahnced
memory controller design for reducing energy in
conventional and 3D die-stacked DRAMs. In MICRO,
pages 134–145, 2007.

[12] Q. Guo, K. Strauss, et al. High-density image storage
using approximate memory cells. In ASPLOS, 2016.

[13] M. Jung, D. M. Mathew, et al. Efficient reliability
management in SoCs - an approximate DRAM
perspective. In ASPDAC, 2016.

[14] M. Jung, E. Zulian, et al. Omitting refresh: A case
study for commodity and Wide I/O DRAMs. In
MEMSYS, 2015.

[15] U. Kang, H. s. Yu, et al. Co-architecting controllers
and DRAM to enhance DRAM process scaling. In The
Memory Forum, pages 1–4, 2014.

[16] Y. Kim, R. Daly, et al. Flipping bits in memory
without accessing them: an experimental study of
DRAM disturbance errors. In ISCA, pages 361–372,
2014.

[17] D. Lee, Y. Kim, et al. Tiered-latency DRAM: A low
latency and low cost DRAM architecture. In HPCA,
pages 615–626, 2013.

[18] J. Liu, B. Jaiyen, et al. RAIDR: Retention-aware
intelligent DRAM refresh. In ISCA, pages 1–12, 2012.

[19] S. Liu, K. Pattabiraman, et al. Flikker: saving DRAM
refresh-power through critical data partitioning. In
ASPLOS, pages 213–224, 2011.

[20] J. Lucas, M. Alvarez-Mesa, et al. Sparkk:
Quality-scalable approximate storage in DRAM. In
The Memory Forum, pages 1–6, 2014.

[21] J. S. Miguel, M. Badr, et al. Load value
approximation. In MICRO, pages 127–139, 2014.

[22] P. J. Nair, D.-H. Kim, et al. ArchShield: architectural
framework for assisting DRAM scaling by tolerating
high error rates. In ISCA, pages 72–83, 2013.

[23] J. M. Park, Y. S. Hwang, et al. 20nm DRAM: A new
beginning of another revolution. In IEDM, pages
26.5.1–26.5.4, 2015.

[24] A. Raha, H. Jayakumar, et al. Quality-aware data
allocation in approximate DRAM. In CASES, pages
89–98, 2015.

[25] A. Sampson, W. Dietl, et al. EnerJ: approximate data
types for safe and general low-power computation. In
PLDI, pages 164–174, 2011.

[26] A. Sampson, J. Nelson, et al. Approximate storage in
solid-state memories. In MICRO, pages 25–36, 2013.

[27] W. Shin, J. Yang, et al. NUAT: A non-uniform access
time memory controller. In HPCA, pages 464–475,
2014.

[28] Y. H. Son, O. Seongil, et al. Reducing memory access
latency with asymmetric DRAM bank organizations.
In ISCA, pages 380–391, 2013.

[29] A. Yazdanbakhsh, D. Mahajan, et al. AXBENCH. In
IEEE Design and Test, special issue on Computing in
the Dark Silicon Era, 2016.

[30] X. Zhang, Y. Zhang, et al. Exploiting DRAM restore
time variations in deep sub-micron scaling. In DATE,
pages 477–482, 2015.

[31] X. Zhang, Y. Zhang, et al. Restore truncation for
performance improvement in future DRAM systems.
In HPCA, pages 543–554, 2016.

