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Abstract—Recently, the sparsely-gated Mixture-Of-Experts
(MoE) architecture has garnered significant attention. To benefit
a wider audience, fine-tuning MoE models on more affordable
clusters, which are typically a limited number of bandwidth-
constrained GPU nodes, holds promise. However, it is non-trivial
to apply existing cost-effective fine-tuning approaches to MoE
models, due to the increased ratio of data to computation.

In this paper, we introduce APTMoE, which employs affinity-
aware pipeline parallelism for fine-tuning MoE models on
bandwidth-constrained GPU nodes. We propose an affinity-aware
offloading technique that enhances pipeline parallelism for both
computational efficiency and model size, and it benefits from a
hierarchical loading strategy and a demand-priority scheduling
strategy. To improve the computation efficiency and reduce the
data movement volume, the hierarchical loading strategy designs
three loading phases and efficiently allocates computation across
GPUs and CPUs during these phases, leveraging different levels
of expert popularity and computation affinity. With the aim of al-
leviating the mutual interference among the three loading phases
and maximizing the bandwidth utilization, the demand-priority
scheduling strategy proactively and dynamically coordinates the
loading execution order. Experiments demonstrate that APTMoE
outperforms existing methods in most cases. Particularly, APT-
MoE successfully fine-tunes a 61.2B MoE model on 4 Nvidia A800
GPUs(40GB) and achieves up to 33% throughput improvement
compared to the SOTA method.

Index Terms—Large language models, Hardware acceleration,
High performance computing

I. INTRODUCTION

In recent years, the sparsely-gated Mixture-Of-Experts
(MoE) architecture has emerged as a highly effective approach
for enhancing model quality. Google [1], xAI [2], OpenAI [3],
and Databricks [4] have successively released their MoE mod-
els. The MoE architecture scales model capacity by dividing
the computational workload across multiple specialized sub-
models, known as “experts”, and introduces a gate operation to
decide which expert(s) to activate for a given input. Compared
to dense models, like Llama [5] and GPT [6], MoE enhances
model quality by expanding the amount of parameters without
significantly increasing computation. However, the increased

* Corresponding authors.

ratio of data to computation results in the blocking prob-
lem, making existing cost-effective fine-tuning approaches no
longer efficient.

Instead of training from scratch, fine-tuning is the practi-
cal way to utilize large-scale models. This process involves
re-training a pretrained model on smaller, domain-specific
datasets, thereby requiring significant less computing power
and increasing accessibility for most developers. However,
the expense of fine-tuning on clusters equipped with high-
performance interconnection is tremendously high. For exam-
ple, the prices of clusters with high-performance intercon-
nection, such as NVLink and Infiniband, can cost several
times more than clusters with weak interconnection [7]. As
demand grows, prior works [8]–[13] explore efficient fine-
tuning approaches of dense models on affordable and cost-
effective devices, lowering the barriers to the adoption of
large-scale models. The number of devices is usually not
large, leading to limited memory capacity, and these devices
typically feature constrained interconnect bandwidth due to the
pursuit of high cost-effectiveness.

In order to overcome the inherent hardware limitations
of communication bandwidth and memory capacity, previous
approaches fine-tune large-scale models on affordable devices
by employing pipeline parallelism and offloading technique.
Pipeline parallelism [14]–[17], unlike other model parallelism
approaches that rely on frequent collective communication,
requires only minimal asynchronous point-to-point commu-
nication, thus making it especially suitable for devices with
limited bandwidth. The offloading technique [9]–[12], on the
other hand, dynamically manages data transfer between the
host memory and GPU memory, effectively enhancing the
system’s capacity to accommodate larger models.

However, the increased ratio of data to computation makes
the combination of pipeline parallelism and offloading tech-
nique less efficient. Figure 1 illustrates the existing combina-
tion [8]. In each fine-tuning iteration, every stage is loaded
from the host memory. For the MoE architecture, there is a
marked increase in data volume that needs to be transferred,
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Fig. 1. Forward process with pipeline parallelism and offloading technique. In
Fi,j , i represents the stage number and j represents the micro-batch number.

while the computational demand remains relatively stable.
Due to this imbalance, the degree of overlapping the loading
process is significantly reduced, blocking the computation.
Notably, the backward process performs in a similar manner.

In this paper, we propose APTMoE, an affinity-aware
pipeline fine-tuning system for MoE models on bandwidth-
constrained GPU nodes. APTMoE proposes the affinity-aware
offloading technique to enhance pipeline parallelism fine-
tuning. The key idea is to allocate computation across both
GPUs and CPUs based on affinity, so as to improve
computational efficiency and enable to better manage data
across heterogeneous memory.

The affinity-aware offloading technique leverages the expert
popularity of MoE models, where input tokens are directed
to different experts, and generally in a skewed distribution.
Therefore, different experts have varying computational inten-
sities. Leveraging this insight, the affinity-aware offloading
technique distributes computation across GPUs and CPUs
based on affinity. To enable an efficient allocation of com-
putation and achieve better scheduling of communication,
the affinity-aware offloading technique further incorporates a
hierarchical loading strategy and a demand-priority scheduling
strategy.

The hierarchical loading strategy aims to determine the
efficient allocation of computation across GPUs and CPUs,
and manage different loading decisions. Since the real expert
popularity cannot be determined until the gate operation is
finished, we tend to miss the opportunity for overlapping.
To overcome this problem, the hierarchical loading strategy
designs three loading phases to distribute loading decisions
into different phases, namely inter-stage loading, inter-layer
loading and inter-expert loading. First, with the aim of overlap-
ping the computation and loading between different pipeline
stages, the inter-stage loading leverages the historical expert
popularity and greedily allocates computation with the highest
affinity to GPUs. Some other loading decisions are deferred
until more accurate expert popularity is available. Then, the
inter-layer loading leverages the predicted expert popularity,
so as to overlap the loading and computation between layers
in the same pipeline stage. To leverage the expert popularity
in advance, we employ a predictor to foresee the popularity
distribution of subsequent layers. Given the prediction, we can
make loading decisions for experts with high activation density
and process them on GPUs, while those with low activation

density are left and executed in place on CPUs. Then, the
inter-expert loading overlaps the loading and computation of
different experts in the same layer, relying on the real-time
expert popularity. With these three loading phases, the affinity-
aware offloading technique can better allocate computation
across GPUs and CPUs.

To alleviate the mutual interference among the three loading
phases and maximize the bandwidth utilization, the demand-
priority scheduling strategy is proposed. While each of the
three loading phases identifies different overlapping space,
they all rely on the same PCIe bandwidth, leading to mutual
interference. Furthermore, memory copy kernels transferring
data in the same direction cannot execute concurrently, so that
these loading phases run sequentially and potentially block
each other. For example, if the inter-stage loading for the next
pipeline stage blocks the inter-layer loading for the current
stage, the computation will be delayed. Therefore, the demand-
priority scheduling strategy tackles with the above problems by
dynamically coordinating the order of these loading phases. It
adopts a proactive way, with the program periodically querying
the GPU for the loading process status and dynamically
determining the loading order at runtime.

Our contributions are summarized as follows:
• We identify the computation blocking problem caused by

the increased ratio of data to computation when applying
existing cost-effective fine-tuning approaches to the MoE
architecture.

• We propose APTMoE, an affinity-aware pipeline fine-
tuning system for MoE models targeting at bandwidth-
constrained GPU nodes, with the key idea to offload
a portion of the affinity computation to the CPU, so
as to better manage data across heterogeneous memory.
APTMoE incorporates the hierarchical loading strategy
and the demand-priority scheduling strategy.

• We propose the hierarchical loading strategy. With the
prior knowledge of expert popularity and computation
affinity, it designs three loading phases to greedily allo-
cate computation with the highest affinity and minimize
data movement volume.

• We propose the demand-priority scheduling strategy to
alleviate the mutual interference among loading phases
and maximize the bandwidth utilization by dynamically
coordinating the loading order.

The experimental results show that APTMoE surpasses
baseline methods in most cases, and achieves up to 33%
throughput improvement compared to the SOTA method.
Besides, APTMoE successfully fine-tunes a 61.2B MoE model
on 4 Nvidia A800 GPUs(40GB), which theoretically requires
1126GB memory.

II. BACKGROUND AND MOTIVATION

A. Mixture-of-Experts

MoE is short for sparsely-gated Mixture-Of-Experts. The
MoE architecture utilizes multiple sub-models, referred to as
“experts”, with each specializing in distinct sub-tasks. As in
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Fig. 2. Illustration of Transformer layer and MoE layer.
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Figure 2, here we take the popular Transformer models, e.g.
LLama [5] and GPT [6], and Transformer-based MoE models,
e.g. Mixtral [18], DBRX [4], and Grok [2], as the example. A
Transformer model is stacked by a number of Transformer
layers, and a Transformer layer consists of a Multi-Head
Attention (MHA) block and a Multi-Layer Perceptron (MLP)
block. In comparison, the MoE layer replaces the conventional
Transformer layer’s MLP block with the MoE block to intro-
duce sparsity.

The MoE block contains two main components: one gate
operation and multiple experts. The gate operation is typically
composed of one or two feed-forward layers and a routing
function (with a softmax layer and top-k selection), with the
aim of routing each input token to k experts. Each expert has
the same structure with the MLP block and is actually a neural
network with feed-forward layers. Overall, for given tokens of
an input sequence, these tokens will firstly flow through the
gate operation, and the gate operation determines the allocation
of tokens to different experts.

B. Bandwidth-constrained Pipeline Tuning

The pre-training phase is typically carried out on large-
scale clusters, commonly utilizing hundreds of GPU nodes
connected via high-speed network fabric, such as NVLink in
Figure 3(a). Such high-quality hardware is generally affordable
for a small proportion of individuals within the AI community.
Moving onto the fine-tuning phase, the hardware accessible to
most people is significantly weaker, typically consisting of a
single node or several nodes equipped with multiple GPUs.
As shown in Figure 3(b), these nodes usually lack high-speed
interconnection and the inter-GPU communication relies on
conventional PCIe buses, presenting constrained bandwidth.

To fine-tune large-scale models on bandwidth-constrained
GPU nodes, existing solutions exploit pipeline parallelism

and offloading technique to scale up the model size and
distribute workloads. Pipeline parallelism involves partitioning
a model into disjoint stages, each of which is assigned to a
specific device. Figure 4(a) illustrates the fundamental pipeline
parallelism approach in GPipe [14]. The execution of multiple
micro-batches on different stages can overlap and form a
pipeline. Compared to tensor parallelism [19], another pop-
ular model parallelism approach, pipeline parallelism incurs
significantly fewer communications, making it more suitable
for bandwidth-constrained hardware.

Building upon pipeline parallelism, adopting the offloading
technique can further expand the model size that limited
hardware can fine-tune. Figure 4(b) illustrates the combination
of pipeline parallelism and offloading technique introduced in
Mobius [8]. Mobius enhances pipeline parallelism with the
heterogeneous memory. Instead of placing a single pipeline
stage in a GPU, Mobius pipeline partitions the model into
more stages and allocates multiple stages to a GPU, with
adjacent stages mapped to different GPUs. As shown in
Figure 5(a), Mobius pre-fetches parameters of the subsequent
stage while the current stage is executing, and offloads pa-
rameters along with activations after forward process. For
backward process, it pre-fetches parameters and activations
from host memory to GPU memory, and offloads parameters
and gradients for parameters update at the end of each step.
Thus, a single device only requires to keep two stages at a
time. Mobius also includes a cross-mapping stage placement
that maps two adjacent stages to GPUs under different CPU
root complexes for reducing bandwidth contention.

C. Challenges and Opportunities

1) Increased ratio of data to computation: In general, the
computation of MLP or MoE blocks dominates in both dense
and sparse models. As stated above, each layer in the MoE
architecture consists of multiple experts, and each input token
will be routed to k experts. Typically, k is much smaller than
the number of experts in the layer. Thus, the ratio of data to
computation in MoE models increases significantly compared
to that of their dense counterparts.

When applying pipeline parallelism and offloading tech-
nique to fine-tune large-scale models, the ratio of data loading
to computation determines whether the computation will be
blocked. As the ratio grows, the data loading process may
potentially block the computation in existing approaches. To
alleviate this, one approach is to enlarge the computation
amount by using larger batch size. However, unrestrained
growth in the batch size may exceed memory capabilities
during fine-tuning and may lead to potential convergence
issues. Therefore, it is still necessary to optimize the workload
from the system view.

2) Expert popularity: As compared to dense models, one
notable feature of MoE models is expert popularity, that input
tokens will be routed to different experts and the distribution
is generally skewed. During MoE fine-tuning, we capture
the severely imbalanced expert workload that most input
tokens will select a small portion of experts, especially fine-
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tuning on domain-specific datasets, which corroborates similar
observations in previous works [20]–[29].

In most cases, the expert activation is dynamically decided
by the gate operation located right before experts, and we call
this real-time expert popularity, which limits opportunities for
system-side optimization. Prior efforts [20]–[23], [25], [30]
have proposed to predict expert activation using approaches
including neural networks, statistical methods and hashing
function. As reported, these approaches have shown consid-
erable prediction accuracy. This predicted expert popularity
provides us with more opportunities for system-side expert
prefetch and overlapping of loading and computation. Besides,
previous works [21], [30], [31] also identify that a few experts
are always activated with high intensity within a time period,
which we also validate on a real case in experiments. We call
this historical expert popularity.

3) Computation affinity: Capitalizing on the imbalanced
popularity among experts, the activation of different experts
occurs unevenly, resulting in significant variations in computa-
tional intensity. Thus, it is promising to leverage this variation
and allocate experts across GPUs and CPUs based on affinity.
In Figure 6, to validate this, we report the execution time
for loading, CPU computing and GPU computing of a single
expert (FP32) with varying numbers of input tokens, utilizing
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Fig. 6. The time for loading, CPU computing, and GPU computing of a single
expert, conducted on Intel Xeon Gold 6348 CPU with 28 Cores and Nvidia
A800 GPU. d and h represent dimensions of linear layers in the expert.

an Intel Xeon Gold 6348 CPU and an NVIDIA A800 GPU.

Compared to GPUs, CPUs typically have much lower
theoretical computing power and simply offloading fine-tuning
workloads onto CPUs can result in inefficiency. However,
with the skewed expert popularity, some experts are activated
in low density. As shown in Figure 6, comparing the CPU
and GPU results, GPU apparently performs much better than
CPU when the number of input tokens is large. However,
when processing the expert with a small number of tokens
as input, their results become comparable. This is because the
computation becomes less compute-bound when the number of
input tokens is small, and CPU is more friendly to handle this
kind of workloads. Thus, we can allocate high-demand experts
to GPUs and leverage their parallel processing capabilities,
while allocating less-intensive experts to CPUs. In this way,
on one hand, we can take advantage of the idle computing
resources of CPUs, one the other hand, we can release GPUs
to process more suitable workloads. Moreover, if an expert
is conducted on CPUs, it is not necessary to load into GPU
memory, thus reducing the data movement volume.

We further compare CPU performance under different cores,
e.g. 7, 14 and 28 cores respectively. Figure 6 shows that the
execution time of high-demand experts obviously increases
when reducing the number of CPU cores. In comparison, the
execution time of these less-intensive experts increases slightly
when reducing the number of CPU cores. This is because these
less-intensive experts are in lower computation intensity, and
they cannot even saturate CPU cores. Thus, it becomes more
feasible to offload affinity computation onto CPUs even if the
number of GPUs exceeds that of CPUs.
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III. THE DESIGN OF APTMOE

We propose APTMoE, a system for fine-tuning MoE models
with affinity-aware pipeline parallelism. APTMoE takes the
key idea of allocating computation to both GPUs and CPUs
based on affinity, so as to achieve better computation efficiency
and memory management. In this section, we first introduce
the APTMoE workflow. Next, we illustrate the overview of
affinity-aware pipeline tuning, and present the hierarchical
loading strategy and the demand-priority scheduling strategy.

A. APTMoE Workflow

As demonstrated in Figure 7, APTMoE system can be
divided into two parts: the static part and the runtime part. The
static part profiles memory usage and execution time, and gen-
erates the layer-to-stage mapping and execution time lookup
table. In detail, with the given MoE model, the parameter
settings and the target GPU nodes, the profiler performs fine-
tuning of a single MoE layer on both CPU and GPU. Since
the input sequence length and the batch size are generally
fixed, the workload of the Multi-Head Attention (MHA) block
keeps unchanged throughout the fine-tuning phase. In contrast,
since the gate operation dynamically determines the routing of
tokens to experts, the profiler needs to traverse a single expert
with all possible number of tokens as input. The time cost of
the profiler is moderate as we only run a single layer for a
limited number of fine-tuning steps. Also, the static part runs
offline and thus does not incur runtime overhead.

Through fine-tuning a single MoE layer, the profiler records
the memory footprint of a single layer to generate the layer-
to-stage mapping. Also, the profiler records the execution
time and represents the computation affinity by comparing the
execution time of the same workload. Allocating computation
to CPU or GPU is also impacted by the data movement time,
and we profile the data movement time of a single MHA block,
a single gate operation and a single expert. These profiling
results are stored for determining the computation affinity.

Moving onto the runtime part, APTMoE takes the affinity-
aware offloading, which includes the hierarchical loading strat-
egy and the demand-priority scheduling strategy, to enhance
the pipeline parallelism on bandwidth-constrained GPU nodes.
Details are described as follows.

B. Affinity-aware Offloading on Pipeline Parallelism

This section will introduce the critical concept of the
affinity-aware offloading and explain how it enhances the
pipeline parallelism. Basically, APTMoE takes the common
pipeline stage placement method that multiple stages are
allocated to a GPU and adjacent stages are placed in different
GPUs. As shown in Figure 5(b), instead of only conducting
computation on GPUs as in previous offloading techniques,
the affinity-aware offloading gets benefits from distributing
computation across both GPUs and CPUs. For a given input,
leveraging both the expert popularity and computation affinity,
the affinity-aware offloading will determine which part should
be conducted on the CPU and which part on the GPU. Accord-
ingly, the affinity-aware offloading correspondingly schedules
the data movement.

In detail, the affinity-aware offloading takes the hierarchical
loading strategy to determine the allocation of computation to
devices and manage the loading decisions. Compared to the
basic offloading technique in Figure 5(a), besides reducing the
burden of GPUs by leveraging CPUs, it enables to load and
offload a smaller amount of parameters, activations and gra-
dients. Then, the affinity-aware offloading takes the demand-
priority scheduling strategy to carefully coordinate the load-
ing execution, alleviating the mutual interference within the
hierarchical loading strategy and maximizing the bandwidth
utilization between host memory and GPU memory.

C. Hierarchical Loading Strategy

As shown in Figure 8, instead of loading only at stage
granularity, the hierarchical loading strategy subdivides the
previous inter-stage loading into three phases, namely inter-
stage loading, inter-layer loading and inter-expert loading.
Given that different experts are activated unevenly and possess
varying computational intensities, their affinity to CPU and
GPU differs and placing computation on CPUs can reduce the
data movement volume. These three phases enable to schedule
loading decision with more accurate expert popularity.

Notably, the loading strategy differentiates the forward and
backward processes. For the forward process, the real expert
popularity remains unknown until the execution of the gating
operation. On the contrary, all real expert popularity is already
known for the backward process, thereby allowing for pre-
allocation. We will begin by introducing how we construct the
loading decision management, then illustrate the three loading
phases for forward process, and finally explain our loading
strategy for backward process.

1) Loading Decision Management: The hierarchical load-
ing strategy manages the loading decisions at the granularity of
the model block, such as the MHA block, gate operation, and
expert. We employ three queues for each of these three phases
to manage loading decisions, and they are assigned different
priorities from low to high. Through adding or removing the
names of blocks in the corresponding queues, the hierarchical
loading strategy can manage the loading decisions. Also, these
queues will be used in the demand-priority scheduling strategy
for coordinating the loading execution.
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2) Inter-stage Loading: For the forward process, the real
expert popularity keeps unrevealed until the gate operation is
carried out. To maximize the benefits of performing compu-
tations on CPUs, the hierarchical loading strategy defers the
loading decision based on different levels of expert popularity,
so as to greedily allocate computation with the highest affinity
and minimize the data movement volume.

The inter-stage loading phase, illustrated in Figure 8(c),
follows the similar idea as in previous works that it identifies
the overlapping space between the computation of the current
stage and the loading of the subsequent stage. Instead of
loading all data required by the next stage indiscriminately, our
inter-stage loading phase greedily loads partial data according
to their computational demands. The inter-stage phase tends to
prioritize model blocks that are highly likely to exhibit high
computational intensity. Thus, MHA blocks and gate oper-
ations are inherently prioritized during the inter-stage phase,
which means their names will be added to the inter-stage queue
with priority. The reason is that they need to process all input
data and pose intensive computational demands.

Considering which experts to be loaded in the forward
process, the inter-stage phase leverages the historical expert
popularity. The historical expert popularity indicates that a
few experts are always activated with high intensity within a
time period [21], [30], [31]. The inter-stage phase prioritizes
the loading of these experts that are highly activated in the
previous iteration. It begins by adding the names of the top-
ranked experts across all layers into the inter-stage queue and
then gradually decreases the rank order.

Once switching pipeline stages, the names in the current
inter-stage queue will be cleared, despite some model blocks
have not been loaded in this phase. Although the historical
expert popularity cannot provide accurate guidance, these
historical top-ranked ones are generally high-demand ones in
real scenarios, as we can only load a small proportion of
experts in each MoE layer in actual.

Overall, the inter-stage loading firstly adds the names of
MHA blocks and gate operations into its queue and then
greedily decides which experts to load based on the historical
expert popularity. For those MHA blocks, gate operations,
and experts who are not loaded during this phase, we defer
their loading decisions to the later inter-layer and inter-expert
phases with more accurate expert popularity.

3) Inter-layer Loading: The inter-layer loading is illus-
trated in Figure 8(b) and it identifies the overlapping space
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Fig. 9. Design of the popularity predictor.

between the computation of the current layer and the loading
of the subsequent layer, both in the current pipeline stage.
When getting into the execution of a stage, this loading phase
dynamically determines the loading decisions of experts in the
subsequent layer based on the predicted expert popularity and
computation affinity.

In MoE models, each MoE block contains a gate operation
that is responsible for determining the routing of tokens to
experts. However, since the gate operation is positioned just
before experts, the real expert popularity remains unknown
until the gate operation completes, making it challenging for
the inter-layer phase to effectively leverage activation patterns
of experts. To address this limitation in the forward process, we
introduce an additional structure, called the expert popularity
predictor, to provide predicted expert popularity. It is noted
that the predictor operates independently and does not alter
the original MoE model.

As illustrated in Figure 9, for each layer, the predictor is
incorporated one or a few layers ahead of the gate operation.
The intermediate results flow through both the predictor and
the gate operation of the current layer, generating the predicted
expert popularity and the real expert popularity respectively.
The predictor takes the same structure as the gate operation.
The predictor initially takes weights of the corresponding gate
operation, then takes steps of training for better prediction.
Leveraging the proximity of intermediate results to the targeted
layer, the predicted expert popularity generally achieves very
high accuracy compared to the real expert popularity.

Next, we discuss how the inter-layer phase determines
which experts to load into GPU memory for execution. In
detail, with the predicted expert popularity, we pre-allocate
computation across GPUs and CPUs based on Equation 1:

R =

∑high
low Compcpu

LoadMHA + LoadGate +
∑low

high Loadexpert
(1)
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We assume that, by default, the loading time takes longer
than the computation. The numerator of R is the accumulated
CPU predicted execution time of experts in all executed micro-
batches with the computational intensity ranking from low to
high. The denominator of R comprises the loading time of
MHA blocks, gate operations, and the accumulated loading
time of experts with the computational intensity ranking from
high to low. Since the expert popularity of subsequent micro-
batches remains unknown, we greedily scale the computation
time based on existing results. The threshold of stopping
loading is R = 1. Once the expert popularity of a new
micro-batch is generated, we will re-schedule and the inter-
layer loading decision may change. In other words, once
there appears new highly-demand experts in the current micro-
batch, we will modify the inter-layer loading decisions to meet
the new computational demands. This is done by adding or
removing names of the inter-layer queue.

4) Inter-expert Loading: The inter-expert loading is illus-
trated in Figure 8(a), and it identifies the overlapping space
between the computation and loading of experts, in the current
layer of the current pipeline stage. When entering the current
layer, the real expert popularity is generated by the gate
operation, and the inter-expert phase loads these experts with
deterministic high intensity. Specifically, we still adhere to the
Equation 1 to determine whether an expert should be loaded,
with one difference that the CPU execution time is determined
by the actual gating operation, instead of predicted ones.

5) Backward Loading Strategy: Given that all accurate
expert popularity is already known for the backward process,
the loading strategy differs with that of the forward process.
In detail, with the real expert popularity, we can pre-allocate
computation across GPUs and CPUs still following Equa-
tion 1. Since Equation 1 considers the expert popularity of all
micro-batches, it can provide the globally optimal allocation
scheme for the backward process. Based on this, we can pre-
determine the allocation of all experts in the inter-stage phase
before backward process, without the necessity of inter-layer
and inter-expert loading phases.

D. Demand-priority Scheduling Strategy

The three loading phases of the hierarchical loading strategy
generate the loading decisions. However, since these loading
phases rely on the same PCIe lane with the same direction and
cannot execute concurrently, they will potentially block each
other. The demand-priority scheduling strategy is responsible
for coordinating these three loading phases and scheduling
the loading execution, alleviating the mutual interference and
maximizing the bandwidth utilization.

Figure 10 illustrates the demand-priority scheduling strat-
egy, which employs a proactive approach. In this approach,
the program periodically queries the GPU for the loading
process status and dynamically determines the loading order at
runtime. During execution, the three loading phases dynam-
ically add or remove the names of model blocks into three
queues. These queues are prioritized differently based on their
demand urgency. In detail, the demand-priority scheduling
strategy assigns the highest priority to the inter-expert phase,
followed by the inter-layer phase, and finally the inter-stage
phase, which has the lowest priority.

The loading decisions of these phases are made in differ-
ent styles. Specifically, the inter-stage phase makes loading
decisions for numerous model blocks once the pipeline stage
switches. The inter-layer phase only makes loading decisions
for several model blocks of the next layer, while the inter-
expert phase makes loading decisions for fewer experts of
the current layer. Thus, the loading decision moments and the
loading execution moments are inconsistent. These loading ex-
ecution should be interlaced in some conditions. Consequently,
dynamically scheduling loading execution of these phases in
real-time becomes essential.

Coordinating loading becomes the CUDA kernel scheduling
problem. Since interrupting and resuming a kernel’s execution
is very difficult and expensive, each kernel continues execu-
tion until completion once started. Consequently, scheduling
launched kernels presents significant challenges. As a solu-
tion, we opt to schedule data movement kernels before their
launches, simplifying the overall scheduling process.

As in Figure 10, we initially select a pre-determined number
of data movement actions from the queues of loading phases,
and launch them to the loading stream in the GPU. To query
the GPU loading status, we additionally incorporate a cuda
event and utilize the CPU-GPU synchronization to query
whether the event is triggered. The cuda event is inserted at the
position before the last action. This arrangement ensures that
when the CUDA event is triggered, a data loading kernel is
still executing, effectively hiding the kernel launch overhead.

Besides, the demand-priority scheduling strategy is also
responsible for ensuring the correctness of data dependencies.
As shown in Figure 10, to guarantee that the data has been
moved to GPU memory when the computation occurs, the
strategy inserts a CUDA event for consecutive data loading
kernels and uses the inter-stream synchronization to inform
the corresponding computation kernel that the data is ready.
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Fig. 11. Overall performance on 4 Nvidia A800 GPUs under various expert popularity.

TABLE I
MODEL CONFIGURATION

Layers Dim Hidden Dim Experts Model Size Memory(FP32)

MoE-S-8
64 1024 4096

8 4.5B 111GB
MoE-S-16 16 8.8B 213GB
MoE-S-64 64 34.6B 821GB

MoE-M-8 64 2048 8192 8 18.2B 366GB
MoE-M-16 16 35.4B 707GB

MoE-L-8 64 4096 14336 8 61.2B 1126GB

IV. EVALUATION

A. Experiment Setup

Testbed. We deploy APTMoE on a cluster with 4 nodes.
Each node contains 8 NVIDIA A800 GPUs (40GB) and every
four of them connect to a Intel Xeon Gold 6348 CPU with 28
cores. A node has a total of 1024 GB main memory. All GPUs
can only communicate via PCIe switch. We evaluate on three
device topologies to validate the impacts of involving CPUs
on performance:

• C1+G4: Four GPUs are connected to one CPU, and every
7 cores are bound to each process.

• C1+G2: Every two GPUs share one CPU, and every 14
cores are bound to each process.

• C1+G1: Each GPU fully occupies one CPU, and 28 cores
are bound to each process.

Baselines. We compare APTMoE with the following ap-
proaches:

• GPipe [14]: GPipe is a fundamental pipeline parallelism
approach which partitions the model into stages equal to
the device number and sequentially maps them to devices.
Besides, it only utilizes GPU memory.

• GPipeOffload : We configure GPipe with the naive of-
floading technique. Specifically, we split the original
stage of GPipe into several smaller stages and keep the
same stage-to-device mapping. We load and execute them
one by one.

• Mobius [8]: A fine-tuning system for bandwidth-
constrained GPU nodes, integrating pipeline parallelism
and offloading technique. It partitions the model into
stages and the number of stages is more than that of
GPUs, with adjacent stages mapped to different GPUs.
Next, it schedules these stages between GPU memory
and host memory. Mobius also features a novel stage-to-
device mapping for reducing bandwidth contention. We
take Mobius as our primary baseline.

Workloads. We use MoE models based on GPT-like Trans-
former structure. To validate the generalization, we establish
some MoE models (top-2 gating) as shown in Table I, and
design a simulator to replace both gate operation and predictor
for simulating different expert popularity. We also present the
theoretical memory requirements when fine-tuning them with a
batch size of 128 and FP32 in Table I. We use Adam optimizer,
and the number of micro-batches is set to the number of GPUs.
A metric G is proposed to describe the expert popularity:

G =
1

L

L∑
l=1

E∑
e=1

(pel )
2 (2)

pel is the proportion of input tokens assigned to the e-th expert
of the l-th MoE layer. A larger G indicates more imbalanced
expert popularity, and notably, this metric is seriously impacted
by the number of experts.

Besides, we fine-tune NLLB-MoE [32] and Mixtral-
8x7B [18] on APP dataset [33] as the real-world case study,
mainly focusing on validating the accuracy of the predicted
expert popularity.

B. Overall Performance

In this section, we verify the effectiveness of APTMoE
under various expert popularity. In detail, we simulate the
expert popularity of these models with varying G. Since G
is influenced by the number of experts, we select different
ranges of G values for MoE models with varying numbers of
experts. Experiments are conducted on four GPUs within a
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node under C1+G2 topology. Detailed results are presented in
Figure 11 and Figure 12.

In all cases shown in Figure 11, APTMoE presents advan-
tages in fine-tuning throughput and yields positive speedup
compared to all baseline methods across all models. For GPipe
that relies solely on GPU memory, it can only accommo-
date MoE-S-8 in our model configurations and occurs out-
of-memory(OOM) errors with all other MoE models. This
demonstrates the necessity of combining offloading technique
with pipeline parallelism for effectively fine-tuning MoE
models. Since the MoE-S-8 model is relatively small and
exhibits low computational intensity, the loading time can be
hidden within the execution time. As APTMoE can allocate
computation across GPUs and CPUs, it outperforms GPipe.

Comparing APTMoE, Mobius, and GPipeOffload, APT-
MoE consistently outperforms Mobius and Mobius outper-
forms GPipeOffload. Mobius outperforms GPipeOffload due to
its novel model partition method and cross-mapping scheme.
These features enable better overlapping and less bandwidth
contention. On top of Mobius, APTMoE performs better for it
distributes computation across both GPUs and CPUs, as well
as implementing a more flexible loading process. Particularly,
APTMoE allows CPUs share part of non-popular expert work-
load, which can relieve these memory-bound burden of GPU
and enhance efficiency. The experts in CPU affinity stay in host
memory, resulting in lower data movement volume. Moreover,
the throughput of APTMoE improves with the increase of
G. This can be attributed to the fact that more imbalanced
workloads lead to better affinity.

Next, comparing Figure 11(a), (b) and (c) with the same
batch size and varying numbers of experts, as the number of
experts increases, the impact of imbalanced expert popularity
on the throughput becomes more pronounced. The reason is,
when the expert number increases with the fixed batch size and
sequence length, these low-demand experts are more likely to
demonstrate better affinity to CPUs, thereby presenting better
CPU-GPU cooperation and less data movement volume. For
all cases in our evaluation, APTMoE can achieve a maximum
speedup of 33% over Mobius on MoE-S-16 when G = 0.4.

Comparing APTMoE’s performance on MoE-S and MoE-
M, we can find that APTMoE’s speedup decreases with larger
expert size. In our evaluation, as shown in Figure 11(a) and
(d), APTMoE’s maximum speedup over Mobius is 32.3% on
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Fig. 13. Evaluation of device topologies on MoE-S-16 and MoE-M-8. G =
0.6 for MoE-M-8 and G = 0.3 for MoE-S-16.

MoE-S-8 and 17.1% on MoE-M-8. In Figure 11(b) and (e),
APTMoE can achieve the maximum speedup over Mobius of
33% on MoE-S-16 and 15.3% on MoE-M-16. In our analysis,
the performance improvement achieved by leveraging CPU
computation resources diminishes as the model scales. This is
primarily because CPUs are not as proficient as GPUs when
dealing with large-scale matrix multiplication.

In Figure 12, we evaluate MoE-S-16 and MoE-M-16 with
varying batch size. Results show that the speedup improves
and the trend gradually becomes slowly when the batch
size increases, both for MoE-S-16 and MoE-M-16. As the
batch size increases, the total amount of data movement for
each iteration rises slowly, whereas the computation amount
increases proportionally with the batch size. In this way, when
the batch size is small, the data movement time dominates
the overall execution time and APTMoE takes effect only
by reducing the data movement volume. As the batch size
becomes larger, APTMoE can improve from more aspects.

C. Benefits of CPU Involvement

We conduct experiments on three device topologies with
MoE-S-16 and MoE-M-16 using batch size of 128, as in
Figure 13. Comparing the results of three device topologies,
as the CPU ratio relative to GPU increases, the throughput
consistently improves across these two models. In detail, APT-
MoE achieves the speedup to Mobius of -2%, 28.3% and 31%
on MoE-S-16, and -9%, 15.9% and 25.8% on MoE-M-8. The
throughput improvement can attribute to the increased CPU
cores assigned to a process, and this well fits the results of the
prior experiment in Figure 6. When under C1+G4 topology,
APTMoE’s throughput is sightly lower than Mobius, due to the
insufficient CPU computing resources. The insufficient CPU
cores fail to handle the expert workload, especially when the
expert size is large. In this way, we think it is cost-effective
to introduce more CPUs in bandwidth-constrained systems.

D. Strong Scaling

We evaluate MoE-S-64 and MoE-M-16 for strong scaling
evaluation, presented in Figure 14. Specifically, we increase
the number of GPUs from 4 to 16 under C1 +G2 topology,
and fix a constant batch size of 128. For MoE-S-64, when
the number of GPUs increases from 4 to 8 and 16, APTMoE
achieves the speedup of 1.65× and 3.08×, respectively. As
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for MoE-M-16, APTMoE achieves the speedup of 1.76×
and 3.36×. Pipeline parallelism is renowned for its minimal
communication overhead and increasing the GPU number can
improve the accumulated bandwidth between host memory and
GPU memory. However, we observe that the strong scaling
results are not as impressive as expected. This is primarily
because when scaling to more GPUs, the batch size of micro-
batches becomes small. Consequently, the reduced batch size
leads to a much lower computational intensity. Furthermore,
APTMoE consistently achieves the highest throughput in all
three tests.

E. Real Case Evaluation

1) Predictor Token Accuracy: We fine-tune two open-
source pre-trained MoE models, i.e. Mixtral-8x7B [18] and
NLLB-MoE [32], on APP dataset [33] with APTMoE. At
first, we evaluate the effectiveness of our predictor design.
For Mixtral-8x7B, since all layers are MoE layers, we place
the predictor one layer ahead of the gate operation. As for
NLLB-MoE where every 4 layers contain a MoE layer, we
place the predictor 4 layers ahead. Predictors are initialized
with weights adopted from the gate operation of the target
layer.

Figure 15 reports the prediction accuracy per token with
0.85 for Mixtral-8x7B and 0.64 for NLLB-MoE, respectively.
Intuitively, the predictor accuracy of NLLB-MoE is lower
than that of Mixtral-8x7B. On one hand, NLLB-MoE has 128
experts and Mixtral-8x7B has only 8 experts. More experts
hinder the prediction accuracy, as a token has more expert
choices. On the other hand, the prediction of NLLB-MoE
is earlier, which comes at the expense of lower accuracy,
but allows for earlier determination of inter-layer loading
scheduling.

2) Predictor Expert Accuracy: Compared to the predictor
accuracy per token, we calculate the expert accuracy that

whether an expert is correctly predicted based on the token-
level predicted results. Since the APTMoE only requires to
know the activation order of experts and decides whether an
expert should be loaded into GPU memory, the expert accuracy
is more reasonable in APTMoE design. We measure the expert
accuracy by providing the probability that the predicted least
activated n experts fall within the the real least activated m
experts (n <= m).

For Mixtral-8x7B with 8 experts, the correct probability of
the last 1/4 experts (n = 2) is always 100% predicted. In other
words, we can accurately predict the last two least activated
experts of Mixtral-8x7B, as less experts tend to result in
higher correct probability. For NLLB-MoE with 128 experts,
we evaluate whether the last 1/4 least activated experts can
be predicted, that is, n = 32. The expert accuracy is 94%
when m = 48. These above results demonstrate that, the
predictor can almost accurately predict non-popular experts,
so as to provide beneficial guidance to the hierarchical loading
strategy.

Meanwhile, we also evaluate the expert accuracy between
iterations to verify the historical expert popularity. For NLLB-
MoE, among these 32 least activated experts in the current
iteration, on average 73.3% of them also fall into the 48
least activated experts in the next iteration. This verifies the
historical expert popularity, which validating the opportunity
for the inter-stage loading phases.

3) Performance: Mixtral-8x7B [18] takes the same expert
configuration as the MoE-L-8, with a G value of approxi-
mately 0.2. In fact, the Mixtral-8x7B introduces a novel algo-
rithm called the load balance loss that alleviates the impact of
skewed expert popularity. The configuration of Mixtral-8x7B
falls into the Figure 11(e). APTMoE achieves approximately
4% speedup over Mobius and 20% over GPipeOffload.

NLLB-MoE [32] has the same expert configuration as the
small model and has 128 experts. The G value of NLLB-MoE
is approximately 0.05. Although the G value is much less
than that of Mixtral-8x7B, its expert popularity is much more
imbalanced due to the larger number of experts it includes.
As in Figure 16, APTMoE shows around 15% speedup over
Mobius and 32% over GPipeOffload.

4) Overhead Analysis: We demonstrate the overhead intro-
duced by the predictor. s and E represent the sequence length
and number of experts per layer, while d and h are dimensions
of linear layers of an expert. Considering top-2 gating, expert
FLOPs within a MoE block of a forward process is given by
8sdh in theory, while FLOPs of the gate operation of 2sdE.
In MoE architecture, h is usually several orders of magnitude
larger than E (h = 14336 and E = 8 in Mixtral-8x7B). Thus,
the extra FLOPs introduced by the predictor can be negligible.

For our real case evaluation, in Figure 15, the predictor of
Mixtral-8x7B converges after around 700 steps with nearly
0.93s, while the predictor of NLLB-MoE converges with
nearly 0.18s. These overheads are much less compared to a
single step, or rather the overall fine-tuning process.
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V. RELATED WORKS

In recent years, there has been a surge of system-level
researches on MoE training, fine-tuning and inference. These
works can be broadly classified into two categories: scale-out
and scale-up approaches.

Scale-out Approaches. Scale-out approaches often increase
the number of GPUs to satisfy the memory requirement and
improve efficiency. Expert parallelism, firstly introduced by
GShard [1], is widely adopted in modern MoE training system.
It distributes experts onto different devices, with the aim of
accommodating more experts, but at the expense of heavy all-
to-all communication. Deepspeed-MoE [34], FasterMoE [26],
Lina [22], ScMoE [35] , TA-MoE [36] and Yao et al. [37]
optimize the all-to-all communication in expert parallelism.
Lazarus [29] focuses on the training resilience of expert paral-
lelism, with a provably optimal expert placement algorithm to
maximize the probability of recovery from failures. However,
the expert parallelism approach may suffer from severe com-
munication bottleneck in bandwidth-constrained environments.
In contrast, MPipeMoE [38] and PipelineMoE [39] concen-
trate on combining MoE training with pipeline parallelism,
which are more communication-friendly. However, these two
efforts do not explore the combination of pipeline parallelism
and offloading technique, posing difficulties to accommodate
large models with limited number of devices. Tutel [40] and
SmartMoE [21] focus on adaptive parallelism, and dynami-
cally adjust the combination of expert parallelism, pipeline
parallelism, and tensor parallelism during runtime.

Scale-up Approaches. Scale-up approaches address the
GPU memory wall issue by immigrating large-scale models
to external storage resources, such as CPU memory. Some
offloading techniques, including ZERO-Offload [9], ZERO-
Infinity [10], L2L [11] and CoTrain [41], are designed for
dense models. However, since the data flow graph cannot
be constructed in advance due to the dynamic nature of
expert popularity, MoE-specific approaches are proposed. M6-
10T [42] proposes granular CPU offloading technique that
selectively offloads some layers and leaves part of the model in
GPU memory, with the aim of reducing data movements and
improving efficiency. Besides, SE-MoE [43] tackles the mem-
ory wall issue by comprehensively considering GPU memory,
CPU memory and even SSDs. Based on its proposed ring
memory offloading technique, SE-MoE dynamically schedules
data across different storage. Huang et al. [31] propose an
expert buffering mechanism to offload infrequently activated
experts to the CPU memory, while popular experts are kept
in the GPU memory. As they only utilize the CPU memory
and do not offload the computation, it loses opportunities
for CPU computing resources participant. To better schedule
the data movement, Pre-gated MoE [25] advances the gate
operation in MoE models and achieves better overlap of the
expert migration and expert execution. Whereas, it changes
the original model structure and may potentially impact the
model quality. Eliseev et al. [30] propose the speculative expert
loading. Through directly duplicating and advancing the gate

operation, it can roughly foresee the expert popularity.
Among these efforts, they fail to leverage CPUs and re-

duce the data movement volume. In comparison, APTMoE
is a combination of scale-up and scale-out approaches and it
creatively adopts CPUs for better offloading.

VI. CONCLUSION

To lower the barriers of adopting MoE architecture, this
paper introduces APTMoE, an affinity-aware pipeline fine-
tuning system for MoE models targeting at bandwidth-
constrained GPU nodes. Through carefully allocating compu-
tation in pipeline parallelism across GPUs and CPUs based
on expert popularity and computation affinity, APTMoE can
largely enhance computational efficiency and reduce the data
movement volume between GPU memory and host memory.
Experiments demonstrate that APTMoE outperforms existing
methods in most cases and can achieve up to 33% throughput
improvement compared to the state-of-the-art method. With
APTMoE, a 61.2B MoE model that theoretically requires
1126GB memory is successfully fine-tuned on 4 Nvidia A800
GPUs(40GB).

For LLM workloads, such as large model generative infer-
ence [44], [45] and our MoE fine-tuning, leveraging CPUs can
significantly enhance cost-effectiveness. CPUs serve not only
as the control unit but also play a crucial role in optimizing
overall performance. Therefore, it is reasonable to reconsider
the role of CPUs in AI infrastructure.
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Appendix: Artifact Description/Artifact Evaluation

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

This paper presents APTMoE, an affinity-aware pipeline
fine-tuning system for MoE models targeting at bandwidth-
constrained GPU nodes. APTMoE enhances the computational
efficiency and the model size for fine-tuning MoE models
on limited number of bandwidth-constrained GPU nodes.
APTMoE includes the affinity-aware offloading technique to
enhance the pipeline parallelism, with the key idea to offload a
portion of the affinity computation to the CPU, so as to better
manage data across heterogeneous memory. Our contributions
are summarized as follows:

C1 The hierarchical loading strategy. With the prior
knowledge of expert popularity and computation
affinity, it employs three loading phases to greedily
allocate computation with the highest affinity and
minimize data movement volume.

C2 The demand-priority scheduling strategy. It is used
to alleviate the mutual interference among loading
phases and maximize the bandwidth utilization by
dynamically coordinating the loading order.

C3 Expert popularity simulator for evaluation. It proxies
the gate and predictor for both generalized and real
MoE models, so as to evaluate APTMoE on fine-
tuning MoE models.

B. Computational Artifacts

A1 https://github.com/Atopos-309/APTMoE

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C2, C3 Figure 11-16

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact A1 implements and validates the key concept
in the APTMoE system. To display it more clearly, we divide
the artifact into three parts:

• The static part. It profiles memory usage and execution
time by performing fine-tuning of a single MoE layer on
both CPU and GPU. This part is used to guide the layer-
to-stage mapping and hardware affinity for the runtime
part. It mainly relates to C1.

• The runtime part. It implements the basic pipeline par-
allelism fine-tuning. Upon the pipeline parallelism, it
implements the hierarchical loading strategy and the
demand-priority scheduling strategy in the affinity-aware
offloading technique. It mainly relates to C1, C2.

• The gate simulator part. It is responsible for validating the
effectiveness of APTMoE on MoE models with all kinds
of configurations. First, it takes the expert popularity gen-
erator for simulating generalized MoE models. Second,
it acquires expert popularity from real model fine-tuning
for real case evaluation. It mainly relates to C3.

For the static part, it locates in APTMoE/Static. An
instance of class Profilier performs fine-tuning of a single
MoE layer on both CPU and GPU, and generates execution
time lookup table associated with affinity.

The runtime part of APTMoE is located in APTMoE
/Runtime. APTMoE system is based on a pipeline
framework (APTMoE/Runtime/PipelineRuntime
/pipeline_runtime.py), which is responsible for
pipeline P2P communication and fine-tuning process. The
hierarchical loading strategy is implemented in APTMoE/
Runtime/OffloadRuntime, including the three loading
phases(offload.py) and the optimal expert-to-device
allocation scheme for given popularity(R_solver.py).
The demand-priority scheduling strategy is located in
comm_scheduler.py. It includes a PriorityQueue
that manages three loading queues with respect to different
loading phases. We use torch.cuda.Event.query()
to check if the correspoding loading event is completed.
If it is, then launch the highest priority loading in the
current queue. We perform two cuda streams(comp_stream
and load_stream) to execute computation and loading
operations concurrently, with the aim of overlapping
computation and communication. Besides, we specify a
torch.cuda.Event() to each model block to maintain
the inter-stream dependency.

For the C3 of the gate simulator part, we simulate the expert
popularity that satisfies a specified power-law distribution for
the generalized MoE models, which is located in APTMoE
/model/top2gate.py. Also, we execute the real MoE
model fine-tuning and abstract the real expert popularity
for the real case study, the code is located in APTMoE/
RealCase.

Besides, we use psutil.Process().cpu_affinity
() to bind different numbers of CPU cores to a specific
process, so as to set different device topologies.

Expected Results

APTMoE aims to improve the model size and fine-tuning
efficiency under limited number of bandwidth-constrained
GPU nodes. We take the state-of-the-art approach, i.e. Mobius,
as the major baseline. First, we hope to validate that APTMoE
can fine-tune MoE models with the same size as Mobius and
this can be validated once these experiments are successfully
executed. Second, we hope to validate that APTMoE has better
performance compared to Mobius in most model configura-
tions and most device topologies. This is evaluated in two
steps:
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• Generalized Case Study: We establish MoE models with
varying model sizes to conduct performance evaluation,
incorporating a simulator for simulating different expert
popularity.

• Real Case Study: We inject the real expert popularity
of fine-tuning NLLB-MoE and Mixtral-8x7B models on
APP dataset into the simulator.

Expected Reproduction Time (in Minutes)

Since the generalized case study simulates the expert popu-
larity, it can be performed directly. Its execution time depends
on the number of fine-tuning iterations, the model configura-
tion, the simulated expert popularity and device topology. It
takes less than 10 mins per case.

For the real case study, it needs to run the real fine-tuning
process and collect gating results. The expected time of this
process is around 30 mins.

Hardware: We conduct all these experiments on a cluster
with 4 nodes. Each node contains 8 NVIDIA A800 GPUs
(40GB) and every four of them connect to a Intel Xeon Gold
6348 CPU with 28 cores. Each node has a total of 1024
GB main memory. The inter-node interconnect is InfiniBand
HDR 100 Gbps, and the intra-node interconnect is PCIe. We
evaluate on three different device topologies: C1+G4, C1+G2
and C1+G1.

Software: Ubuntu 22.04.3, Pytorch 2.0.0+cu117,
numpy 1.26.4, transformers 4.37.0, psutil 5.9.8.

Datasets / Inputs: Basically, we design a simulator to
proxy both predictor and gate operation for evaluation. For the
generalized model study, we simulate the expert popularity and
use the dummy data. For the real case study, we take traces
from fine-tuning NLLB-MoE1 and Mixtral-8x7B2 models on
APP3 dataset.

Installation and Deployment: The artifact depends on Py-
torch and the recommended version is 2.0.0+cu117. Also, it
relies on numpy 1.26.4, transformers 4.37.0 and psutil 5.9.8.

Artifact Execution

To execution command of the demo:
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --

nproc_per_node 4 ./main.py --is_moe=True
--num_training_steps=50 --model_config=S
--num_experts=16 --gini=0.3 --topo=C1+G2
--pipeline=APTMoE. You can use python main.py
--help and browse README.md to investigate the meaning
of these hyper-parameters and customize the experiment.

The experiment workflow of executing the artifact A1 for
the generalized case is consist of two phases. First, the
static part profiles the execution of a single MoE layer to
generate the memory usage of a layer and an execution time
lookup table, so as to provide guidance for the runtime part.
Second, the runtime part performs the pipeline fine-tuning
with the given model configuration and parameter settings.

1https://huggingface.co/docs/transformers/main/model doc/nllb-moe
2https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
3https://github.com/hendrycks/apps

The throughput of different approaches will be reported in
this phase.

To execute real case experiment, we need to execute the
real fine-tuning and acquire the expert popularity, which
follows commands in README.md of APTMoE/RealCase.
This part will produce expert popularity generated from both
predictor and gate throughout all iterations. Also, it reports the
predictor accuracy.

Artifact Analysis (incl. Outputs)

The throughput of each evaluation is related to a spe-
cific model configuration(e.g. MoE-S-16), hardware config-
uration(e.g. C1+G2) and expert popularity(e.g. G=0.3). In
most cases, our APTMoE outperforms Mobius, GPipe, and
GPipeOffload.

For the predictor in the simulator part, its accuracy improves
with the training process, and tends to be stable in seconds.
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