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Abstract. Each new generation of GPUs significantly enhances the re-
sources available for diverse applications, with kernel concurrency play-
ing a crucial role in maximizing utilization and boosting performance.
However, existing kernel concurrency strategies usually tend to neglect
cache contention, where concurrent kernels potentially target the same
cache levels. Traditional cache management methods are inadequate for
addressing this issue, as they focus on individual kernels without heavily
considering inter-kernel interactions. To overcome these challenges, we
propose CacheC, a method that utilizes large language models (LLMs)
to analyze cache affinity at the granularity of individual load instructions.
For each kernel pair, CacheC extracts detailed features of all loads, evalu-
ates their cache affinity across levels, and scores their suitability for con-
currency. Based on these scores, CacheC not only selects kernel pairs with
appropriate cache compatibility but also formulates load-specific cache
bypassing strategies to enhance utilization. By iteratively scheduling ker-
nel pairs and adjusting their cache policies, CacheC dynamically opti-
mizes cache utilization and reduces cache contention during concurrent
kernel execution. Experiments on off-the-shelf GPUs demonstrate that
CacheC achieves a 19.67% reduction in turnaround time and a 24.48% im-
provement in throughput. It also delivers an average speedup of 1.337x
across scheduled kernel pairs, showcasing its effectiveness in alleviating
cache contention and enhancing kernel concurrency performance.

Keywords: GPU cache management - Concurrent kernel execution -
Kernel pairing - Large language models.

1 Introduction

Graphics Processing Units (GPUs) are known for their exceptional computa-
tional throughput, thanks to their thousands of threads and efficient thread-
switching techniques that hide memory request latency. Each new GPU genera-
tion brings substantial improvements in computational capabilities, cache capac-
ity, and memory bandwidth. For example, AMD’s RDNA 3 [1] doubles compute
performance to 61 teraflops, and enhances memory bandwidth to 960GB/s over
RDNA 2 [2].
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With the vast increase in GPU resources, kernel concurrency has become
crucial for maximizing GPU utilization, particularly by exploiting unused re-
sources. Many studies have explored kernel concurrency, which can be catego-
rized into three primary domains: techniques to maximize kernel overlap [3-6];
kernel pairing selections for efficient utilization of computational and mem-
ory resources [7-9]; and scheduling algorithms for managing kernel pool dis-
patches [10-13]. However, these studies fail to address cache contention when
concurrent kernels share the same cache levels, leading to frequent swapping
and modification of cache blocks.

Conventional cache management techniques are not well-suited for handling
kernel concurrency, as they are primarily designed for single-kernel execution.
Approaches such as software-controlled cache bypassing [14-16] and hardware-
supported memory request optimization [17-19| are insufficient for addressing
the complexities of concurrent kernel execution. These methods fail to account
for inter-kernel cache interactions and are prone to involve significant offline
processing and hardware modifications, making them impractical for real-world
applications.

To address this issue, we propose CacheC, a cache management strategy for
kernel concurrency. Our approach leverages Large Language Models (LLMs) to
analyze cache access patterns. LLMs have shown significant potential in systems
and architecture [20—-22], exhibiting strong analytical capabilities that allow them
to identify complex cache behaviors across kernels. By incorporating prompt
engineering [23], CacheC enhances LLM to dynamically adapt to domain-specific
requirements through contextual prompts, eliminating the need for retraining.
This makes our approach more advantageous than traditional model training
methods.

Building on these insights, CacheC integrates cache pattern analysis, kernel
pairing, cache bypass tuning for each pair, and concurrent kernel scheduling.
For cache pattern analysis, CacheC employs LLM to assign a cache affinity score
to each load of the pair, using three key techniques: input prompt templates,
a three-stage progressive inquiry process, and iterative generation. These tech-
niques work together to iteratively refine and optimize the results. Regarding
kernel pairs, CacheC evaluates and ranks all potential combinations based on
the complementarity of their cache patterns, determined by the cache affinity
of each load. For each selected pair, CacheC develops a tailored cache bypass
strategy to optimize load behavior, ensuring the selection of the cache level with
the highest affinity. To further facilitate concurrent kernel scheduling, CacheC
employs a greedy algorithm to iteratively select the most compatible pairs for
execution, applying the corresponding bypass strategy. If no suitable pair is
found, kernels are then just scheduled sequentially. In conclusion, this paper
makes the following contributions:

— We identify cache contention in concurrent kernels, where they compete for
resources at the same affinity levels. We also highlight the limitations of
traditional cache management approaches, which are agnostic to inter-kernel
interactions.
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— We propose leveraging LLMs with prompt engineering to overcome these
limitations, as it is more time-efficient than traditional model training. This
enables the analysis of complex inter- and cross-kernel cache patterns while
allowing fine-grained control over cache behaviors for each load.

— We develop CacheC, which integrates four components: LLM-based cache
pattern analysis, cache pattern-driven kernel pairing, cache bypass adjust-
ment, and kernel scheduling. Evaluations show that CacheC achieves a 24.48%
throughput boost and a 1.337x speedup across scheduled kernel pairs.

2 Background and Motivation

2.1 GPU Architecture

Figure 1 illustrates the GPU memory hierarchy, based on the recent AMD RDNA
design [24] 1. From an architectural perspective, a GPU consists of multiple com-
pute units (CUs), also referred to as streaming multiprocessors (SMs). These
CUs are grouped into shader arrays (SAs), and multiple SAs are further orga-
nized within shader engines (SEs). In terms of memory hierarchy, each CU is
equipped with private registers and an LO cache. An SA shares access to an L1
cache, while all CUs within the GPU utilize a globally shared L2 cache, which
is directly connected to the main DRAM memory.

GPU Global Load Instruction Fields LLVM IR Feature
I volatile/ Cache
fe=| Lse] ford o] | = nontemporal Behaviors
63 25 13 7 0
False/False Cache All
— False/True L2 Bypassing
_ Lo D cu True/False L0/1 Bypassing
[Registers] ol Shader Array True/True L0/1 Bypassing
- CU {_! Shader Engine

Fig. 1: The architecture and cache management software of a GPU, augmented
by LLVM IR capabilities, facilitate precise control over memory instruction bits
to regulate cache behavior.

As computational demands continue to rise, GPUs are incorporating addi-
tional CUs and expanding memory resources. Notably, on-chip caches in GPUs
have been significantly enhanced to support large-scale thread parallelism. To op-
timize cache management for varying workloads, software-controlled techniques
such as residency control [25] and flexible policy tuning [26] have been intro-
duced. As shown in Figure 1, AMD RDNA architectures feature annotation
bits (SLC, GLC, DLC) to control data coherency and cache behavior. These
can be managed through LLVM IR features volatile and nontemporal in the
AMDGPU backend [26]. The annotation bits correspond to specific cache poli-
cies, where GLC, DLC, and SLC enable Miss-Evict and Stream policies that

1 Although this paper focuses on AMD GPUs, the analysis is also applicable to other
vendors.
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reduce the caching of recent data. These policies are consolidated into three
cache management strategies: Cache, L0/1 Bypassing, and L2 Bypassing [24].
In this paper, we analyze the LO/1 and L2 cache affinity of load instructions to
utilize the aforementioned bypassing modes, thereby refining cache management
policies.

2.2 Alleviate Cache Contention of Kernel Concurrency

In this section, we explore the potential cache contention during the concur-
rent execution of two kernels 2. Figure 2 illustrates the global load (Id) behav-
ior of the kernel CON (convolution) [27] when run independently and concur-
rently with other kernels [27-29], including DT (dct8*8_1), DT2 (dct8*8_2),
LBM (lbm), HS1 (hybridsort_1), HS2 (hybridsort_2), SPV (spmwv), and PAT
(particlefilter). The figure highlights the performance improvements achieved by
bypassing ld through software-controlled LLVM IR features, discussed in Sec-
tion 2.1. When CON runs alone, L2 Bypassing (-0.45%) and L0/1 Bypassing
(-1.05%) show minimal negative effects. However, when CON runs concurrently
with other kernels, bypassing ld demonstrates varying degrees of improvement,
suggesting that cache contention with loads from other kernels could be mit-
igated by bypassing. Notably, L2 contention is relatively pronounced between
CON and DT1 (2.35%) or DT2 (2.42%). When CON is paired with LBM, sub-
stantial contention is observed at the L2 (5.98%), and relatively low contention
is observed at the L0/1 (1.83%). In contrast, the combination of CON and
HS1 exhibits lower L2 contention (2.67%), but more significant L0/1 contention
(7.96%). For the remaining kernel combinations, cache contention is minimal,
and the bypassing effect closely mirrors that observed when running CON inde-
pendently.

- / I8 L2 Bypassing
ool ? 752 L0/1 Bypassing
A — ;
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of CON (%)
Dow s

Performance
Improvements

7
CON CON CON CON CON CON CON  CON
DTI DT2 LBM  HSI HS2 SPV PAT

Fig. 2: Performance improvements of the sole load in CON when running inde-
pendently and in combination with other kernels, under two bypassing modes.

These findings emphasize the importance of kernel pairing strategies based
on cache behavior and the effectiveness of bypassing in mitigating contention.
Kernel concurrency usually ignores such challenges, and traditional cache man-
agement fails to address them effectively. In this paper, we explore the use of
LLMs to optimize cache management in kernel concurrency.

2 This paper focuses on two kernels, but the approach can be easily extended to more,
as shown in Section 4.5.
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3 Design

Figure 3 illustrates the overall design of CacheC, consisting of four key compo-
nents. First, LLM (A4) analyzes the cache patterns of global load instructions
across kernel pairs and generates the load score template (LST), indicating the
affinity of each load. For cache management, there are two sub-components:
cache pattern driven kernel pairing (B), which evaluates the fitness of cache
patterns and produces the score table (ST), and cache bypassing for kernel pairs
(C), which fine-tunes the cache behavior of each load, allocating the most suit-
able cache levels based on affinity. The final component, the kernel scheduler (D),
uses the score table (ST) to allocate kernels in the pool for execution, enabling
concurrent or sequential execution while applying the cache bypass adjustment.

A. LLM-based Cache Pattern Analysis

&2 Load Feature Load Feature d= v = Load Score
éﬁ Extraction E Template —> CE —> @ —e; E Template
(LFT) Lrrvigpi = Validation (LST)
Manager (o
@ All ®
Pairs B&C. Cache Management J{
——
— . . s .
S:ES B. Cache Pattern Driven Kernel Pairing ;:;E,] C. Cache Bypass for Kernel Pair
Kernel Pair '
Hard
D l ® D. Concurrent Kernel Schedule ﬁ v IEO"
A gy | |
\ m © - 1 —> | '
Kernel “@ @ Score Table (ST) [— —>| Concurrent Y —-> L, L
Pool ISt:Irg(t;llygn Best Pair Incompatible : Lo

Fig.3: Overview of CacheC: LLM-based Cache Pattern Analysis (A), Cache
Management with Kernel Pairing (B) and Bypass (C), and Concurrent Ker-
nel Scheduling (D).

The workflow is as follows: for all combinations of kernel pairs in the kernel
pool, the load features of each pair are extracted to construct the load feature
template (LFT), which is input into the LLM for cache pattern analysis (D).
Once the LLM generates the LST, cache management uses it to evaluate the
cache pattern fitness of each kernel pair and to generate a corresponding cache
bypass strategy ((2)). After processing all pairs, the ST is formed ((3)). During
scheduling ((4)), CacheC selects the best kernel pair from the kernel pool based on
the ST and dispatches the pair for concurrent execution. If no pair fits the cache
pattern criteria, CacheC schedules the kernels sequentially. During execution,
the previously generated cache bypass strategy is employed to control hardware
cache behaviors.

3.1 LLM-based Cache Pattern Analysis

In this section, we embrace LLM to analyze the cache patterns of all global loads
in kernel pairs. In CacheC, the load feature extraction component first captures
the features of all global loads in a kernel pair, as outlined in Table 1. These
load features are then input to the LLM, which generates the L0/1 and L2 cache
affinity scores for all loads.
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Table 1: Selected Load Features

Features ‘Description

Kernel ID ‘Kernel identification of a load

Load ID Load identification

Address ID Array Identification referenced by a load
Alignment Byte alignment of a load

Size Access size of a load

Offset Access offset relative to referenced arrays

Access Percentage
L0/1 Bypass
L2 Bypass

Percentage of access numbers of a load
Bypassing effect in the L0/1 of a single kernel
Bypassing effect in the L2 of a single kernel

However, there are two challenges when applying LLM for cache pattern
analysis in this context: 1) How to convert load features into a text format
that LLM excels in while ensuring the clarity of the content for the LLM to
fully understand the task? 2) How to narrow the LLM’s outputs from a broad
range of analyses to the specific and detailed cache affinity scores required? To
address these challenges, CacheC incorporates three key techniques to ensure
LLM validity and usability.

Input Prompt Templates. As T1 in Figure 4 illustrates, CacheC employs a
structured LFT to standardize the input for the LLM. This template is formatted
with well-defined attributes, ensuring consistency and enabling straightforward
analysis of kernel load features. Two slots are left intentionally blank to guide the
LLM in synthesizing missing load scores. The output, structured as LST, em-
bodies a deterministic and predictable format, effectively reducing the variability
commonly observed in LLM responses.

()).TS: Iterative Generation Load Feature Template (LFT)

I will provide two GPU kernels wi F Templ
global memory load chz.mcteristiE) b-J Load Feature Template

including identifiers, size, ali
offset, address, and LO/L1 and L2
Bypassing Improvements. My goal
is to consolidate all loads into a
single thread. Could you analyze the
LO/L1 and L2 cache affinity score
for each load based on these patterns
and combinations?

T2: Three-Stage Progressive Inquiry

Please provide the final table

C. | inacomma-separated format

that you scored in number,
without additional text.

kernelID, loadID, AddressID, Alignment, Size, ...,
L0/1 Cache Affinity, L2 Cache Affinity___

k1,1d1, 0, 4 bytes, float, ..., |
k1, 1d2, 1, 2 bytes, 2*half, ...

k2, 1d1, 4, 16 bytes, 4*float,...

two slots

kernelID, loadID, AddressID, Alignment, Size, ... )
L0/1 Cache Affinity, L2 Cache Affinity

kl1,1d1, 0, 4 bytes, float, ... 20, 60

kl1,1d2, 1, 2 bytes, 2*half, ... , 70, 50

T1: Input Prompt Templates

Output Answer: Load Score Template (LST)

k2,1d1, 4, 16 bytes, 4*float,... , 85, 50

Fig. 4: Three techniques: Input Prompt Templates (T1), Three-stage Progressive
Inquiry (T2), and Iterative Generation (T3), along with the generated LST by
LLM.

Three-stage Progressive Inquiry. Recognizing the limitations of single-round
interactions with LLMs, CacheC employs a progressive inquiry process to incre-
mentally refine the LLM’s outputs for cache affinity analysis. As illustrated in T2
of Figure 4, this process begins with the initialization stage (a), where contex-
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tual information, including task definitions and background on cache behavior, is
provided to help the LLM develop a comprehensive understanding of cache pat-
tern analysis. It then proceeds to the feature analysis stage (b), where the LFT,
detailing specific kernel load features, is supplied, directing the LLM to gener-
ate cache affinity scores based on these features. Finally, the purification stage
(¢) refines the LLM-generated outputs into the LST format, ensuring alignment
with the predefined structure and eliminating inconsistencies. A prompt man-
ager orchestrates this entire process, ensuring seamless progression and robust
results.

Iterative Generation. As shown in T3 of Figure 4, CacheC uses iterative refine-
ment to ensure high-quality outputs. If initial results are vague, the progressive
inquiry process is reinitiated to achieve precise numerical cache affinity scores
that align with the LST format. This iterative approach continues until the
desired precision is achieved.

3.2 Cache Pattern Driven Kernel Pairing (Cpair)

After generating the LST, which includes the L0O/1 and L2 cache affinity scores
for all loads, CacheC evaluates kernel pairing based on these scores. These affinity
scores assess the cache pattern fit between kernels. For all kernel pair combina-
tions, CacheC generates the ST to evaluate the compatibility of each pair by
considering their cache affinity scores.

The LO/L1 and L2 affinity scores (L0/1;; and L2;; for the j, load of the i,
kernel) are extracted and normalized to calculate the bypassing score (Bypassi; ),
as shown in Equation 1. The bypassing score evaluates the lack of affinity across
all cache levels. Each load generates a vector, load_vector;;, containing the three
affinity scores (L0/1;;, L2;;, and Bypass;;), as shown in Equation 2. The overall
cache affinity of a kernel, denoted as kernel _vector;, is obtained by calculating
the weighted sum of the load affinity vectors, as illustrated in Equation 3. The
weight is assigned based on the access count ratio. For M kernels (with two ker-
nels selected in this study, as explained in Section 4.5), a more cache-compatible
pair means their kernel vectors are more orthogonal, indicating distinct cache
resource requirements. This relationship is captured by the pair _score in Equa-
tion 4, where a lower score indicates greater orthogonality and suitability for
concurrent execution. It is evident that the maximum pair score is 3. CacheC
computes the pair _score for all kernel pairs and integrates the results into a ST
for kernel concurrency scheduling.

Bypass;; = min((1 — L0/1,; — L2;;),0) (1)
load_vector;; = (LO/1,;, L2;;, Bypassi;) (2)
N
kernel _wvector; = Z load _vector;; * weight;; (3)
j=1
M
pair _score = H kernel wvector;, M =2 (4)

i=1
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3.3 Cache Bypass for Kernel Pair (Cbypass)

After generating the LST, CacheC devises a cache bypass strategy for each kernel
pair. This strategy refines cache bypassing modes for each load, ensuring effective
cache allocation for loads with higher affinity. Based on the normalized LO/1 and
L2 cache affinity scores, CacheC determines the appropriate cache management
policy for each load, as outlined in Algorithm 1.

Algorithm 1 Cache Bypassing Strategy for Kernel Pair

Input:
Pair: (Kerneli, Kernels), set the value of M to 2;
L0/1;;: the LO/1 affinity score for ji, load of i, Kernel;
L2;;: the L2 affinity score for ji, load of i:, Kernel,
Output:
policies;;j: the bypassing strategy for ji, load of i, Kernel.
1: for each load;; € Pair do
2 if L0/1s; < L2i5 A L2;; > HighThres then policies;; <— L0/1 Bypassing
3 else if LO/1;; > L2;; A LO/1;; > HighThres then policies;; < L2 Bypassing
4: else if L0/1;; > LowThres A\ L2;; > LowThres then policies;; < Cache
5
6:

end if
end for

For each load, load;; (where j is the load index of the 4, kernel in the
pair), the algorithm evaluates the load’s affinity using the normalized 10/1
and L2 scores, L0/1;; and L2;;. If the L2 affinity exceeds the higher thresh-
old, HighThres, CacheC applies the L0/1 Bypassing policy. If the L1 affinity
surpasses HighT hres, CacheC applies the L2 Bypassing policy. If both scores
exceed LowThres, indicating sufficient affinity across all cache levels, CacheC
assigns the Cache policy to the load. We set 0.5 and 0.8 for LowThres and
HighThres, respectively.

3.4 Concurrent Kernel Scheduling

After integrating the evaluated scores into the ST and applying cache bypass
tuning, CacheC schedules kernels using a greedy algorithm, selecting the pair with
the lowest ST score for concurrent execution to optimize cache utilization. Once
a pair’s execution is complete, CacheC removes it from the ST and identifies the
next pair with the lowest score for dispatch. If no kernel pairs are deemed suitable
for concurrent execution, CacheC schedules the remaining kernels sequentially,
adhering to a First-In-First-Out policy.

4 Evaluation

All experiments and analyses are conducted on an AMD Radeon RX 6900 XT,
leveraging the RDNA2 architecture with a GFX1030 ISA [2]. The device features
a 32KB L0 cache per CU, a 128KB L1 cache per SA, and a 4MB global L2
cache. For the LLM, we employ the OpenAl ChatGPT API based on the GPT-
40 model [30]. Kernel concurrency is achieved by integrating the two kernels into
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a single thread [4], enabling full concurrent execution and reducing interference
potentially caused by the sequential execution of streams [31]. The benchmarks
comprise 14 real-world kernels exhibiting diverse cache patterns, as detailed in
Table 2. The experimental schemes are as follows:

Kernel execution schemes:

— Baseline: Kernels are all executed sequentially.

— Rpair: Kernels are randomly paired from the kernel pool for concurrent
execution, with scheduling repeated 10 times to compute the average.

— Cpair: Kernels are paired for concurrent execution based on the cache pat-
tern analysis discussed in Section 3.2.

Cache management schemes:

— Mpache: A conventional and representative cache management mechanism
that focuses solely on intra-kernel interactions through offline profiling [16].

— Cbypass: Cache bypass method proposed by CacheC for cache management
in Section 3.3.

— Exhaustive: An exhaustive evaluation of all possible load combinations
across the three cache management modes to determine the optimal strategy.

Kernels ‘ abbr.‘ Kernels ‘ abbr. ‘ Schedule
Order Kernels
gelu GEL spmv SPV 1 N DT1
relu REL| paticlefilter | PAT 9 8%L W2
reverse |REV| dct8x8-1 |DT1 3 HS2 REV
swish-1 |[SW1| dct8x8-2 |DT2 g 1\5{13%{_8];7\[1112
sw1sh—2 SW2 hybr%dsort—l HS1 6 PAT REL
convolution|CON |hybridsort-2| HS2 7 LBM
Ibm LBM| maxpool |[MAX 8 SPV

Table 2: List of evaluated GPU bench- Table 3: Schedule orders generated by
mark kernels [27-29, 32]. CacheC.

4.1 Performance Improvement

Assuming there are 14 kernels in the kernel pool, Table 3 is the kernel schedule
list generated by CacheC. Table 4 illustrates the performance benefits achieved by
different schemes, compared to Baseline. Specifically, it highlights the reduction
in turnaround time and the improvement in throughput for the entire kernel pool
under various optimization strategies.

In detail, CacheC outperforms all other schemes, reducing turnaround time
by 19.67% and improving throughput by 24.48% with the Cpair and Cbypass
methods. Additionally, Cpair outperforms Rpair by reducing turnaround time
by 4.58% and improving throughput by 5.57%, demonstrating the effectiveness
of Cpair in selecting cache-compatible kernels. Cbypass also surpasses Mpache,
reducing turnaround time by 4.16% and 7.04%, respectively, while improving
throughput by 5.41% and 10.02% when equipped with Rpair and Cpair. This
improvement is attributed to CacheC’s ability to detect variations in cache pat-
terns induced by concurrency, a capability that Mpache lacks.
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Table 4: Reduction in turnaround time and improvement in throughput for kernel
pool scheduling compared to the baseline.

Schemes ‘Turnaround Reduction| Throughput Improvement

Rpair 7.04% 7.58%

Cpair 11.62% 13.15%
Rpair+Mpache 10.16% 11.31%
Cpair-+MPache 12.63% 14.46%
Rpair+Cbypass 14.32% 16.72%

Cpair+Cbypass(CacheC) 19.67% 24.48%

4.2 Speedup Breakdown

It is valuable to further explore performance by examining the outcomes when
two kernels, generated by CacheC, are paired in terms of cache pattern fitness.
Table 3 presents the kernel schedule list generated by CacheC for the 14-kernel
pool. The kernel pairs are selected and scheduled in ascending order of their
scores, from low to high. In particular, CacheC schedules LBM and SPV for
sequential execution, as this pair exhibits high scores, indicating significant cache
contention and making them unsuitable for pairing.

Kernel Pair Speedup. Across the schedule lists, Cpair alone achieves a 1.163 x
speedup over the baseline (sequential execution of the two kernels), as depicted
in Figure 5, demonstrating the benefits of pairing execution. In the kernel pair
compatibility analysis, the speedup trend in Figure 5 is not strictly monotonic be-
cause CacheC prioritizes kernel pairs with complementary cache patterns, while
other influencing factors are not the primary focus in this context. For example,
while the CON and DT1 pair has low load access demands, both kernels require
significant computational resources, leading to a 0.977x performance degrada-
tion. However, Cbypass helps mitigate this issue by balancing resource con-
tention and optimizing utilization. Despite various influencing factors, five out
of six pairs show improvements, highlighting the importance of cache pattern
compatibility in kernel selection.

Baseline Fiisd Cpair 11 Cpair + Mpache == Cpair + Cbypass (CacheC) 77/ Exhaustive
1.61 = gfAY
=9 = | ., g2z
3 1.2 = - = Er=/
8 0.8 B H|E | EAEIE
204{ =7 B AR SR I= AEA =IEA
0.0 -

CON GEL HS2 HSI MAX PAT LBM SPV average
DTl SW2 REV SwW1 DT2 REL

Fig. 5: Performance speedup of Cpair, Cpair+Mpache, CacheC and Exhaustive

schemes, normalized to baseline.

Cache Bypass Speedup. By comparing CacheC and Cpair+Mpache, which
yield average speedups of 1.337x and 1.222x, respectively, the strength of Cbypass
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is again confirmed. For four out of six kernel pairs, Mpache is less effective than
Cbypass, as it fails to recognize cache pattern changes when pairing and contin-
ues to focus on individual kernels. For the single kernel LBM, CacheC achieves
a 1.058x speedup, while Mpache results in a slightly higher 1.101x speedup, as
CacheC omits some beneficial load patterns.

4.3 Verification of LLM outputs

The intermediate responses from the LLM are that it assigns weights to fea-
tures in the LFT and evaluates each load based on cache level characteristics. It
computes an overall score to assess memory behavior and identifies load interac-
tions within and across kernels. It uses prior knowledge to refine cache behavior
assessments during concurrent execution.

To strengthen the validation, CacheC is compared with Exhaustive in Fig-
ure 5, which tests all possible load combinations under different cache manage-
ment modes to determine the optimal strategy, serving as the gold standard.
The closer the bypassing strategies generated by CacheC align with those of
Exhaustive, the more accurate the LLM outputs are. For CON-DT1, GEL-
SW2, and HS1-SW1, the strategies are nearly identical, resulting in almost
the same speedup. However, for HS2-REV, MAX-DT2, and LBM, CacheC
misses some loads for bypassing, leading to slightly lower speedup compared
to Exhaustive. In the case of PAT-REL, the outputs of CacheC show minor
differences from Exhaustive due to small score fluctuations, which may cause
the LLM to bypass cache-insensitive loads with minimal impact on performance.
Overall, the close alignment between CacheC (average 1.337x speedup) and the
exhaustive method (average 1.352x speedup) indicates that the generated cache
patterns accurately reflect true affinity.

4.4 Cache Hits

We collect hardware utilization data using ROCm-SMI [33] to monitor L2 cache
hits. Figure 6 shows normalized L2 cache hits for Cpair, Cpair+Mpache, CacheC,
and Exhaustive. Cpair improves cache hits for kernel pairs with matching cache
patterns, further enhanced by Cbypass. In contrast, Mpache yields fewer hits due
to its LO/1 bypass strategy, which reduces measurable L2 cache activity.

4.5 Extensive Studies

In this section, we analyze the stability of CacheC and its extension to support
multiple kernels. We also discuss CacheC as applied to other platforms and its
associated analysis overhead.

Stability. Figure 7 presents the standard deviation of L2-L0/1 affinity score
differences for optimal kernel pairs across 10 repeated generations by the LLM.
While the average deviation remains low (<0.3), maximum values are higher due
to cache-insensitive loads. These fluctuations have a negligible impact on cache
performance (Section 4.2).
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Baseline i Cpair [I1111 Cpair + Mpache Cpair + Cbypass (CacheC) /77 Exhaustive
20 o o __aq
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Fig. 6: L2 Cache hits of Cpair, Cpair+Mpache, CacheC and Exhaustive schemes,
normalized to baseline.
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Fig. 7: Standard deviation of the difference between L2 and L0/1 affinity scores
for concurrent kernel pairs.

Multiple Kernels. We extend CacheC to support multi-kernel concurrency,
evaluating three-kernel execution scenarios. We deploy CacheC across four ker-
nel groups. As demonstrated in Figure 8, concurrently executing a well-selected
kernel pair consistently achieves higher performance gains than running three
kernels. These results justify our focus on two-kernel optimization in this work.

I Cpair + Cbypass (CacheC)

Performance
Improvement (%)

4
2

20 Crair
: P

6

GELGELRELThree GELGELSWIThree RELRELSWIThree GEL GELRELThree
RELSWISWI1 SW2SW1SW2 SWISW2SW2 RELSW2SW2

Fig. 8: Performance gains of Cpair and CacheC over Baseline for three-kernel
execution and all two-kernel combinations from the three kernels.

Platform and Overhead. We implemented CacheC on AMD’s platform for its
open-source support and cache annotation capabilities. While NVIDIA’s PTX
annotations serve only as performance hints [34], CacheC could be adapted if
their effects are reliably ensured. Additionally, compared to traditional offline
cache analysis and model training, iterative dialogue operates in a more adap-
tive and incremental manner, which inherently reduces redundant computations.
This approach mitigates the excessive overhead typically associated with large-
scale precomputed models, making it a promising alternative.
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Kernel Concurrency and Schedule. Prior works address kernel scheduling
via machine learning [4], static QoS-aware frameworks [35], and multi-objective
heuristics [13]. However, these methods largely overlook cache contention, a gap
addressed in this paper.

Cache Management. Efficient GPU cache management has been explored
through ML-based schemes for hit prediction [36], two-level bypassing strate-
gies [37], and multi-level load interaction analyses [16]. While prior work targets
single-kernel patterns, this paper leverages LLMs to optimize inter-kernel cache
behaviors.

6 Conclusion

CacheC is a cache management framework for concurrent kernels, achieving up
to 19.67% lower turnaround, 24.48% higher throughput, and 1.337x speedup.
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