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a b s t r a c t

Porting unstructured Computational Fluid Dynamics (CFD) analysis of compressible flow to Graphics
Processing Units (GPUs) confronts two difficulties. Firstly, non-coalescing access to the GPU’s global
memory is induced by indirect data access leading to performance loss. Secondly, data exchange
among multi-GPU is complex due to data communication between processes and transfer between
host and device, which degrades scalability. For increasing data locality on unstructured finite volume
GPU simulations for compressible flow, we perform some optimizations, including cell and face
renumbering, data dependence resolving, nested loops split, and loop mode adjustment. Then, a hybrid
MPI-CUDA parallel framework with packing and unpacking exchange data on GPU is established for
multi-GPU computing. Finally, after optimizations, the performance of the whole application on a GPU
is increased by around 50%. Simulations of ONERA M6 cases on a single GPU (Nvidia Tesla V100) can
achieve an average of 13.4 speedup compared to those on 28 CPU cores (Intel Xeon Gold 6132). On
the baseline of 2 GPUs, strong scaling results show a parallel efficiency of 42% on 200 GPUs, while
weak scaling tests give a parallel efficiency of 82.4% up to 200 GPUs.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Unstructured mesh CFD approaches [1] are widely applied in
erospace science and engineering for simulating compressible
low-solved physical scenarios. Moreover, mesh generation is
ore convenient for the computational domain with complex
eometry [2]. Hence, many unstructured CFD software is devel-
ped, such as Fun3D [3], SU2 [4], OpenFOAM [5], Fluidity [6],
NW-PHengLEI [7], Quinoa [8], etc. In recent years, multi-core
omputing hardware has developed fast. The GPU has played a
ore crucial role in CFD, owning to its high parallel computing
apacity and low energy consumption [9]. However, it is difficult
or unstructured GPU simulations to achieve high performance.

To illustrate, data storage on the unstructured mesh is irregu-
ar, which leads to indirect data access [10]. Indirect data access
nduces the non-coalescing loads and stores on the GPU. Due to
he special memory access mode of the GPU [11], non-coalescing
ata access results in significant performance loss. On the other
and, data exchange between partitioned domains is necessary
or multi-GPU simulations, which require both data communi-
ation and host-device data transfer [12]. The complicated data
xchange mechanism may degrade parallel efficiency.

∗ Corresponding author.
E-mail address: zhangx299@mail.sysu.edu.cn (X. Zhang).
ttps://doi.org/10.1016/j.future.2022.09.005
167-739X/© 2022 Elsevier B.V. All rights reserved.
Renumbering cells and faces in the mesh can be applied to
reduce non-coalescing memory access latency on the GPU. Most
studies concentrate on renumbering schemes for implicit meth-
ods such as the LU-SGS method [13]. In those works, renumbering
algorithms such as the Reverse Cuthill-Mckee (RCM) [14] reduced
the bandwidth of the matrix. Corrigan et al. [15] renumbered
cells and faces in high-order explicit Discontinuous Galerkin Eu-
ler solver on an unstructured mesh. A line-based renumbering
scheme [16] is proposed based on topological information, includ-
ing cells, faces, and nodes. Lani et al. applied the RCM algorithm
in unstructured finite volume simulations [17]. However, per-
formance improvement is not obvious. Therefore, an efficient
renumbering scheme is meaningful for explicit finite volume
simulations on the GPU.

The data race problem induced by many threads writing si-
multaneously in the same global memory often exists in GPU
computing on the unstructured mesh. Atomic operations and
graph coloring are methods to address the data race problem
based on hardware and software, respectively. In the CPU-only
environment, some researchers [18]found that both general and
optimized graph coloring methods are better than atomic op-
erations. On the GPU, some studies indicated that optimized
graph coloring beats atomic operations in unstructured FEM [19],
FVM [20] applications, and some benchmarks [21]. However, only

https://doi.org/10.1016/j.future.2022.09.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
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imple 2D and 3D meshes are considered in those works. With
he development of hardware, atomic operations are optimized
n the GPU [22]. Hence, comparison of graph coloring and atomic
perations is crucial in unstructured 3D typical industry meshes
n the GPU.
A suitable data layout can improve the data locality. Struc-

ure of Array (SOA) data layout often results in contiguous data
ccess [23]. However, some work showed that Array of Struc-
ure (AOS) makes good use of cache [24]. Besides data layouts,
ata locality can also be improved by loop adjustment. Some
esearchers indicated that running separate concurrent kernels
an make good use of GPU resources [25]. Moreover, different
oop modes may be used in the same kernel. A suitable mesh
oop may increase the data locality. Therefore, it is significant to
ptimize data locality by adjusting mesh loops.
Most multi-GPU CFD simulations are designed only to target

PUs, where CPUs are used for managing GPUs. Load balance
s achieved easily in GPU-only mode, which makes multi-GPU
omputing more efficient. Jacobsen et al. [26] developed a hy-
rid MPI-CUDA paralleled 3D incompressible solver. The research
howed that it is hard to overlap GPU computing, host-device
ata transfer, and MPI communication using more than 16 GPUs.
olfaghari et al. [27] used a hybrid MPI-CUDA parallel frame-
ork for high order 3D incompressible Direct Numerical Simu-

ations. Without hide of device copies and MPI communication,
he scalability goes down using more than 32 GPUs. Vincent
t al. developed a hybrid MPI-CUDA paralleled framework in a
igh-order unstructured CFD solver called pyFR based on the
lux reconstruction method. GPU-only mode was used in most
imulations [28]. Similarly, some researchers [29,30] chose GPU-
nly mode in the flux reconstruction method. CUDA-aware MPI
upport is applied to reduce overheads by data exchange. Oyarzen
t al. [31] developed a portable MPI-CUDA paralleled CFD model
or CPU/GPU heterogeneous supercomputer. It is found that GPU-
nly mode owns better performance but worse scalability than
PU-only mode. A few researchers applied CPU–GPU mode in
eterogeneous computing, where both CPUs and GPUs are used to
ompute. CPU computing should not be neglected, if the speedup
f a GPU compared to a CPU is small. Álvarez-Farré et al. [32]
stablished an MPI-OpenMP-OpenCL paralleled framework. It is
ndicated that communication overlapping with computation is
ard on Nvidia Tesla V100. Borrel et al. [33]used a hybrid MPI-
penMP-CUDA parallel framework for simulating incompressible
low over an airplane on a CPU–GPU heterogeneous architecture
ith POWER9 and Nvidia Tesla V100. CPUs are used to compute
iven the small speedup of a GPU to a CPU. Thus, it is crucial to
tudy the effects of the parallel framework on the performance of
ulti-GPU simulations.
In this paper, an unstructured finite volume cell centered

xplicit CFD solver is ported on a multi-GPU computing system.
wo contributions are made. Firstly, a series of strategies are
pplied for optimizing indirect data access. Specifically, a face
enumbering strategy is proposed for keeping data close globally
n a finite volume solver, which is implemented easily with only
ell-face topological information. Then, atomic operations and
he general graph coloring method are compared in GPU kernels
ith race conditions. Typical industry 3D meshes are used, which

s different from some work on simple meshes [19–21]. Then,
oop adjustment strategies are applied to enhance data local-
ty without the change of data layouts in some studies [23,24].
hose optimizations made performance improve significantly on
oth kernel and application levels. Secondly, a hybrid MPI-CUDA
arallel framework is established and evaluated on a multi-GPU
omputing system. Packing and unpacking communication data
n the GPU make both performance and scalability grow up.
2

The remaining paper contains the following parts: Section 2
describes the mathematical model. Section 3 introduces opti-
mization strategies. Section 4 shows a hybrid MPI-CUDA paral-
leled framework and packing/unpacking exchange data on the
GPU. Section 5 presents the test environment. Section 6 validates
GPU simulation results. Section 7 shows the effects of optimiza-
tions on both kernel and application levels. Section 8 evaluates
the parallel framework. Section 9 concludes the performance of
the hybrid MPI-CUDA parallel framework.

2. Mathematical model

The research is performed on a CFD suite of tools called
NNW-PHengLEI developed by China Aerodynamic R&D Center [7].
NNW-PHengLEI’s purpose is to study and develop algorithms
for modeling compressible flow. NNW-PHengLEI contains both
structured and unstructured solvers. Only a transonic flow solver
on the unstructured mesh is used in the research.

2.1. Governing equations

The motion of fluid can be described by Navier–Stokes (NS)
equations. The integral form of NS equations is shown in Eq. (1).
∂

∂t

∫
V
QdV +

∮
∂V

(Fc − Fv)dS = 0 (1)

n the control volume V with boundary dV , five unknowns in
ector (Q ) form are described in Eq. (2), including the density ρ,
elocity components u, v, w, and the internal energy e.

Q =

⎡⎢⎢⎢⎣
ρ

ρu
ρv

ρw

ρe

⎤⎥⎥⎥⎦ (2)

Fc represents the convective flux, shown in Eq. (3). U is described
by U = nxu + nyv + nzw. nx, ny, and nz are components of the
unit normal vector on dV .

c =

⎡⎢⎢⎢⎣
ρU

ρuU + nxp
ρvU + nyp
ρwU + nzp

ρU(e+ u2+v2+w2

2 +
p
ρ
)

⎤⎥⎥⎥⎦ (3)

Fv =

⎡⎢⎢⎢⎣
0

nxτxx + nyτxy + nzτxz
nxτyx + nyτyy + nzτyz
nxτzx + nyτzy + nzτzz
nxθx + nyθy + nzθz

⎤⎥⎥⎥⎦ (4)

v means the viscous flux, described in Eq. (4). Fv is computed by
he unit normal vector (nx, ny, and nz), the viscous stress tensor
τxx, . . . , and τzz), and energy dissipation terms including θx, θy,
nd θx. Both viscous stress tensor and energy dissipation terms
equire the gradient of Q and some physical coefficients such as
he temperature T , the laminar viscous coefficient, the turbulent
iscous coefficient, etc.
The finite volume method is applied in the numerical simu-

ation. The fluid domain is discretized into a series of cells (also
alled control volumes). Five independent unknown variables are
ell-based. The boundary of cells are called faces. On a cell with
olume Vcell, owning Nf faces with area Sm(m = 1, . . . ,Nf ), NS
quations can be discretized, as described by,

∆Qcell

∆t
= −

1
Vcell

⎡⎣ Nf∑
(Fc − Fv)mSm

⎤⎦ (5)

m=1
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Fig. 1. Computing procedures for NS equations in one iteration step.

n Eq. (5), Roe scheme is applied to avoid flow oscillation in
omputing the convective flux Fc . The viscous flux Fv is calculated
y the central scheme. In explicit numerical simulations, iteration
s necessary to guarantee the residual of ∆Qcell is small enough.
n an iteration step, the temporal term ∆Qcell

∆t is computed by the
wo-step Runge–Kutta method. The Spalart–Allmaras turbulence
odel is applied for the turbulence effects. The treatment of the

urbulence equation is similar to NS equations.

.2. Computing procedure and formulas

The computing procedure of NS equations is described in
ig. 1. In each iteration step, ∆t is determined by the CFL number.

One time step is divided into two small ones by the two-step
Runge–Kutta scheme. Then, the convective flux is computed with
3

Fig. 2. Unstructured mesh in cell-centered finite volume method.

T , the gradient of Q (∇Q ) and T (∇T ), limiter, and reconstruction
of Q on faces. Thirdly, the viscous flux is computed by Q , ∇Q ,
and some other viscosity-related coefficients on faces. Finally,
Qcell is updated with Fc and Fv . Some formulas in the computing
procedure are crucial for porting and optimizing the computing
procedure on the GPU.

Interpolation of Q from cell centers into nodes is required to
compute ∇Qcell, as described by

Qnode =
1

Ncell

⎡⎣Nnode
cell∑
n=1

(Qcell)n

⎤⎦ (6)

where Qnode based on nodes is the average of Qcell based on cells,
and Nnode

cell is the number of cells sharing the same node. Similarly,
computing ∇Tcell requires interpolating T from cells to nodes.

For computing limiter, the local maximum pressure pmax
cell and

the local minimum pressure pmin
cell should be computed by

pmax
cell = max(pncell, n = 0...Ncell

cell ) (7)

pmin
cell = min(pncell, n = 0...Ncell

cell ) (8)

where p0cell is the pressure on the local cell, and pncell(n = 1, . . . ,
Ncell

cell ) is the pressure on the neighbor cells. Ncell
cell is the amount of

the neighbor cells.
The summation of flux (Fc or Fv) located on faces is required

to update Q , as described by

rescell =
Nf∑

m=1

fluxmf · Sm (9)

where rescell stores the summationof flux, which are cell-centered.
For the turbulence equation, computing procedures are

similar.

2.3. Unstructured mesh connectivity

In the Finite Volume Method, the physical domain is dis-
cretized into many non-overlapping arbitrary polyhedral control
volumes. The discretization of the fluid domain of the ONERA M6
wing is described in Fig. 2. An unstructured mesh is formed by
those control volumes, also called cells. The boundary of cells is
called faces. Faces’ vertices are called nodes. Fig. 3 shows some
hexahedral cells with faces and nodes.

Each cell, face, and node owns a unique index in an un-
structured mesh. Then, data located on cells, faces, and nodes

are stored in the order of those indices. Due to unstructured



X. Zhang, X. Guo, Y. Weng et al. Future Generation Computer Systems 139 (2023) 1–16

p
m
m
d
c
c

a
w

c
t
b
c
r
c
f
n
u
a
t
n
w

i
a
u

i
s
o
f
t

n

T
f
d
G
p
n

s
a
t

Fig. 3. The unstructured mesh in cell-centered finite volume method.

roperty, cells, faces, or nodes with adjacent indexes do not
ean connectivity in the physical domain. Thus, unstructured
esh connectivity between cells, faces, and nodes should be
efined with indices especially. In NNW-PHengLEI, the physi-
al connectivity is defined by cell-face, cell-node, and face-node
onnectivity.
To explain the unstructured mesh connectivity and data stor-

ge clearly, variables in the form of scalar will be standardized,
hile those in the form of the array will be italic.
Cell-Face connectivity is described by leftCell, rightCell, and

ellFaces. Cell indices are stored in both leftCell and rightCell in
he order of face indices. To illustrate, in Fig. 3, face fi is owned by
oth cell O and cell P . Hence, the cell-face connectivity between
ell O, cell P , and face fi can be described by leftCell[fi] = O and
ightCell[fi] = P . Besides face fi, cell O also has the other faces, in-
luding fj, fk, fl, fh, and fg . The cell-face connectivity between cell O,
aces fg , fh, fi, fj, fk, and fl is described by cellFace[offsetCellFace[O]+
] = fg , fh, fi, fj, fk, fl(n = 1, . . . , numFaceOfCell[O]). Because all
nstructured mesh connectivity information is in one-dimension
rray, an offset of O in cellFace (offsetCellFace[O]) is required
o traverse faces belonging to O. Apart from offsetCellFace[O],
umFaceOfCell[O] stores the number of faces belonging to O,
hich is 6 in the case.
Cell-Cell connectivity can be obtained by cell-face connectiv-

ty. According to leftCell, rightCell, and cellFace, cellCells obtained
nd stores cells’ neighbor cell indices. The 1D array should be
sed with offsetCellCells and numCellOfCell.
Face-Node connectivity is defined by two 1D arrays includ-

ng faceNodes and nodeFaces. faceNodes focuses on faces and
tores nodes on faces. Similar to cellFaces, faceNode is used with
ffsetFaceNode and numNodeOfFace for accessing all nodes on a
ace. Similarly, nodeFaces owns faces sharing the same node with
he help of numFacesInNode and faceOfNodeStart .

Cell-Node connectivity can be defined by cellNodes and
odeCells, similar to face-node connectivity.

2.4. Data structure and storage

The SOA data layout is applied in both host and device codes.
herefore, those data can be accessed directly by indices of cells,
aces, and nodes. According to GPU data Load/Store mode, the
irect accessing of data is the best way to make use of the
PU. However, indirect data access exists widely in computing
rocedures when more than one type of data on cells, faces, or
odes exists in a computing loop.
4

For example, in the flux summation (Eq. (9)), the cell data
res is updated by the sum of the face data flux. In Algo. 1, a
face loop (Line 1) is used to update res on every cell. So, flux is
loaded directly by face indices (faceID). On the contrary, res is
tored indirectly by cell indices (Le and Re) with leftCellOfFace
nd rightCellOfFace. Finally, res is added with flux (Line 5–6) by
he operation setAdd.

Algorithm 1 Summation of Flux by a face loop (SF-CPU)

1: for faceID = nBoundFace to nTotalFace-1 do
2: Le← leftCellOfFace[faceID]
3: Re← rightCellOfFace[faceID]
4: for eqnID = 0 to numEqn - 1 do
5: setAdd(res[eqnID][Le], flux[eqnID][faceID])
6: setAdd(res[eqnID][Re], flux[eqnID][faceID])
7: end for
8: end for

Indirect data access will induce data locality and data de-
pendence problems on the GPU. Firstly, indirect data access of-
ten cannot guarantee data coalescing on the GPU. For example,
in the face loop induced indirect memory access of res, both
res[leftCell[i]] and res[rightCell[i]] are not continuous in global
memory, as the index i increases from 0 to the total face number
nTotalFace. The non-coalescing data access induces remarkable
overheads. Secondly, data dependence is often induced by in-
direct data access as well. Specifically, many GPU threads may
write in the same shared or global memory instantly. For exam-
ple, in the flux summation, some threads on the face loop may
instantaneously access the same space of res by res[leftCell[i]] or
res[rightCell[i]], which leads to incorrect results. Therefore, opti-
mizations and special treatment should be performed for efficient
and precise simulations.

3. Algorithms and optimizations

After the NNW-PHengLEI program is ported on the GPU, the
initial performance is evaluated and analyzed. Then, several op-
timization strategies are used to reduce executing time on the
GPU. Specifically, cell and face renumbering, data dependence
resolving, nested loops split, and loop mode optimization are
applied for optimizing memory access globally or locally.

3.1. Hot spots analysis

CUDA C is applied for porting NNW-PHengLEI program to
the GPU. All computing procedures in Fig. 1 are ported to the
GPU to avoid frequent host-device data transfers. Host-to-Device
(HtoD) data input only exists before iterations, and Device-to-
Host (DtoH) only happens once as all iteration steps finish.

The performance of the NNW-PHengLEI CUDA program is
evaluated by NVPROF, on a moderate mesh (3.97 million cells and
8.83 million faces), for the simulation of external flow over the
ONERA M6 wing. Table 1 shows the time fraction of 10 hot spots
indicating that those hot spots account for almost 80% of total
execution time.

From the description of those hot spots, it can be seen that
indirect memory access exists in all hot spots due to data types
and loop modes. Non-coalescing data access may be eased by re-
arranging data globally. The race condition is induced by indirect
data access, which accounts for more than half of the total execut-
ing time. Thus, an efficient method to resolve the race condition is
significant for GPU computing. Furthermore, nested loops exist in
most hot spots, which take more than 40% of the total executing
time. So, it is crucial to adjust nested loops to reduce overheads
induced by indirect memory access. Thirdly, only the face loop is
used in all hot spots. The other loop modes may optimize data
locality.
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Table 1
Description of kernels.
No. Description Race Nested Loop FLOP Cell data Face data Node data Time

condition loop mode fp64 int32 fp64 int32 fp64 int32 fraction

K1 ∇Q and ∇T computing yes no face 16 12 0 4 6 3 1 21.34%
K2 Interpolation of Q and T yes yes face 36 36 0 0 6 18 3 11.98%
K3 Viscous flux computing no yes face 310 48 0 26 2 0 0 11.40%
K4 limiter computing yes no face 40 20 0 3 2 0 0 7.41%
K5 Face value reconstruction no yes face 86 46 0 13 2 0 0 7.39%
K6 Flux summation (NS) yes yes face 10 20 0 5 2 0 0 6.89%
K7 Get face value from Q no yes face 0 10 0 10 2 0 0 3.35%
K8 Local pressure comparing yes no face 4 10 0 0 3 0 0 2.89%
K9 Turbulence coefficients yes yes face 97 26 0 0 0 6 2 2.65%
K10 Flux summation (Turbulence) yes no face 16 16 0 0 0 2 2 2.42%
1

3.2. Cell and face renumbering

Data in the unstructured mesh is stored in the order of cells,
aces, or nodes. Hence, renumbering cells and faces may improve
ata storage globally.
Firstly, to reduce the bandwidth (index jump) between cells

nd their neighbor cells, the Reverse Cuthill-Mckee (RCM) [14]
lgorithm is applied for reordering cell indices and the corre-
ponding mesh connectivity information related to cells such
s cellFace, cellNode, and cellCell, etc. Then, after cell renumber-
ng, faces are also renumbered. In the NNW-PHengLEI program,
oundary faces are gathered together and numbered from 0 to
BoundFace-1. Interior faces are renumbered according to the
pdated Cell-Face connectivity information cellFace described in
lgo. 2.
Interior faces are reordered so that the face index (faceID)

s in ascending order in cellFace shown in Line 1. Then, a cell
oop is applied for traversing cellFace in Line 4. In the condition
f faceID>nBoundFace-1 (Line 9), only interior faces are renum-
ered. The face index in labelFace starts from nBoundFace-1 in
ine 3 and increases if only a face index in faceID is not set (Line
0–11). Finally, old and new face indices are mapped in the array
apFace updated by the face index (labelFace) in Line 12. With
he help of mapFace, the mesh connectivity information related
o faces should be updated by new face indices, such as cellFace,
aceCell, and faceNode, etc.

Algorithm 2 Face renumber
1: Reorder faces in cellFace by ascending order
2: mapFace← -1
3: labelFace← nBoundFace-1
4: for cellID = 0 to nTotalCell-1 do
5: offset← offsetCellFace[cellID]
6: numFaces← numFaceOfCell[cellID]
7: for faceInCell = 0 to numFaces-1 do
8: faceID← cellFace[offset+faceInCell]
9: if faceID > nBoundFace-1 then
0: if mapFace[faceID] == -1 then
1: labelFace← labelFace+1
2: mapFace[faceID]← labelFace
3: end if
4: end if
5: end for
6: end for
7: Update mesh connectivity information by mapFace

3.3. Race condition resolving

As kernels are executed on a GPU, many threads may write
ata in the same global or shared memory, which induces wrong
5

results. An example is shown in Algo. 1. The race condition can be
tackled by both software and hardware-based methods. It is sig-
nificant to investigate which one is suitable for GPU simulations
in unstructured meshes.

The graph coloring method is software-based, which divides
GPU computing on different threads into several groups. In each
group, no global or shared memory is updated by more than one
thread. A graph coloring method for resolving the race condition
in the flux summation is shown in Algo. 3. Faces are divided
into some groups to avoid the race condition. Hence, kernels are
launched several times (nGroups) in Line 2. In each face group,
the size (numFacesInGroup) and the start position (groupStart)
are obtained firstly in Line 3–4. Then, a face-based loop (num-
FacesInGroup) is applied for a face group in Line 7. Those faces
distributed to threads are determined by the array faceGroup in
Line 9. Afterward, because faces belonging to one cell is not in the
same face group, cell data res can be updated simultaneously by
many threads ported on faces. Thus, the operation setAdd used
on the CPU (Algo. 1) can be applied directly to the GPU, as well.
Furthermore, flux is reordered by face indices in faceGroup (Line
1), leading to a continuous load of flux (Line 13–14).

Algorithm 3 Summation of Flux by graph coloring(SF-GC)
1: Reorder flux according to faceGroup
2: for groupID = 0 to nGroups-1 do
3: numFacesInGroup←numFaceOfGroup[groupID]
4: groupStart←offsetFaceGroup[groupID]
5: <GPU kernel Begin>

6: threadID←threadIdx.x+blockIdx.x*blockDim.x
7: for faceGroupID = threadID to numFacesInGroup-1 do
8: groupFaceID←groupStart+faceGroupID
9: faceID←faceGroup[groupFaceID]

10: Le←leftCellOfFace[faceID]
11: Re←rightCellOfFace[faceID]
12: for eqnID = 0 to numEqn - 1 do
13: setAdd(res[eqnID*nTotalCell+Le],

flux[eqnID*nTotalFace+faceID])
14: setAdd(res[eqnID*nTotalCell+Re],

flux[eqnID*nTotalFace+faceID])
15: end for
16: setAdd(faceGroupID, blockDim.x*gridDim.x)
17: end for
18: <GPU kernel End>

9: end for

The atomic operation is hardware-based, which is achieved by
the GPU-supported thread-lock mechanism and CUDA-supported
API. By thread-lock, no thread can write in the same global or
shared memory. Algo. 4 describes atomic operations used in
the summation flux. All interior faces are ported on computing
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hreads by a face loop. The CUDA-supported API atomicAdd is
applied to assign the summation of flux and res into res in Line
7–8. It guarantees that the same element in res can only be stored
y a computing thread once.

.4. Nested loops split

Nested loops exist widely in NNW-PHengLEI. Most GPU com-
uting is related to the loop on geometry, including cells, faces, or
odes. The other loop related to data dimension is often required.
any data related to different physical meanings or dimensions
f space own several dimensionalities. For example, in Algo. 1,
rrays res and flux own five dimensions (numEqn), corresponding
o different unknowns in Q shown in Eq. (2). Those dimensions
hould be operated by a loop in Line 4. of Algo. 4. Line 6–9
hows that although variables flux and res in GPU global memory
re stored in 1D arrays, a dimension loop is still necessary for
raversing all elements.

Algorithm 4 Summation of Flux by atomic operation (SF-AT)

1: <GPU kernel Begin>

2: threadID←threadIdx.x+blockIdx.x*blockDim.x
3: for faceID = nBoundFace+threadID to nTotalFace-1 do
4: Le← leftCellOfFace[faceID]
5: Re← rightCellOfFace[faceID]
6: for eqnID = 0 to numEqn - 1 do
7: atomicAdd(res[eqnID*nTotalCell+Le],

flux[eqnID*nTotalFace+faceID])
8: atomicAdd(res[eqnID*nTotalCell+Re],

flux[eqnID*nTotalFace+faceID])
9: end for

10: setAdd(faceID, blockDim.x*gridDim.x)
11: end for
12: <GPU kernel End>

The dimension loop can be arranged outside kernels, which
ay increase the performance. In Algo. 5, GPU kernels are

aunched several times (numEqn) by a dimension loop in Line
. Only the face loop in Line 4 is applied in kernels. Finally, a
arge kernel with nested loops is split into several small ones
orresponding to data dimensions.

Algorithm 5 Summation of Flux by split loops (SF-SL)

1: for eqnID = 0 to numEqn - 1 do
2: <GPU kernel Begin>

3: threadID←threadIdx.x+blockIdx.x*blockDim.x
4: for faceID=nBoundFace+threadID to nTotalFace-1 do
5: Le← leftCellOfFace[faceID]
6: Re← rightCellOfFace[faceID]
7: atomicAdd(res[eqnID*nTotalCell+Le],

flux[eqnID*nTotalFace+faceID])
8: atomicAdd(res[eqnID*nTotalCell+Re],

flux[eqnID*nTotalFace+faceID])
9: setAdd(faceID, blockDim.x*gridDim.x)

10: end for
11: <GPU kernel End>

12: end for

3.5. Loop mode adjustment

Most computing procedures in CFD are related to the
eometry-based loop on cells, faces, nodes, etc. Data is also
eometry-based, sorted by indices of cells, faces, nodes, etc.
ence, data may be indirectly accessed by some loop modes such
6

as a cell loop on face data, a face loop on cell data, a face loop on
node data, etc. For example, in the flux summation (Algo. 1), cell
data res is indirectly stored (Line 5–6) by a face loop (Line 1).
Overheads induced by indirect data access are aggregated on the
GPU due to the memory access mechanism.

3.5.1. Data interpolation
In the NNW-PHengLEI program, most hot spots are based

on the face loop. However, face data does not exist in some
kernels, including data interpolation (Algo. 7) and local pressure
comparing (Algo. 10). Indirect data access is induced in those
kernels. In some conditions, more than one loop mode can be
used for computing. An appropriate loop mode can avoid indirect
data access. Therefore, it is crucial to find suitable loop modes, to
reduce overheads by indirect data access.

Data interpolation described in Eq. (6) from cells to nodes
is required to compute the gradient of Q and T (∇Q , and ∇T ).
Algo. 6 describes that a face loop (Line 1) is used for data in-
terpolation. Firstly, both left and right cells determined in Line
2–3 own the same face index (faceID). Then, nodes in a face are
obtained by face-node information (faceNode, offsetFaceNode, and
numNodeOfFace) in Line 4–7. Finally, contributions of cell data q
and t to corresponding node data are accumulated in node data
qNode and tNode respectively in Line 8–17. Similarly, the amount
of cells sharing the same node is accumulated in the node data
nCount . In data interpolation, a face loop (Line 1), a node loop
(Line 6), and two dimension loops (Line 8, 13) are nested for
traversing nodes on faces with dimensions of space.

Algorithm 6 Data interpolation on CPU (DI-CPU)

1: for faceID = nBoundFace to nTotalFace-1 do
2: Le← leftCellOfFace[faceID]
3: Re← rightCellOfFace[faceID]
4: faceNodeStart←offsetFaceNode[faceID]
5: numNodeInFace←numNodeOfFace[faceID]
6: for faceNodeID = 0 to numNodeInFace-1 do
7: nodeID← faceNode[faceNodeStart+faceNodeID]
8: for eqnID = 0 to numEqn - 1 do
9: setAdd(qNode[eqnID][nodeID], q[eqnID][Le])
0: end for
1: setAdd(tNode[nodeID], t[Le])
2: setAdd(nCount[nodeID], 1)
3: for eqnID = 0 to numEqn - 1 do
4: setAdd(qNode[eqnID][nodeID], q[eqnID][Re])
5: end for
6: setAdd(tNode[nodeID], t[Re])
7: setAdd(nCount[nodeID], 1)
8: end for
9: end for

A GPU kernel for data interpolation is described in Algo. 7. It
indicates that all faces are ported to computing threads in Line
3. The face-based loop on node data makes many threads may
write in the same global memory in Line 11, 13–14, 16, 18–19.
Hence, atomicAdd resolving the race condition should be used
for accumulating contributions of cell data (q and t) to node data
(qNode, tNode, and nCount).

For optimizations of data interpolation, cell loops are ported to
the GPU as described in Algo. 8 Line 4, 17, and 29. Furthermore,
considering nested loops split, a dimension loop in Line 1 is out-
side of GPU computing. However, indirect data access still exists
in those kernels. Can the cell loop result in smaller overheads
compared with the face loop?
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Algorithm 7 Data interpolation by face loop (DI-F)

1: <GPU kernel Begin>

2: threadID←threadIdx.x+blockIdx.x*blockDim.x
3: for faceID = nBoundFace+threadID to nTotalFace-1 do
4: Le← leftCellOfFace[faceID]
5: Re← rightCellOfFace[faceID]
6: faceNodeStart← offsetFaceNode[faceID]
7: numNodeInFace←numNodeOfFace[faceID]
8: for faceNodeID = 0 to numNodeInFace-1 do
9: nodeID← faceNodes[faceNodeStart+faceNodeID]

10: for eqnID = 0 to numEqn - 1 do
11: atomicAdd(qNode[eqnID*nTotalNode+nodeID],

q[eqnID*nTotalCell+Le])
12: end for
13: atomicAdd(tNode[nodeID], t[Le])
14: atomicAdd(nCount[nodeID], 1)
15: for eqnID = 0 to numEqn - 1 do
16: atomicAdd(qNode[eqnID*nTotalNode+nodeID],

q[eqnID*nTotalCell+Re])
17: end for
18: atomicAdd(tNode[nodeID], t[Re])
19: atomicAdd(nCount[nodeID], 1)
20: end for
21: setAdd(faceID, blockDim.x*gridDim.x)
22: end for
23: <GPU kernel End>

3.5.2. Local pressure comparing
Local pressure comparing is applied for determining both local

aximum and minimum pressure, shown in Eqs. (7) and (8). In
lgo. 9, a face loop in Line 1 can be applied for comparing cell
ata pressure with data (pMin and pMax) on neighbor cells in

Line 4–7. Nevertheless, indirect data access is induced as cell data
is traversed by the face loop. Besides that, the race condition is
also induced by many threads updating the same global memory
for pMax and pMin. In the kernel shown in Algo. 10, atomic
operations in Line 6–9 for comparing, including atomicMax and
tomicMin are used to resolve the data dependence problem.
Because only cell data is used in local pressure comparing,

oth indirect data access and the race condition can be avoided by
he cell loop. In Algo. 11, a cell loop in Line 3 is ported to the GPU.
n one cell, the neighbor cells’ size (numCell) and the initial po-
ition (cellStart) are gained by cell–cell information (numCellCell
nd offsetCellCell) in Line 4, 5. Then, neighbor cells are accessed
y a loop (Line 6) on cellCell. Cell data (pMin and pMax) are com-
ared with the pressure on neighbor cells by setCompMin and
etCompMax that are the same on the host code (Line 8 and 9).

. Hybrid MPI and CUDA parallel framework

A hybrid MPI-CUDA parallel framework is established for
ulti-GPU computing, which data packing and unpacking on the
PU.

.1. Domain decomposition

For multi-GPU computing, we apply the domain decomposi-
ion method. The unstructured mesh is partitioned into many
ones by a key-way method in METIS [34]. Each zone is dis-
ributed on one GPU that controlled by only one process. Because
ost computing procedures are on the GPU, the CPU is only used

or controlling the GPUs. Except for those CPU cores managing
PUs, the other CPU cores are idle in computing nodes. Fig. 4

hows the relationship between mesh partition, GPUs, and CPUs.

7

Algorithm 8 data interpolation by cell loop (DI-C)

1: for eqnID = 0 to numEqn - 1 do
2: <GPU kernel Begin>

3: threadID←threadIdx.x+blockIdx.x*blockDim.x
4: for cellID = threadID to nTotalCell-1 do
5: cellNodePosi← offsetCellNode[cellID]
6: for offset = 0 to numNodeOfCell[faceID] - 1 do
7: nodeID← cellNodes[cellNodePosi+offset]
8: accessFrequency← cellNodeCount[cellNodePosi+offset]

9: atomicAdd(qNode[eqnID*nTotalNode+nodeID],
accessFrequency*q[eqnID*nTotalCell+cellID])

10: end for
11: setAdd(cellID, blockDim.x*gridDim.x)
12: end for
13: <GPU kernel End>

4: end for
5: <GPU kernel Begin>

6: threadID←threadIdx.x+blockIdx.x*blockDim.x
7: for cellID = threadID to nTotalCell-1 do
8: cellNodePosi← offsetCellNode[cellID]
9: for offset = 0 to numNodeOfCell[faceID] - 1 do
0: nodeID← cellNodes[cellNodePosi+offset]
1: accessFrequency←

cellNodeCount[cellNodePosi+offset]
2: atomicAdd(tNode[nodeID], accessFrequency*t[cellID])
3: end for
4: setAdd(cellID, blockDim.x*gridDim.x)
5: end for
6: <GPU kernel End>

7: <GPU kernel Begin>

8: threadID←threadIdx.x+blockIdx.x*blockDim.x
9: for cellID = threadID to nTotalCell-1 do
0: cellNodePosi← offsetCellNode[cellID]
1: for offset = 0 to numNodeOfCell[faceID] - 1 do
2: nodeID← cellNodes[cellNodePosi+offset]
3: accessFrequency←

cellNodeCount[cellNodePosi+offset]
4: atomicAdd(nCount[nodeID], accessFrequency)
5: end for
6: setAdd(cellID, blockDim.x*gridDim.x)
7: end for
8: <GPU kernel End>

Fig. 4. The relationship between mesh partition (zones), CPUs, and GPUs.

Due to mesh partitioning, the boundary exists between two
adjacent zones, which is called an interface. In multi-GPU com-
puting, data exchange on zones’ interfaces. Fig. 4 shows two levels
in data exchange. In the first level, data is transferred in the same
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rocess between GPU and CPU. Secondly, data is communicated
ia MPI between different processes.

Algorithm 9 Local pressure comparing on CPU (LPC-CPU)

1: for faceID = nBoundFace to nTotalFace-1 do
2: Le← leftCellOfFace[faceID]
3: Re← rightCellOfFace[faceID]
4: setCompMin(pMin[Le], pressure[Re])
5: setCompMax(pMax[Le], pressure[Re])
6: setCompMin(pMin[Re], pressure[Le])
7: setCompMax(pMax[Re], pressure[Le])
8: end for

Algorithm 10 Local pressure comparing by face loop (LPC-F)

1: <GPU kernel Begin>

2: threadID←threadIdx.x+blockIdx.x*blockDim.x
3: for faceID = threadID+nBoundFace to nTotalFace-1 do
4: Le← leftCellOfFace[faceID]
5: Re← rightCellOfFace[faceID]
6: atomicMin(pMin[Le], pressure[Re])
7: atomicMax(pMax[Le], pressure[Re])
8: atomicMin(pMin[Re], pressure[Le])
9: atomicMax(pMax[Re], pressure[Le])

10: setAdd(faceID, blockDim.x*gridDim.x)
11: end for
12: <GPU kernel End>

Algorithm 11 Local pressure comparing by cell loop (LPC-C)

1: <GPU kernel Begin>

2: threadID←threadIdx.x+blockIdx.x*blockDim.x
3: for cellID = threadID to nTotalCell-1 do
4: numCell←numCellCell[cellID]
5: cellStart←offsetCellCell[cellID]
6: for cellInCellID = 0 to numCell-1 do
7: cellCellID←cellCell[cellStart+cellInCellID]
8: setCompMin(pMin[cellID], pressure[cellCellID])
9: setCompMax(pMax[cellID], pressure[cellCellID])

10: end for
11: setAdd(cellID, blockDim.x*gridDim.x)
12: end for
13: <GPU kernel End>

4.2. Hybrid MPI and CUDA framework

A basic hybrid MPI-CUDA framework is established. Specifi-
ally, interface data transfer synchronously from Device to Host
DtoH). Then, by blocking MPI communication, interface data in
ost memory is communicated between different zones. Finally,
nterface data transfer synchronously from Host to Device (HtoD).
ata transfer cannot overlap with data communication. Fig. 5
hows that five pairs of data transfer between host and device
HtoD and DtoH) in iterations, corresponding to time step (∆t),
S equations-related data (Qcell, Tcell, ∇Qcell, ∇Tcell, and limiter), NS

interpolation-related data (Qnodes and Tnodes), turbulence equation-
related data (Qtcell, ∇Qtcell), turbulence interpolation-related data
(Qtnodes). The physical meaning of those data are described in
Section 2. Data transfer exists on the default CUDA stream, which
is synchronous with GPU computing.

After DtoH, interface data exchange between zones by block-
ing MPI communication (B_Comm). Data exchange is necessary
for computing procedures. To illustrate, the time step (∆t) should
e uniform in all zones. Some cell-centered data including Qcell,

T , limiter , and Qt should be updated on interfaces.
cell cell d

8

Fig. 5. Basic MPI-CUDA framework.

Interpolation-related data including Qnodes, Tnodes, and Qtnodes ex-
hange for gradient calculation. ∇Qcell, ∇Tcell, and ∇Qtcell ex-
hange for computing with gradient on the interface. Those
ata exchange is blocked, which is also synchronous with GPU
omputing.
CUDA-aware MPI support is based on GPUDirect techniques

upported by Nvidia, which can accelerate data exchange in the
ulti-GPU system. CUDA-aware MPI support technique can be
irectly used on the hybrid MPI-CUDA framework. PtoP data
ransfer between GPUs is observed in the same computing node.
owever, given H2D and D2H still exist on different computing
odes, GPUDirect RDMA does not work in the research. Only the
irst GPUDirect technology [35] works, by which the host memory
opies and the network transfers can be pipe-lined.

.3. Packing and unpacking interface data on GPU

Before data communication between zones, data packing
hould be performed to divide interface data into groups for
eighbor zones. Similarly, after data communication, data un-
acking is performed to rearrange groups of data received from
eighbor zones on interfaces. Many threads loading and storing
ata on the GPU may accelerate data packing and unpacking.
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Algo. 12 describes data packing on the GPU. Two arrays
(dataSend and dataIF ) are used to store packing and interface data,
respectively (line 1). Then, a loop of neighbor zones is performed
(Line 2). For each neighbor zone, the number of adjacent faces
(numNgbFace), the start position (startSend) in the packing data
(dataSend), and the start position (startFace) on the interface are
determined (Line 3–5). A loop on adjacent faces (Line 6–8) is
ported to the GPU. The packing data (dataSend) is set by interface
data (dataIF ) (line 13), by face reflection (line 11, 12) from a
neighbor (faceID from 0 to numNgbFace-1) to the whole interface
(sendID from 0 to nInterfaceTotal-1). Data unpacking described
in Algo. 13 is the reverse of packing, where the receiving data
(dataRecv) is set by the interface data (dataIF ).

Algorithm 12 Pack MPI data on GPU
1: Get dataSend and dataIF by data name
2: for ngbZoneID = 0 to numNgbZone do
3: startFace←startFaceForSend[ngbZoneID]
4: startSend←startDataSend[ngbZoneID]
5: numNgbFace←nIFaceOfNgbZone[ngbZoneID]
6: <GPU kernel Begin>

7: threadID←threadIdx.x+blockIdx.x*blockDim.x
8: for faceID = threadID to numNgbFace do
9: sendID←faceForSend[startFace+faceID]

10: for eqnID= 0 to numEqn do
11: ngbZoneFaceID←startSend+

eqnID*numNgbFace+faceID
12: interfaceID←eqnID*nInterfaceTotal+sendID
13: dataSend[ngbZoneFaceID]←dataIF [interfaceID]
14: end for
15: setAdd(faceID, blockDim.x*gridDim.x)
16: end for
17: <GPU kernel End>

18: end for

Algorithm 13 Unpack MPI data on GPU
1: Get dataSend and dataIF by data name
2: for ngbZoneID = 0 to numNgbZone do
3: startFace←startFaceForRecv[ngbZoneID]
4: startRecv←startDataRecv[ngbZoneID]
5: numNgbFace←nIFaceOfNgbZone[ngbZoneID]
6: <GPU kernel Begin>

7: threadID←threadIdx.x+blockIdx.x*blockDim.x
8: for faceID = threadID to numNgbFace do
9: recvID←faceForRecv[startFace+faceID]

10: for eqnID= 0 to numEqn do
11: ngbZoneFaceID←startRecv+

eqnID*nIFaceOfNgbZone+faceID
12: interfaceID←eqnID*nInterfaceTotal+recvID
13: dataIF [interfaceID]←dataRecv[ngbZoneFaceID]
14: end for
15: setAdd(faceID, blockDim.x*gridDim.x)
16: end for
17: <GPU kernel End>

18: end for

5. Computing environment

5.1. Computing platform

In the research, numerical simulations are performed on a
igh Performance Computing (HPC) multi-GPU system. The HPC
ystem contains 50 computing nodes. Each computing node owns
Nvidia Tesla V100 GPUs (16 GB device memory, bandwidth
9

Table 2
Five different meshes for M6 (million).
Meshes Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Cells 1.05 2.26 3.97 6.30 8.78
Faces 2.32 5.02 8.83 14.07 20.68

Table 3
Three different meshes for CHN-T1 (million).
Meshes Mesh 6 Mesh 7 Mesh 8

Cells 17.37 35.20 102.59
Faces 39.40 70.59 205.56

900 GB/s), 2 Intel Xeon Gold 6132 CPUs (2.60 GHz, 14 CPU cores,
bandwidth 124.8 GB/s each), and 256 GB of host memory (DDR4,
2666 MHz, 16 DIMMS of 16 GB). The Mellanox EDR interconnect
fabric is used to connect all computing nodes by fat tree layout.
NVLink 2.0 (throughput 150 GB/s) is used to connect GPUs, and
PCIE3.0 (throughput 15 GB/s) is used to connect CPUs and GPUs in
one computing node. The release version of the operating system
is Centos 7.6 (kernel version 3.10.0-957.el7.x86_64). GCC 4.8.5
and NVCC (CUDA 10.0) are used for compiling host code and
CUDA kernels, respectively. Open MPI 4.0.0 is applied for the
exchange of data between processes.

5.2. Test cases

A series of numerical simulations are performed on two test
cases. Firstly, external flow over an ONERA M6 wing is simulated
with angle of attach 3.06 rad, side slip of angle 0 deg, and Mach
number of 0.84. Five different mesh scales described in Table 2
are used to discuss the optimization effects on single-GPU.

Secondly, a transport airplane called CHN-T1 [36] in flight is
simulated with angle of attach −1 rad, side slip of angle 0 deg,
and Mach number of 0.78. Three different meshes described in
Table 3 are applied to investigate the performance of the hybrid
MPI-CUDA parallel framework on multi-GPU simulations.

5.3. Metrics of performance and scalability

In the research, all floating-point operations are double preci-
sion (FP64).

The effects of optimization strategies on either kernel or ap-
plication level can be evaluated by executing time. Specifically,
on the kernel level, the executing time is recorded in the first
100 iteration steps on both the GPU and the CPU. The executing
time of the application is recorded between 200 and 300 iteration
steps. The variation of the overall executing time of Mesh 2 is
evaluated by repeating ten measurements. The mean squared
error is 0.0042, with an average of 17.14 on the GPU. On the CPU,
the mean squared error is 0.42, with an average of 238.92.

Parallel efficiency is used to evaluate the scalability of multi-
GPU computing. In the strong scaling test, the overall mesh scale
is fixed so that strong parallel efficiency ps is computed by ps =
tb ·Nb)/(te ·Ne). In the weak scaling test, weak parallel efficiency
w is computed by pw = tb/te corresponding to a fixed partitioned

mesh scale on each GPU. Executing time tb and te are wall time
consumed by baseline and evaluation applications, respectively.
The numbers Nb and Ne are the number of MPI processes in
baseline and evaluation applications.

6. Validation

A simulation of CHN-T1 (Mesh 6) is performed using 72 GPUs,
to validate the hybrid MPI-CUDA paralleled simulation on multi-
GPU. After a series of optimizations, simulation results are com-
pared with those using 72 CPUs. The comparison of drag coef-
ficient Cd and lift coefficient Cl over 2,00,000 iteration steps in
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Fig. 6. Comparison of aerodynamics between CPU and GPU.

Fig. 7. Comparison of aerodynamics between CPU and GPU.

ig. 6(a) and (b) indicates that the variations of aerodynamics
ith iterations are the same on both GPUs and CPUs. The dif-

erence described by |CdCPU − CdGPU | and |ClCPU − ClGPU | is shown
n Fig. 6(c) and (d). The order of difference is less than 10−12,
10
Table 4
Time (unit: ms), Bandwidth (BW, unit: GB/s) and Sustained performance (SP,
unit: GFLOP/s ) on Mesh 3.
No. FLOP/Byte CPU GPU

Time BW SP Time BW SP

K1 0.09 8.30 49.69 4.42 1.63 252.49 22.44
K2 0.08 46.34 23.13 1.78 88.33 12.13 0.93
K3 0.52 195.65 7.11 3.68 9.40 148.08 76.51
K4 0.21 17.18 25.60 5.33 2.60 169.31 35.27
K5 0.18 73.35 15.18 2.72 6.13 181.75 32.56
K6 0.05 9.68 49.23 2.37 1.81 263.54 12.67
K7 0 8.43 46.26 0.00 1.41 276.10 0.00
K8 0.04 5.80 36.32 1.58 1.17 180.69 7.86
K9 0.37 28.40 21.57 7.92 1.63 374.69 137.67
K10 0.11 8.23 42.32 4.45 0.77 450.95 47.47

compared with the order of aerodynamics. Furthermore, the com-
parison of the pressure coefficient Cp in Fig. 7 indicates that the
pressure distribution is the same. Finally, both the comparison
of aerodynamic coefficients and the comparison of the pressure
coefficient validate GPU simulation.

7. Effects of optimizations

7.1. Cell and face renumbering

In order to evaluate the effects of cell and face renumbering on
executing time, the relative speedup compared to kernels without
renumbering is shown in Fig. 8. Renumbering affects performance
on the GPU and the CPU in a global way. Specifically, on the
GPU, renumbering achieved 1.4–1.5× speedup in most kernels,
except for data interpolation (K2). On the CPU, renumbering
enhanced all kernels’ performance. Finally, on both the GPU and
the CPU, renumbering leads to 1.05–1.63× speedup on the whole
application, shown in Fig. 11.

After renumbering, both memory bandwidth and sustained
performance on the GPU and the CPU are described in Table 4.
All kernels’ computing performance is far from the theoretical
peak values on the CPU (582.4 GFLOPS) and GPU (7.8 TFLOPS).
All kernels’ computing performance is memory-bound, compared
with the theoretical FLOP byte ratio of the GPU (8.87 FLOP/byte)
and the CPU (2.34 FLOP/byte). Furthermore, owing to indirect
memory access, all kernels’ memory bandwidth cannot reach the
theoretical peak memory bandwidth of the GPU (900 GB/s) and
the CPU (249.6 GB/s). Most kernels’ memory bandwidth on the
GPU is much larger than those on the CPU. Thus, the GPU plays a
crucial in the computing performance of the application.

Effects of renumbering on memory utilization are investigated
on the GPU. From L1 and L2 cache hit rate in Figs. 9 and 10,
it indicates that both L1 and L2 cache hit rate are enhanced by
arranging data distribution in global memory, leads to perfor-
mance increase. For data interpolation (K2), due to a 12% increase
in L1 cache hit rate and a 10% decrease in L2 cache hit rate,
Fig. 8. Kernels’ speedup compared to original order on the GPU and the CPU.
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Fig. 9. L2 cache hit rate of kernels with and without renumbering on GPU.
Fig. 10. L1 cache hit rate of kernels with and without renumbering on GPU.
Fig. 11. The whole application’s speedup compared to original order on GPU
and CPU.

there is a 16.9K decrease in memory write transactions and a
21.0K increase in memory read transactions at L2 cache. Due to
much more time consumed in memory write transactions, the
performance of the kernel K2 decreases.

7.2. Comparison between atomic operations and graph coloring
method

On the GPU, the race condition exists in most kernels, as
hown in Table 1. The performance of atomic operations and
raph coloring is compared in flux summation (K2) to solve the
ace condition efficiently.

Fig. 12 shows that the atomic operation beats graph coloring
n all mesh scales. With the increase of mesh scale, speedup
ompared to graph coloring increases. By re-grouping in the
raph coloring method, indirect data access is aggravated, which
eads to worse performance. Thus, atomic operations are applied
n all kernels.

.3. Nested loops split

Due to the widespread use of nested loops, memory throttle
ay be amplified by frequent data access. A large kernel may
11
Fig. 12. Flux summation’s speedup compared to graph coloring method on GPU.

Table 5
Comparison of nested loops split in flux summation (K6) on Mesh 3.
Memory utilization Whole loop Split loop

Time (ms) 1.81 1.69
BW (GB/s) 263.54 324.8
SP (GFLOP/s) 12.67 13.53
L1 cache hit rate 52.29% 42.86%
L2 cache hit rate 8.10% 11.49%
Memory read transactions (L2) 59464K 68219K
Memory write transactions (L2) 46508K 46798K

be split according to loop dimensions for efficient nested-loop
computing.

Fig. 13 shows the speedup compared to the whole kernel
on both the GPU and the CPU. On the GPU, 1.05–1.1× speedup
is obtained from Mesh 3 to Mesh 5. On the CPU, nested-loop
splitting reduces computing performance.

In Table 5, the memory utilization on the GPU indicates a 9.43%
decrease in the L1 cache hit rate and a 3.4% increase in the L2
cache hit rate. Despite 14.7% higher in memory read transactions
(L2 cache), memory write transactions related to atomic opera-
tions remain similar. Nested loops split eased memory throttle
due to atomic operations, which leads to 23.24% higher memory
bandwidth.
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Fig. 13. Flux summation’s speedup compared to original nested loops on GPU
and CPU.

Fig. 14. Data interpolation’s speedup compared to the face loop on GPU and
CPU.

Table 6
Comparison of loop modes in data interpolation (K2) on Mesh 3.
Memory utilization Face loop Cell loop

Time (ms) 88.33 7.16
BW (GB/s) 12.12 314.68
SP (GFLOP/s) 0.93 15.35
L1 cache hit rate 51.80% 73.73%
L2 cache hit rate 15.92% 8.09%
Memory read transactions (L2) 446492K 177907K
Memory write transactions (L2) 371102K 53233K

7.4. Loop modes adjustment

The face loop is applied in most kernels. However, face data
oes not exist in some kernels, such as data interpolation (K2)
nd local pressure computing (K8). The face loop aggravates
verheads induced by indirect memory access. Furthermore, after
ell and face renumbering, the reduced L2 cache hit rate makes
ata interpolation consume too much time on the GPU. Hence,
he cell loop (Algo. 8) instead of the face loop (Algo. 7) is applied
n K2, to improve data locality.

Fig. 14 shows the speedup compared to the face loop on both
he GPU and the CPU. 4.5–15.6× speedup is achieved on the GPU,
hile 2.1–3.2× speedup on the CPU.
The memory utilization on the GPU described in Table 6 shows

hat a 21.9% increase in L1 cache hit rate and a 6.8% decrease in L2
ache hit rate lead to a significant reduction in both memory read
nd write transactions (L2). The cell loop makes sustained per-
ormance 16.5 times higher and memory bandwidth 29.6 times
igher.
Like data interpolation, local pressure computing (K8) only

ompares the cell-centered array pressure by the face loop. Thus,
cell loop (Algo. 11) can ease indirect data access.

Fig. 15 shows that the cell loop reduced executing time re-
markably on the GPU, achieving speedups of 1.72–2.74 compared
to the face loop. On the contrary, the cell loop consumed more
12
Fig. 15. Pressure computing’s speedup compared to the face loop.

Fig. 16. The whole application’s speedup compared to original without
optimizations on GPU and CPU.

Table 7
Comparison of loop modes in pressure computing (K8) on Mesh 3.
Memory utilization Face loop Cell loop

Time (ms) 1.17 0.43
BW (GB/s) 180.69 469.17
SP (GFLOP/s) 7.86 42.65
L1 cache hit rate 47.54% 63.11%
L2 cache hit rate 74.73% 71.47%
Memory read transactions (L2) 37313K 16057K
Memory write transactions (L2) 21715K 8567K

executing time on the CPU, corresponding to the speedup below
1.

In Table 7, the memory utilization on the GPU shows that a
15.6% increase in L1 cache hit rate and a 3.2% decrease in L2
cache hit rate result in over 50% reduction in both memory read
and write transactions (L2). By the cell loop, 16.5 times higher
sustained performance and 29.6 times higher memory bandwidth
are achieved.

Both data interpolation and local pressure comparing show
that the cell loop is more convenient for kernels without face data
on the GPU where data locality is improved.

7.5. Overall performance on a computing node

A series of optimization strategies are performed on both the
CUDA code and the host code, including cell & face renumbering,
nested loops split, and loop modes adjustment. Fig. 16 shows that
1.52–2.27× speedup compared to simulations without optimiza-
tions is achieved on the GPU, while 1.15–1.32× speedup on the
CPU. Contributions of optimization strategies are different on the
GPU. Fig. 17 indicates that renumbering contributes to a 14.8%–
38.2% increase in overall performance. Loop modes adjustment
achieves a 14.2%–19.6% overall performance increase from Mesh
2 to Mesh 5. Nested loops split gives a 4.9%–10.9% performance
boost in the whole application.

In Fig. 18, the overall performance comparison shows that a

single GPU achieves 11.9–14.8× speedup compared to 28 CPU
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Fig. 17. Contributions of optimizations on GPU.

Fig. 18. A GPU’s Overall performance speedup compared to 28 CPU cores.

Fig. 19. Overall performance and parallel efficiency comparison between data
acking/unpacking on the GPU and the CPU.

ores on different mesh scales. In fact, from analysis in Sec-
ion 7.1, the peak theoretical memory bandwidth is not reached
n both the GPU and the CPU. At the current stage, the speedup
ompared to CPU computing is reasonable, according to some
tudies [37].

. Multi-GPU computing

.1. Data packing and unpacking on the GPU

For making use of many threads loading and storing data on
he GPU, interface data is packed and unpacked on the GPU. The
ffects of GPU packing and unpacking data on overall perfor-
ance are investigated on Mesh 6.
Fig. 19 shows that data packing and unpacking on the GPU

onsumes 50% less wall clock time than on the CPU.
Parallel efficiency (ps) at the baseline of 2 GPUs shows that

ata packing and unpacking on the GPU owns twice higher paral-
el efficiency than on the CPU. Given performance and scalability,
13
Fig. 20. Wall clock time and parallel efficiency on the hybrid MPI-CUDA parallel
framework.

Table 8
Effects of mesh scale on parallel efficiency (ps) in strong scaling test.
No. of MPI
processes

Mesh 6 Mesh 7 Mesh 8

Time (s) ps Time (s) ps Time (s) ps
64 4.57 1 8.16 1 25.47 1
96 3.68 82.7% 5.93 91.8% 16.61 102.2%
160 2.78 65.8% 3.94 82.8% 9.62 105.9%

data packing and unpacking on the GPU is more efficient for
loading and storing data.

8.2. The hybrid MPI-CUDA parallel framework

We evaluate wall clock time and scalability of the hybrid
MPI-CUDA parallel framework on multi-GPU computing by sim-
ulations on Mesh 6 from 2 GPUs to 64 GPUs.

Fig. 20 shows that the CUDA-aware MPI support consumes
the highest wall time since 8 GPUs, which takes more than 40%
time over the original framework. Compared with some stud-
ies [29,30], the CUDA-aware MPI support does not work well.
Although host memory copies and network transfers are pipe-
lined by GPUDirect techniques, many synchronizations stem from
frequent MPI communication required by the turbulence model
and gradient calculation. Besides wall clock time, the parallel
efficiency (ps) of the CUDA-aware MPI support is also lower than
the original framework.

Given wall clock time and parallel efficiency, the CUDA-aware
MPI support has the worst performance. The original framework
is used in multi-GPU computing.

8.3. Strong scaling test

We evaluate the strong scalability of the hybrid MPI-CUDA
parallel framework. Due to the limit of GPU global memory,
we use 2 GPUs, 4 GPUs, and 12 GPUs for baseline simulations
corresponding to Mesh 6, Mesh 7, and Mesh 8. Fig. 21 shows that
on Mesh 6 (the coarse mesh), at the baseline of 2 GPUs, a parallel
efficiency using 200 GPUs is higher than 40%. On Mesh 7 (the
moderate mesh), at the baseline of 4 GPUs, a parallel efficiency
using 160 GPUs can reach 75%. On Mesh 8 (the fine mesh), after
64 GPUs, the parallel efficiency at the baseline of 12 GPUs is still
above 1. On Mesh 6 and 7, the parallel efficiency descends with
the increasing number of MPI processes due to data transfers and
communication.

We also evaluate the effects of mesh scale on scalability. At
the baseline of 64 GPUs, the parallel efficiency (ps) is compared
between simulations using 96 and 160 GPUs on Mesh 6, Mesh 7,
and Mesh 8. Table 8 shows that the parallel efficiency (ps) using
6 GPUs increases from 82.7% to 102.2%, with the mesh scale
ncreasing from Mesh 6 to Mesh 8. With mesh scale increasing,
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Fig. 21. Strong and weak scaling test.

omputing accounts for a higher portion of executing time, re-
ulting in better parallel efficiency, which is more evident using
ore GPUs.

.4. Weak scaling test

We perform a weak scaling test on the hybrid CUDA-MPI par-
llel framework, with about 500,000 cells per GPU, corresponding
o Mesh 1 (2 GPUs), Mesh 2 (4 GPUs), Mesh 3 (8 GPUs), Mesh
(18 GPUs), Mesh 6 (32 GPUs), Mesh 7 (64 GPUs), and Mesh 8

200 GPUs). We use 2 GPUs on Mesh 1 as the baseline. Fig. 21
hows that we obtain good parallel efficiency higher than 80% in
hose cases. Parallel efficiency (pw) using 200 GPUs is almost 85%.
he loss of parallel efficiency stems from data exchange between
PUs.

. Conclusion

In this paper, an unstructured mesh-based finite volume CFD
olver for compressible flow is ported on Nvidia GPU V100. Some
trategies are applied for optimizing indirect data access. Both
acking and unpacking data for communication are performed
n the GPU. A hybrid MPI-CUDA parallel framework with data
acking and unpacking on the GPU is established for multi-GPU
omputing. Both strong and weak scaling tests are performed on
he hybrid MPI-CUDA framework.

It is found that cell and face renumbering optimizes the global
ata location, leading to most kernels’ performance increase by
0%–60%. For resolving data dependence problems, atomic oper-
tions offer more than double the performance of graph coloring.
ested-loop splitting eased non-coalescing data access, result-
ng in some kernels’ executing time decreased by 10% on the
arge mesh. The cell loop improves data locality for those ker-
els without face data, which brings more than five times the
erformance of the face loop interpolating data. After those opti-
izations, overall performance on a GPU is enhanced by around
0%. For whole applications on different mesh scales, an average
peedup of 13.45 on a single GPU (Nvidia Tesla V100) is achieved,
ompared to 28 CPU cores (Intel Xeon Gold 6132).
Multi-GPU simulations indicate that data packing and un-

acking on the GPU is almost double the performance and the
arallel efficiency of those on the CPU. The hybrid MPI-CUDA
ramework with CUDA-aware MPI support is weakened by extra
ynchronizations, leading to worse performance and efficiency.
he strong scaling test shows that a parallel efficiency of 40%
chieves on 200 GPUs, at the baseline of 2 GPUs. A good weak
caling parallel efficiency higher than 80% is achieved by 200

PUs to 2 GPUs with 500 thousand cells per GPU.

14
10. Future work

In the future, mixed precision computing will be studied on
the GPU. Effects of SIMD vectorization will be studied on different
types of CPUs.
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