
Citation: Huang, X.; Zhang, X.; Yang,

P.; Xiao, N. Benchmarking GPU

Tensor Cores on General Matrix

Multiplication Kernels through

CUTLASS. Appl. Sci. 2023, 13, 13022.

https://doi.org/10.3390/

app132413022

Academic Editors: Rong Gu and

Mande Xie

Received: 26 September 2023

Revised: 16 November 2023

Accepted: 22 November 2023

Published: 6 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Benchmarking GPU Tensor Cores on General Matrix
Multiplication Kernels through CUTLASS
Xuanteng Huang , Xianwei Zhang *, Panfei Yang * and Nong Xiao

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China;
huangxt57@mail2.sysu.edu.cn (X.H.); xiaon6@mail.sysu.edu.cn (N.X.)
* Correspondence: zhangxw79@mail.sysu.edu.cn (X.Z.); yangpanfei@ceprei.com (P.Y.)

Abstract: GPUs have been broadly used to accelerate big data analytics, scientific computing and
machine intelligence. Particularly, matrix multiplication and convolution are two principal operations
that use a large proportion of steps in modern data analysis and deep neural networks. These
performance-critical operations are often offloaded to the GPU to obtain substantial improvements in
end-to-end latency. In addition, multifarious workload characteristics and complicated processing
phases in big data demand a customizable yet performant operator library. To this end, GPU vendors,
including NVIDIA and AMD, have proposed template and composable GPU operator libraries to
conduct specific computations on certain types of low-precision data elements. We formalize a set
of benchmarks via CUTLASS, NVIDIA’s templated library that provides high-performance and
hierarchically designed kernels. The benchmarking results show that, with the necessary fine tuning,
hardware-level ASICs like tensor cores could dramatically boost performance in specific operations
like GEMM offloading to modern GPUs.

Keywords: GPU; GEMM; benchmark; tensor core

1. Introduction

The last decade has witnessed GPUs acting as a rising star in a myriad of domains,
including scientific computing, big data analysis and machine learning. Programmers
writing such workloads tend to offload performance-critical calculations to the GPUs [1–3]
while leaving the CPUs only for control flow and inter-process communication manage-
ment. These operations include general matrix multiplication (GEMM) and Convolution
(Conv); both take a large portion of the layers in recent eye-catching big data and deep
learning applications. Offloading GEMM and Conv operations to GPUs could obtain ten-
to thousand-fold performance increases.

In certain scenarios, there is no need to use data types with a wider bitwidth in
calculations. For example, in the first few loops of iterative numeric algorithms like
the Euler method, it is unnecessary to use high-precision data in calculations due to the
existence of a large difference between the current numeric solution and the real target.
In addition, for some inference tasks like classification, the final goal is to distinguish the
category corresponding to the maximal value in the score vector. Thus, using high-precision
data types like fp64 or fp32 would be wasteful for both off-chip and on-chip resources
including memory bandwidth, registers and ALU usage. Harnessing mixed-precision
data (Figure 1) brings the opportunities of deploying real-time tasks on resource-limited
devices [4,5].

Recently, quantized neural network models have been proposed to reduce the model
size and required computation, thus improving the overall performance. From an ar-
chitectural perspective, NVIDIA has embedded a transformer engine into its latest data
center, the Hopper GPU architecture [6], to accelerate emerging transformer calculations
for language models. In addition, special floating point formats like tf16 and tf32 (also

Appl. Sci. 2023, 13, 13022. https://doi.org/10.3390/app132413022 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413022
https://doi.org/10.3390/app132413022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-6647-1871
https://doi.org/10.3390/app132413022
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413022?type=check_update&version=1

Appl. Sci. 2023, 13, 13022 2 of 14

called e8m7 and e8m10, respectively, where tf stands for tensor format) are designed to
boost the quantized NN workloads as they require much lower transferring bandwidths,
registers and on-chip memory resources for storage while achieving negligible errors com-
pared with the traditional IEEE-754 version. Exploiting these new data formats in some
language model workloads like BERT has achieved significant performance increases in
recent NVIDIA GPUs [7].

Figure 1. Floating point number representation formats of tf16 (top, also called e8m7) and tf32
(bottom, also called e8m10).

To meet these emerging requirements for both the algorithm design and the work-
load characteristics, hardware vendors like NVIDIA and AMD both integrate application-
specific integrated circuits (ASICs) into their latest products. NVIDIA announced their
first-generation Tensor Core (TC) together with the release of the Volta data center GPU
architecture in 2017 and then revised the TC over several generations. AMD followed a
technical route, naming their analogous component the Matrix Core (MC) in their MI100
series data center GPU. This algorithm–architecture co-design marked a huge success with
the fact that mainstream deep learning frameworks like PyTorch have embraced these
designs with the help of vendor-provided high-performance libraries like cuDNN, cuBLAS
and MIOpen [8]. Other vendors like Google and Tesla have also presented proprietary ASIC
accelerators like TPU [9] and Dojo [10], aiming to accelerate the quantized workloads by
exploiting special hardware components to calculate low-precision types of data elements.

However, most of these vendor libraries are proprietary. NVIDIA makes them opaque
to advance the first-party software ecosystem. Although AMD has made their implementa-
tion of MIOpen and the corresponding rocWMMA (Wave-level Matrix Multiply Accumulation)
for the HIP software stack open-source [11], it is not well studied yet, since matrix cores are
only available on its CDNA architecture realized in MI100 and later products. When using
APIs from opaque libraries, the runtime will automatically select the “best” algorithm based
on the user-provided problem size and data layout. This automatic mechanism works well
in most cases, but outliers still exist whereby the chosen configuration is not suitable for
the user’s input. For instance, in big data analysis and processing, the programmer needs
various custom kernels to handle incoming data streams and extract key features from them;
to this end, one may wish to have a library containing kernels with higher customizability
while maintaining performance with minimal programming and maintenance efforts.

Realizing the need for a community-driven high-performance GPU kernel library with
user customizability, NVIDIA announced CUTLASS, an open-source codebase to provide
concepts, primitives, kernels and programming models on top of CUDA. CUTLASS is
a template C++ library targeting GEMM, SpGEMM (sparse GEMM) and convolution
kernels that are widely used in both AI and HPC applications. With the C++ template,
CUTLASS implements zero-cost abstraction and compile-time polymorphism that supports
varying data types. More importantly, CUTLASS offers a system of concepts, interfaces
and approaches that allows users to easily split and distribute work items into different
granularities of resource organizations. Figure 2 demonstrates a representative workflow
pipeline in a CUTLASS GEMM kernel. Initially, the whole problem is parallelized by
splitting the output matrix into multiple tiles. Each CTA (Cooperative Thread Array, also
known as a thread block) is responsible for loading, calculating and then storing each tile in

Appl. Sci. 2023, 13, 13022 3 of 14

the output matrix. Inside each CTA, 32 consecutive threads are organized as warps and get
executed on the SM (Streaming Multiprocessor) in the lock-step fashion. In each iteration,
each warp will try to load a tile of input matrix elements from global memory to shared
memory, and synchronize at the CTA level to ensure all required data in current iteration are
ready in shared memory. Then, the required CTA data in shared memory are further split
into warp-level tiles to load into per-thread registers for calculation. Right after the data
preparation is complete, the result tile will be computed depending on which hardware
units are used (traditional CUDA Core for the SIMT fashion, Tensor Core for WMMA
fashion). When the primary calculation is accomplished, some extra steps including
scaling, clamping or rounding need to be conducted (called epilogue) before the output
elements are stored back to global memory. As we can see, the whole pipeline including
work item distribution and parallel execution is hierarchically organized corresponding
to the hardware architecture, which is the core design of CUTLASS and other GPU-based
accelerating algorithms.

Figure 2. CUTLASS pipeline phases and design abstraction.

2. Materials and Methods
2.1. GPU Architecture and Programming Model

The concept of a general purpose GPU was introduced in 2006. Figure 3 illustrates
the SM architecture in NVIDIA’s Ampere GPU. As we can see, each SM contains four
sub-processors, with integer and floating point units (CUDA Cores) inside. Besides, as
aforementioned, NVIDIA has added Tensor Cores into the SM since the Volta generation.
CTAs are scheduled to sub-processors for execution based on the granularity of warp
(32 consecutive threads in CUDA). Instructions from the warp may be issued and executed
on CUDA Cores, Tensor Cores or the LD/ST units to fetch data from shared memory or
global memory. Warps are swapped out and switched to the stall state while they are
waiting for the necessary and dependent data from lower cache levels or off-chip memory.
The warp scheduler is responsible for switching between the ready and stalled warps to
hide memory access latency of LD/ST instructions, making the GPU a throughput-oriented
processor compared to the CPU, which is latency-oriented.

Figure 3. The architecture of SM in NVIDIA’s Ampere GPU from NVIDIA’s official whitepaper [12].

Appl. Sci. 2023, 13, 13022 4 of 14

CUDA provides three warp-level collaborative APIs and specific C++ templated types
for programmers to exploit the WMMA function. Listing 1 is the brief C++ statement
sequence using WMMA APIs.

Listing 1. C++ statement using WMMA APIs.

// define the register fragment
wmma::fragment <wmma::matrix_a , M, N, K, half , wmma::col_major > a_frag

;
// load a tile of matrix A to regiter fragment
wmma:: load_matrix_sync(a_frag , A, M);
// warp matrix multiply operation
wmma:: mma_sync(c_frag , a_frag , b_frag , c_frag);
// store the tile of output matrix C
wmma:: store_matrix_sync(C, c_frag , N, wmma:: mem_row_major);

The wmma::fragment is a templated type defined in C++ to describe the shape, layout
and element type of the tile to be loaded into GPU registers. It is used to determine the num-
ber of registers required to store the loaded elements. Then, for the wmma::load_matrix_sync
and wmma::store_matrix_sync APIs, they are defined to load and store the matrix tiles
between global memory and registers. The sync suffix indicates that the substantial calcu-
lation instructions will not be issued until the dependent data are stored in the registers,
compared with some asynchronous version of memory access instructions added to CUDA
recently. wmma::mma_sync is used to conduct the C = αAB + βC computation on the
registers given by the input fragments, which is also a synchronous version.

It should be emphasized that CUDA only supports WMMA operations on some fixed
shapes of matrix tiles for a specific data type. For instance, current WMMA implementation
requires a 8× 16 tile for matrix A, and 16× 8 tile for matrix B, thus producing a 8× 8 output
tile for matrix C. Note that the tile shape constraints may vary from different generations
of GPUs and for one specific data type (like half, i.e., fp16); there are more than one shape
option for the register fragment.

Figure 4 illustrates the data layout and orchestration of corresponding threads. Ele-
ments from input tiles are scattered among different thread private registers; during the
mma_sync operation, inter-thread register sharing is necessary for the Tensor Core to fetch
data from different threads to produce the accumulated tile.

Appl. Sci. 2023, 13, 13022 5 of 14

12 13 14 158 9 10 114 5 6 70 1 2 3Row/Col

𝑇!: {𝑎"#, 𝑎"$, 𝑎"%, 𝑎"&}𝑇': {𝑎"(, 𝑎"), 𝑎"*, 𝑎"+}𝑇,: {𝑎"-, 𝑎"., 𝑎"/, 𝑎"0}𝑇": {𝑎"", 𝑎",, 𝑎"', 𝑎"!}0

𝑇0: {𝑎,#, 𝑎,$, 𝑎,%, 𝑎,&}𝑇/: {𝑎,(, 𝑎,), 𝑎,*, 𝑎,+}𝑇.: {𝑎,-, 𝑎,., 𝑎,/, 𝑎,0}𝑇-: {𝑎,", 𝑎,,, 𝑎,', 𝑎,!}1

…

𝑇!,: {𝑎0#, 𝑎0$, 𝑎0%, 𝑎0&}𝑇!": {𝑎0(, 𝑎0), 𝑎0*, 𝑎0+}𝑇'): {𝑎0-, 𝑎0., 𝑎0/, 𝑎00}𝑇'(: {𝑎0", 𝑎0,, 𝑎0', 𝑎0!}7

7…10Row/
Col

𝑇'(: {
𝑏"0,
𝑏,0,
𝑏'0,
𝑏!0
}

𝑇-: {
𝑏",,
𝑏,,,
𝑏',,
𝑏!,
}

𝑇": {
𝑏"",
𝑏,",
𝑏'",
𝑏!"
}

0
1
2
3

𝑇'): {
𝑏-0,
𝑏.0,
𝑏/0,
𝑏00
}

𝑇.: {
𝑏-,,
𝑏.,,
𝑏/,,
𝑏0,
}

𝑇,: {
𝑏-",
𝑏.",
𝑏/",
𝑏0"
}

4
5
6
7

𝑇!": {
𝑏(0,
𝑏)0,
𝑏10,
𝑏+0
}

𝑇/: {
𝑏(,,
𝑏),,
𝑏1,,
𝑏+,
}

𝑇': {
𝑏(",
𝑏)",
𝑏1",
𝑏+"
}

8
9

10
11

𝑇!,: {
𝑏#0,
𝑏$0,
𝑏%0,
𝑏&0
}

𝑇0: {
𝑏#,,
𝑏$,,
𝑏%,,
𝑏&,
}

𝑇!: {
𝑏#",
𝑏$",
𝑏%",
𝑏&"
}

12
13
14
15

𝑇!:
{𝑐"/, 𝑐"0}

𝑇':
{𝑐"-, 𝑐".}

𝑇,:
{𝑐"', 𝑐"!}

𝑇":
{𝑐"", 𝑐",}

𝑇0:
{𝑐,/, 𝑐,0}

𝑇/:
{𝑐,-, 𝑐,.}

𝑇.:
{𝑐,', 𝑐,!}

𝑇-:
{𝑐,", 𝑐,,}

𝑇!,:
{𝑐0/, 𝑐00}

𝑇!":
{𝑐0-, 𝑐0.}

𝑇'):
{𝑐0', 𝑐0!}

𝑇'(:
{𝑐0", 𝑐0,}

A
(row-major)

B
(col-major)

C
(row-major)

Figure 4. Memory and thread layouts of matrix tiles of m8n8k16 (i.e., 8× 16 for tile from matrix A,
16× 8 for tile from matrix B, and 8× 8 for tile from the row-major output matrix C) for one warp.
The element type of input tiles is int8, and the accumulated output type is int32. The notation
Tx : {· · · } in the table cells represents that thread x in the warp is responsible for loading the matrix
elements indicated between the brackets.

2.2. Accelerating GEMM on GPU

GEMM is a widely used operator in data intensive applications. The computing
pattern of the fully connected layer in deep neural networks is GEMM in fact, and countless
engineering problems depend on GEMM in their computation. GEMM is defined as
follows:

D = αAB + βC, (1)

where α and β are given scalars. In reality, the output matrix D is usually the same as the
input matrix C (like the bias tensor in the fully connected layer).

There are multiple GEMM implementations designed to accelerate it in many-core
architectures. One of the most common implementations in GPUs is tiled GEMM.

Figure 5 demonstrates the process of tiled GEMM implementation. As discussed
in Section 1, the output matrix is firstly partitioned into multiple tiles, whose shape is
empirically determined by the on-chip cache size (Mtile× Ntile in the green-colored tile in
Figure 5). To obtain the results of this target tile, one has to use the corresponding tiles in
both input matrices, colored as light blue and yellow in Figure 5. However, in most cases,
the required memory space is far more than that of the on-chip cache capacity if we load
all elements located in both input tiles onto the chip. Therefore, a common approach is to
iterate both tiles at Ktile step to obtain partially temporary results at each step and, finally,
accumulate the overall results.

Appl. Sci. 2023, 13, 13022 6 of 14

Figure 5. Demonstration of tiled GEMM implementation on GPU, from [13]. The input matrices A
and B are multiplied to form the output matrix C, where the calculation is conducted in the tile-wise
way to produce the final results. Each CTA is responsible for one output tile in matrix C.

Inside each tile step, the calculation as well as the matrix tile are partitioned into several
iterations. For each iteration, the threads in the CTA will load the required data elements
in the current iteration into shared memory to minimize off-chip memory accesses later,
since there will be certain data reuse across warps within a CTA. A synchronization barrier
must be inserted right after the memory access instructions to ensure all data elements
required for the current iteration are residing on shared memory already to be loaded
into registers later. For each iteration tile, warps are responsible for temporarily loading
data elements into registers and conducting WMMA calculations to save the intermediate
results in registers, then storing them back to shared memory.

After all iterations finish, the CTA should write the final results from shared memory
back to global memory. Note that if multiple CTAs are responsible for the same target tile
from matrix C (called the split_k mode), some extra constraints must be added to avoid
data race and ensure memory consistency.

2.3. CUTLASS Design Principles

As discussed earlier, CUTLASS is a hierarchical and flexible library providing APIs
abstracting at different level of granularities.

It allows programmers to make use of these APIs to assemble the high-performance
kernel and express their desires for various problem sizes. There are five levels of APIs that
CUTLASS provides, as shown in Table 1. In CUTLASS, users are responsible for exploiting
different levels of abstractions through the APIs to assemble the desired kernels meeting
both performance and customization (Listing 2). The mainloop and epilogue, as the main
body of GEMM kernels, are described via the collective level APIs, which orchestrate the
copy/math micro-kernels with architecture-specific synchronizations. Meanwhile, the
tile APIs are compiled into core GPU micro-kernels performing substantial math/copy
operations spanning cooperative threads, and the Atom APIs are architecture instructions
associated with meta-information. We may conclude that the hierarchical CUTLASS
decouples the API design: the Collective and Tile APIs aim at describing algorithm-specific
CTA/warps orchestration, while the Atom APIs target architecture-specific instruction
generation. Note that in Table 1, the Tile and Atom APIs are decorated with the cute
namespace prefix. CuTE is a layout library introduced in the latest CUTLASS 3.0 release [14].
The purpose of this library is to define and manipulate hierarchical, multidimensional
layouts of threads and data. It is worth noting that almost all of these APIs or classes are
templated, desiring some compile-time known information to specialize corresponding

Appl. Sci. 2023, 13, 13022 7 of 14

implementations; then, they are compiled into dedicated instructions to copy or calculate
the specific type.

Table 1. CUTLASS API overview.

API Level API Class/Function

Device device::GemmUniversalAdapter

Kernel kernel::GemmUniversal

Collective collective::CollectiveMma

Tile (MMA and copy) cute::TiledMma, cute::TiledCopy

Atom cute::Mma_Atom, cute::Copy_Atom

Like other numeric or operator libraries, CUTLASS allows users to call GEMM or
any other kernels from the host. A typical procedure of producing the GEMM results of
cutlass::half_t (i.e., fp16) as input type is presented below:

Listing 2. A typical procedure producing the GEMM results.

using ElementA = cutlass :: half_t;
using LayoutA = cutlass :: layout :: RowMajor;
constexpr int AlignmentA = 128 / cutlass :: sizeof_bits <ElementA >::

value;
// Same as matrices B and C
using ElementAccumulator = cutlass :: half_t;
using ArchTag = cutlass ::arch::Sm80;
using OperatorClass = cutlass ::arch:: OpClassTensorOp;
using ThreadblockShape = cutlass ::gemm::GemmShape <128, 128, 32>;
using WarpShape = cutlass ::gemm::GemmShape <64, 64, 32>;
using InstructionShape = cutlass ::gemm::GemmShape <16, 8, 16>;
constexpr int NumStages = 4;
using EpilogueOp =

cutlass :: epilogue :: thread :: LinearCombination <
ElementC , AlignmentC , ElementAccumulator , ElementAccumulator >;

// Classic data -parallel device GEMM implementation type
using DeviceGemmBasic =

cutlass ::gemm:: device :: GemmUniversal <ElementA , LayoutA , ElementB ,
LayoutB , ElementC , LayoutC , ElementAccumulator , OperatorClass

, ArchTag , ThreadblockShape , WarpShape , InstructionShape ,
EpilogueOp ,

cutlass ::gemm:: threadblock ::
GemmIdentityThreadblockSwizzle <>, NumStages , AlignmentA , AlignmentB >;

As we claimed before, CUTLASS is a highly templated library; hence, nearly all
of its data types and interfaces are specified with templates. The matrix is defined by
the tuple <Element, Layout> and AlignmentA, and it is used to determine the memory
access granularity to the corresponding memory region. Since CUDA now supports
128-bit coalesced memory access (using LDG.128 SASS instruction), the number of elements
per instruction loads is thus determined by 128/sizeof_bits(Element). Next, some
required information is defined such as the MMA operation type (whether CUDA Core
or Tensor Core will be used) and the underlying GPU hardware architecture tag. Lastly,
the hierarchical tile shapes assigned to different levels of the collaboration group (thread
block, warp or per MMA) are defined with the GemmShape template type. The epilogue
operation is the auxiliary phase after the main loop of kernel for the scalar calculation or
type conversion. Note that asynchronous global memory to shared memory instruction
(LDG.STS SASS instruction) is proposed since Ampere generation; therefore, this producer–
consumer pattern is pipelined and several memory access stages are exploited to overlap

Appl. Sci. 2023, 13, 13022 8 of 14

the MMA operation and global memory access. The number of pipelined stages is defined
by NumStages. All the above information is then passed to GEMM kernel templates to
generate the target code.

There are several advantages of encoding key information (such as element types,
tile shapes and memory access granularities) as template parameters. For example, if the
tile shape is fixed at the compile-time, register spills could be avoided when indexing
tile elements. Besides, loop unrolling could be performed accordingly to saturate the
instruction cache. Further, with this compiler–assistant information, register usage could
be reduced since some variables are encoded as constants and part of input data could be
fetched from CUDA constant memory to mitigate the DRAM bandwidth.

3. Results and Discussion

In this section, we demonstrate the key insights discovered from the benchmarks.

3.1. Testbed

Our experiments are conducted with NVIDIA A100 40 GB PCIe version. There are
108 Tensor Core SMs and 40 MB L2 cache total, with 1555 GB/s off-chip memory bandwidth.
On the software side, we built CUTLASS 3.0 with host compiler gcc@10.4.0 and CUDA
version ‘11.4.0’ under Debian 11 as the host OS. All measured kernels were warmed up
with 10 repeated runs and invoked 20 times to obtain the average execution elapsed times.
The standard deviations of all kernel executions are less than 5% and the results are stable.
The theoretical peak performance for various kinds of data formats on different hardware
units is listed in Table 2.

Table 2. Theoretical peak performance of NVIDIA Tesla A100 PCIe version for different data formats
and the underlying hardware units.

Data Format Peak Performance (TFLOPS)

fp64 9.7

fp64 Tensor Core 19.5

fp32 19.5

tf32 156

fp16 Tensor Core 312

int8 Tensor Core 624

Theoretically, we can conclude that exploiting ASIC hardware units in the GPU could
dramatically boost the performance for low-precision data formats. However, the sub-
stantial speedup may be restricted by some other factors, like limitations of CTA slots
per SM, shared memory usage and memory access latency. Thus, benchmarks of GEMM
on off-the-shelf commercial GPUs are necessary for engineers to assess the Tensor Core
benefits.

Before we continue to dig out the performance insight brought by the Tensor Core
benchmarks, it should be pointed out that the CUTLASS naming conventions indicate the
implementation details of kernels. Here is a GEMM kernel example:

cutlass_tensorop_s1688gemm_128x128_16x4_tt_align4

Fields in the kernel name are separated by underlines. tensorop means the underlying
hardware component used for the primary MMA operations is Tensor Core (as for CUDA
Core, the corresponding name is simt). The s in the next field means the Tensor Core
MMA instructions are targets for single floating point numbers (d for double floating point
numbers and h for half types). Then, 1688 indicates that the warp-level MMA tile shape is
16× 8× 8—i.e., m = 16, n = 8, k = 8—within each CTA tile. The 128x128_16 represents
the CTA tile shape (M× N × K) is 128 × 128 × 16, and the trailing 4 is the number of

Appl. Sci. 2023, 13, 13022 9 of 14

pipeline stages for asynchronous global memory to shared memory copies (LDG.STS). The
last field, align4, indicates that the maximum alignment between operands A and B is 4.

3.2. Tensor Core vs. CUDA Core

We first compare GEMM kernels in the cases of with and without Tensor Core involved.
The runtime comparisons are demonstrated in Figure 6. As we can see, the GFLOPS of
GEMM kernels with Tensor Core are much higher than those without Tensor Core.

Figure 6. Comparison among kernels with and without Tensor Core, where both input and output
types are fp32. Performance is measured by GFLOPS, which is a division of the total number of
floating operations and the kernel duration.

The average speedup between kernels with and without Tensor Core is 1.98. It should
be pointed out that some implementation details vary between these two kernels, including
the CTA tile shape and the asynchronous shared memory fetching pipeline stages.

Putting together Table 2 and Figure 6, we can figure out that the achieved fp32 GEMM
performance via CUTLASS is about 95% of the peak fp32 performance, which is often
regarded as a satisfying implementation.

3.3. Data Formats

In this section, we mainly focus on the varied performance when applying CUTLASS
GEMM kernels to different data types.

As Figure 7 illustrates, there is a obvious trend that as the bitwidth of element type
decreases, the achieved GEMM performance increases correspondingly. This is reasonable
since the high-precision element type requires more bandwidth as well as cycles to execute
the wider MMA instructions on Tensor Core. Another observation is that the achieved
performance of extreme low-precision data types like u8 (unsigned 8-bit integer), and even
s4 and u4, is much higher than that of conventional data types, which leads to the wide
use of such types in deep learning model inferences.

Appl. Sci. 2023, 13, 13022 10 of 14

Figure 7. CUTLASS GEMM kernel performance comparisons on different input element types. The
GEMM problem size is fixed as M = N = K = 8192.

3.4. Tile Shapes and Split_k

In this section, we explore the relationship between the achieved performance, the
CTA tile shape and orchestration. We first compare two GEMM kernels under problem
size M = N = K = 8192 and fp32 inputs. Configurations of the inspected kernels remain
the same, except for the CTA shape: one is 128x128_16 and the other is 256x128_16. The
performance metrics, measured in GFLOPS, obtained for both kernels are 36,956.7 and
115,962, respectively. There is a significant performance gap between these two kernels,
even though almost all kernel parameters are identical except the CTA tile shape. As the
thread block size (i.e., the number of threads in one CTA) and the orchestration of warps
along each tile dimension are the same as well, we can conclude that configuring the CTA
tile shape correctly has a huge impact on overall kernel performance.

Another performance-impacting factor that deserves inspection is the split_k setting,
which controls the number of CTAs working on the same tile of the output matrix. split_k
is introduced to tackle the problem that for some small GEMM workloads, the one-CTA-
one-tile strategy will not saturate the entire GPU SM resources, extremely for cases with
small M and N but large K problem sizes. For example, for a 1024× 1024 output matrix,
the abovementioned CTA orchestration with 256× 128 tile shape strategy ends up with
only (1024/256)× (1024/128) CTAs for this kernel, while there are 108 SMs in the A100
GPU. The number of fetch–calculate–store iterations required for each CTA to loop over
alongside the K dimension is K/k, where K is the reduced dimension of input matrices and
k is the corresponding CTA tile dimension. To fully utilize the GPU resource and reduce
the workload assigned to each CTA, one can parallelize the execution at the dimension
K by orchestrating more than one CTA on the same tile of the output matrix. Thus, loop
iterations required for that tile could be evenly distributed among multiple CTAs and, for
each CTA, the number of iterations would then be reduced by split_k times.

Table 3 shows the achieved performance for fp32 GEMM kernels with a varying split_k
parameter and with M = N = 512 and K = 8192 problem size. As we can see, as the value
of split_k factor increases, the performance of the obtained kernel boosts as well. However,
there is a kneepoint where increasing the split_k value will harm the overall performance.
It should be emphasized that enabling parallel split_k mode with its value larger than one
needs one extra reduction kernel to aggregate temporary results from different CTAs and
the corresponding predefined global buffers into the final output tile destination. Hence,
the larger split_k is, the longer the reduction latency will be.

Appl. Sci. 2023, 13, 13022 11 of 14

Table 3. Achieved performance for fp32 GEMM kernel with the same compile-time configurations,
except for the runtime-determined split_k parameter.

Split_k Achieved Performance (TFLOPS)

1 5641.83

2 10,641.9

4 17,577.3

8 20,913.4

10 19,182.4

3.5. Asynchronous Copy

To implement a performant GEMM kernel, software pipelining is required to hide
the global-to-shared memory access latency as much as possible. Asynchronous copy is a
new hardware feature proposed in Ampere that allows programmers to explicitly invoke
non-blocking global-to-shared memory access with no extra registers required for storing
temporarily accessed data.

Table 4 lists the relative speedup for kernel s1688gemm_f16_256x128_32x2 gained via
applying asynchronous global-to-shared memory copies. Observation shows that enabling
this new hardware feature could bring averaged 1.195 speedups over different matrix sizes
with fp16 input and fp32 output. Enabling async. copy brings more flexibility for the SM
scheduler since Tensor Cores only accelerate the computation while the off-chip bandwidth
remains the same. It offers the opportunities to pipeline and overlap the computation and
memory access.

Table 4. Speedups obtained via asynchronous global-to-shared memory copies.

M, N, K w/o Async. Copy w/ Async. Copy Speedup

4096 103,483 127,160 1.228

8192 110,038 136,912 1.244

16,384 122,674 139,075 1.113

4. Related Works

Tensor Core has been a hot topic since the release of its first generation. Works [15–18]
conducted micro-benchmarks to demonstrate the underlying mechanisms of Tensor Core,
including the SASS instruction of mma_sync, the cost cycles for each MMA instruction as
well as the tile orchestrations for each thread within one warp. Zhao et al. [19] pointed
out the phenomenon that the utilization of CUDA Core and Tensor Core could not be
high simultaneously; therefore, they proposed a source-to-source compiler that transforms
a common kernel into a persistent SM-centric kernel, allowing workloads using Tensor
Core or CUDA Core to be scheduled into the same SM. SIMD2 [20] used off-the-shelf
commercial GPUs to emulate general purpose computation on the dedicated Tensor Core,
revealing the potential of extending the calculation capacity for a wider range of workloads.
Likewise, PET [21] proposed a transformation that allows partial equivalent operations and
an automatic correction mechanism to ensure that the results are acceptable for tensor pro-
grams. Another direction is to fuse isolated kernels utilizing the CUDA Core or Tensor Core
separately into monolithic macro-kernels and integrating architecture supports in hardware
for this change [22]. There are also some workload-specific optimizations exploiting Tensor
Core to accelerate the computation on GNN or sparse matrix operations [23,24].

GEMM is a well-studied workload accelerated by GPUs, which has many adoptions
in deep learning and scientific computing applications. There are some works focusing
on exploiting Tensor Core to accelerate GEMM while maintaining the precision require-
ments [25]. Also, Mix-GEMM [26] explores the usage of GEMM on deep learning model

Appl. Sci. 2023, 13, 13022 12 of 14

inference running on edge devices. The design of workload distribution on GEMM is also
studied to better utilize the GPU on-chip resources [27]. Besides, other specialized linear
algebra operations like SYMM and TRMM [28] can be implemented and optimized with
CUTLASS.

GPU operator tuning is the process of finding the most suitable tiling size and
other kernel configurations like the number of pre-fetching stages for asynchronous copy.
Nowadays, machine learning compilers like TVM [29] have enabled us to seek out the
optimal solution with automatic search, but the search space is still to large for an exhaustive
traverse. To bridge the gap between performant but less flexible vendor-provided libraries
(like cuDNN) and highly customizable but less optimal libraries like CUTLASS, Bolt [30]
was proposed to integrate CUTLASS into TVM as the backend of the search process for
high-quality code generation. Besides, Graphene [31] was proposed to serve as an IR to
minimize the effort for kernel experts to express tensor operations at a low level without
losing general expression ability.

5. Conclusions

In this paper, we first illustrated the recent trend of emerging quantized calculation
workload and architectural ASIC as the corresponding response from the GPU hardware
vendors. Then, we briefly introduced the CUTLASS open-source templated library and
its design principles for GEMM kernels. With CUTLASS, we built and conducted a series
of benchmarks, revealing some insights and factors that will greatly impact the achieved
kernel performance. To obtain a satisfying portion of theoretical peak performance, manual
tuning is still necessary for the dedicate kernels.

Author Contributions: Conceptualization, X.H. and X.Z.; methodology, X.H.; software, X.H.; valida-
tion, X.H. and X.Z.; formal analysis, X.H.; investigation, X.H.; resources, X.Z. and N.X.; data curation,
X.H.; writing—original draft preparation, X.H.; writing—review and editing, X.Z.; visualization, X.H.;
supervision, X.Z. and N.X.; project administration, X.Z. and P.Y.; funding acquisition, X.Z., P.Y. and
N.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the the National Natural Science Foundation of China—
#62102465, the Major Program of Guangdong Basic and Applied Research NO. 2019B030302002, the
Funding by Science and Technology Projects in Guangzhou—#202201011241, and the Open Project
of China Electronic Product Reliability and Environmental Testing Research Institute (CEPREI)-
#HK202201334.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This research does not rely on extra datasets as the inputs to the
CUTLASS kernels are randomly formed. The obtained performance data are demonstrated in
Section 3.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, G.; Sun, N.; Shen, S.; Wu, X.; Wang, L. GPU-Accelerated Target Strength Prediction Based on Multiresolution Shooting and

Bouncing Ray Method. Appl. Sci. 2022, 12, 6119. [CrossRef]
2. Liu, D.; Li, B.; Liu, G. Calculation of Surface Offset Gathers Based on Reverse Time Migration and Its Parallel Computation with

Multi-GPUs. Appl. Sci. 2021, 11, 10687. [CrossRef]
3. Golosio, B.; Villamar, J.; Tiddia, G.; Pastorelli, E.; Stapmanns, J.; Fanti, V.; Paolucci, P.S.; Morrison, A.; Senk, J. Runtime

Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices. Appl. Sci. 2023, 13, 9598. [CrossRef]
4. Kim, S.; Cho, J.; Park, D. Moving-Target Position Estimation Using GPU-Based Particle Filter for IoT Sensing Applications. Appl.

Sci. 2017, 7, 1152. [CrossRef]
5. Nguyen, D.V.; Choi, J. Toward Scalable Video Analytics Using Compressed-Domain Features at the Edge. Appl. Sci. 2020, 10,

6391. [CrossRef]
6. Transformer Engine Documentation—Transformer Engine 0.6.0 Documentation. Available online: https://docs.nvidia.com/

deeplearning/transformer-engine/user-guide/index.html (accessed on 15 November 2023).

http://doi.org/10.3390/app12126119
http://dx.doi.org/10.3390/app112210687
http://dx.doi.org/10.3390/app13179598
http://dx.doi.org/10.3390/app7111152
http://dx.doi.org/10.3390/app10186391
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/index.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/index.html

Appl. Sci. 2023, 13, 13022 13 of 14

7. Kharya, P. NVIDIA Blogs: TensorFloat-32 Accelerates AI Training HPC Upto 20x. 2020. Available online: https://blogs.nvidia.
com/blog/2020/05/14/tensorfloat-32-precision-format/ (accessed on 15 November 2023).

8. Khan, J.; Fultz, P.; Tamazov, A.; Lowell, D.; Liu, C.; Melesse, M.; Nandhimandalam, M.; Nasyrov, K.; Perminov, I.; Shah, T.; et al.
MIOpen: An Open Source Library For Deep Learning Primitives. arXiv 2019, arXiv:1910.00078.

9. Jouppi, N.P.; Kurian, G.; Li, S.; Ma, P.; Nagarajan, R.; Nai, L.; Patil, N.; Subramanian, S.; Swing, A.; Towles, B.; et al. TPU
v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings. arXiv 2023,
arXiv:2304.01433.

10. Lambert, F. Tesla Unveils New Dojo Supercomputer so Powerful It Tripped the Power Grid. 2022. Available online: https:
//electrek.co/2022/10/01/tesla-dojo-supercomputer-tripped-power-grid/ (accessed on 15 November 2023).

11. rocWMMA. 2023. Available online: https://github.com/ROCmSoftwarePlatform/rocWMMA (accessed on 15 November 2023).
12. NVIDIA Ampere Architecture. 2020. Available online: https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/

nvidia-ampere-architecture-whitepaper.pdf (accessed on 15 November 2023).
13. Matrix Multiplication Background User’s Guide. Available online: https://docs.nvidia.com/deeplearning/performance/dl-

performance-matrix-multiplication/index.html (accessed on 15 November 2023).
14. CUTLASS 3.0 Is Now Available! · NVIDIA/Cutlass · Discussion #787. Available online: https://github.com/NVIDIA/cutlass/

discussions/787 (accessed on 15 November 2023).
15. Jia, Z.; Maggioni, M.; Staiger, B.; Scarpazza, D.P. Dissecting the NVIDIA Volta GPU Architecture via Microbenchmarking. arXiv

2018, arXiv:cs/1804.06826.
16. Jia, Z.; Maggioni, M.; Smith, J.; Scarpazza, D.P. Dissecting the NVidia Turing T4 GPU via Microbenchmarking. arXiv 2019,

arXiv:1903.07486.
17. Yan, D.; Wang, W.; Chu, X. Demystifying Tensor Cores to Optimize Half-Precision Matrix Multiply. In Proceedings of the 2020

IEEE International Parallel and Distributed Processing Symposium (IPDPS), New Orleans, LA, USA, 18–22 May 2020; pp. 634–643.
[CrossRef]

18. Sun, W.; Li, A.; Geng, T.; Stuijk, S.; Corporaal, H. Dissecting Tensor Cores via Microbenchmarks: Latency, Throughput and
Numeric Behaviors. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 246–261. [CrossRef]

19. Zhao, H.; Cui, W.; Chen, Q.; Zhao, J.; Leng, J.; Guo, M. Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks.
In Proceedings of the 2021 IEEE 39th International Conference on Computer Design (ICCD), Storrs, CT, USA, 24–27 October 2021;
pp. 290–298. [CrossRef]

20. Zhang, Y.; Tsai, P.A.; Tseng, H.W. SIMD2: A Generalized Matrix Instruction Set for Accelerating Tensor Computation beyond
GEMM. In Proceedings of the 49th Annual International Symposium on Computer Architecture, ISCA ’22, New York, NY, USA,
18–22 June 2022; pp. 552–566. [CrossRef]

21. Wang, H.; Zhai, J.; Gao, M.; Ma, Z.; Tang, S.; Zheng, L.; Li, Y.; Rong, K.; Chen, Y.; Jia, Z. PET: Optimizing Tensor Programs with
Partially Equivalent Transformations and Automated Corrections. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, Virtual, Online, 14–16 July 2021.

22. Zhao, H.; Cui, W.; Chen, Q.; Zhang, Y.; Lu, Y.; Li, C.; Leng, J.; Guo, M. Tacker: Tensor-CUDA Core Kernel Fusion for Improving
the GPU Utilization While Ensuring QoS. In Proceedings of the 2022 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), Seoul, Republic of Korea, 2–6 April 2022; pp. 800–813. [CrossRef]

23. Wang, Y.; Feng, B.; Ding, Y. QGTC: Accelerating Quantized Graph Neural Networks via GPU Tensor Core. In Proceedings of the
27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’22, New York, NY, USA, 2–6 April
2022; pp. 107–119. [CrossRef]

24. Li, S.; Osawa, K.; Hoefler, T. Efficient Quantized Sparse Matrix Operations on Tensor Cores. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’22, Dallas, TX, USA, 13–18 November 2022;
pp. 1–15.

25. Feng, B.; Wang, Y.; Chen, G.; Zhang, W.; Xie, Y.; Ding, Y. EGEMM-TC: Accelerating Scientific Computing on Tensor Cores with
Extended Precision. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’21, New York, NY, USA, 27 February 2021; pp. 278–291. [CrossRef]

26. Reggiani, E.; Pappalardo, A.; Doblas, M.; Moreto, M.; Olivieri, M.; Unsal, O.S.; Cristal, A. Mix-GEMM: An Efficient HW-SW
Architecture for Mixed-Precision Quantized Deep Neural Networks Inference on Edge Devices. In Proceedings of the 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA), Montreal, QC, Canada, 25 February–1 March
2023 ; pp. 1085–1098. [CrossRef]

27. Osama, M.; Merrill, D.; Cecka, C.; Garland, M.; Owens, J.D. Stream-K: Work-Centric Parallel Decomposition for Dense Matrix-
Matrix Multiplication on the GPU. In Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of
Parallel Programming, PPoPP ’23, New York, NY, USA, 25 February–1 March 2023; pp. 429–431. [CrossRef]

28. PolyBench. Available online: https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/ (accessed on 15 November
2023).

29. Chen, T.; Moreau, T.; Jiang, Z.; Zheng, L.; Yan, E.; Shen, H.; Cowan, M.; Wang, L.; Hu, Y.; Ceze, L.; et al. TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–9 October 2018; pp. 578–594.

https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://electrek.co/2022/10/01/tesla-dojo-supercomputer-tripped-power-grid/
https://electrek.co/2022/10/01/tesla-dojo-supercomputer-tripped-power-grid/
https://github.com/ROCmSoftwarePlatform/rocWMMA
https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
 https://github.com/NVIDIA/cutlass/discussions/787
 https://github.com/NVIDIA/cutlass/discussions/787
http://dx.doi.org/10.1109/IPDPS47924.2020.00071
http://dx.doi.org/10.1109/TPDS.2022.3217824
http://dx.doi.org/10.1109/ICCD53106.2021.00054
http://dx.doi.org/10.1145/3470496.3527411
http://dx.doi.org/10.1109/HPCA53966.2022.00064
http://dx.doi.org/10.1145/3503221.3508408
http://dx.doi.org/10.1145/3437801.3441599
http://dx.doi.org/10.1109/HPCA56546.2023.10071076
http://dx.doi.org/10.1145/3572848.3577479
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

Appl. Sci. 2023, 13, 13022 14 of 14

30. Xing, J.; Wang, L.; Zhang, S.; Chen, J.; Chen, A.; Zhu, Y. Bolt: Bridging the Gap between Auto-tuners and Hardware-native
Performance. Proc. Mach. Learn. Syst. 2021, 4, 204–216.

31. Hagedorn, B.; Fan, B.; Chen, H.; Cecka, C.; Garland, M.; Grover, V. Graphene: An IR for Optimized Tensor Computations on
GPUs. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2023, Vancouver, BC, Canada, 25–29 March 2023; Aamodt, T.M., Jerger, N.D.E., Swift, M.M., Eds.;
ACM: New York, NY, USA, 2023; Volume 3, pp. 302–313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3582016.3582018

	Introduction
	Materials and Methods
	GPU Architecture and Programming Model
	Accelerating GEMM on GPU
	CUTLASS Design Principles

	Results and Discussion
	Testbed
	Tensor Core vs. CUDA Core
	Data Formats
	Tile Shapes and Split_k
	Asynchronous Copy

	Related Works
	Conclusions
	References

