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On the Restore Time Variations of Future DRAM Memory
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As the de facto main memory standard, DRAM (Dynamic Random Access Memory) has achieved dramatic
density improvement in the past four decades, along with the advancements in process technology. Recent
studies reveal that one of the major challenges in scaling DRAM into the deep sub-micron regime is its
significant variations on cell restore time, which affect timing constraints such as write recovery time.
Adopting traditional approaches results in either low yield rate or large performance degradation. In this
article, we propose schemes to expose the variations to the architectural level. By constructing memory
chunks with different access speeds and, in particular, exploiting the performance benefits of fast chunks,
a variation-aware memory controller can effectively mitigate the performance loss due to relaxed timing
constraints. We then proposed restore-time-aware rank construction and page allocation schemes to make
better use of fast chunks. Our experimental results show that, compared to traditional designs such as row
sparing and Error Correcting Codes, the proposed schemes help to improve system performance by about
16% and 20%, respectively, for 20nm and 14nm technology nodes on a four-core multiprocessor system.
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1. INTRODUCTION

DRAM (Dynamic Random Access Memory) is the de facto memory technology for con-
structing main memory in modern computing systems. Due to fast technology advances,
DRAM has achieved significant density improvements in the past four decades. With
the wide adoption of chip multiprocessors and the fast-growing data-intensive ap-
plications, for example, graphics and social network applications [Luo et al. 2014;
Wu et al. 2013], future computers demand even larger main memory, which needs to
scale DRAM further for improved density and energy consumption. However, scaling
DRAM in the deep sub-micron regime is subject to significant process variations (PVs)
[Asadinia et al. 2015; Agrawal et al. 2014; Mandelman et al. 2002] such that a growing
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number of cells in a chip shall not be able to meet the standard timing constraints,
leading to degraded chip yield rate and increased manufacturing cost.

One representative issue in deep sub-micron scaling is that the time required to fully
charge the storage capacitor, that is, restore time, is expected to increase significantly
[Kang et al. 2014; Zhang et al. 2015]. For smaller technology nodes, more cells in a chip
need longer restore time and thus are likely to violate the standard timing constraints.
It is inevitable to relax the timing parameters, such as write recovery time (tWR),
in order to maintain an acceptable chip yield rate and to keep manufacturing costs
low. However, naively relaxing tWR introduces large performance loss. Adopting post-
fabrication cell repair designs such as row sparing and Error Correcting Codes (ECC)
to rescue weak cells helps but only to a limited extent.

In this article, we propose to exploit the restore time variations at fine granularity.
In particular, we partition memory banks into chunks and expose timing differences
of different chunks to the memory controller. By re-organizing device chunks to form
logical chunks, we are able to identify a set of fast chunks for performance improvement.

In summary, we make the following contributions.

—We model the scaling and process variation effects on restore time and perform
Monte Carlo simulation to study the impact of varying parameters and distributions
on performance, which reveals the trend of restore time under technology scaling.

—We propose fine-grained variation-aware scheduling schemes to address restore time
variations. By exposing restore time difference at the chunk level, we are able to
construct a set of fast chunks that effectively mitigates the performance degradation
due to relaxed timing constraints.

—We propose restore-time-aware rank construction and page allocation schemes to
fully exploit chunk-level restore time difference. The former groups similar chips
together such that a better rank set can be formed from given chips. The latter allo-
cates frequently accessed virtual pages to fast device chunks such that the average
memory access latency can be reduced.

—We evaluate the proposed schemes and compare them with existing solutions. Our
experimental results show that, compared to traditional designs such as row sparing
and ECC, the proposed schemes help to improve system performance by about 16%
and 20%, respectively, for 20nm and 14nm technology nodes on a four-core multipro-
cessor system.

The remainder of the article is organized as follows: Section 2 introduces the DRAM
background. Section 3 models the process variations on restore time and motivates the
article. Section 4 elaborates the proposed chunk-level mitigation designs. Section 5 and
Section 6 present the experimental methodology and analyze the results, respectively.
We discuss the related work in Section 7 and conclude the article in Section 8.

2. BACKGROUND

In this section, we discuss the basics of DRAM structure and operations and the scaling
effects on restore timing.

2.1. DRAM Cell Restore Operation

A DRAM-based main memory system usually consists of several dual in-line memory
modules (DIMMs). One DIMM contains one or multiple ranks while one rank is often
constructed using multiple DRAM chips, for example, eight (without ECC) or nine
(with ECC) chips, and contains multiple banks that can be operated independently.

A memory controller receives read and write requests from processors and trans-
lates requests to device commands. The commands are sent to DRAM modules sequen-
tially following strict timing constraints to ensure reliability and to maximize memory
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Fig. 1. Commands involved in DRAM access.

performance. We briefly summarize the commands and timing constraints involved in
read and write operations. A more comprehensive discussion can be found in Jacob
et al. [2007].

READ: as illustrated in Figure 1(a), read access starts with an ACTIVATE (ACT)
command to bring the required row into the sense amplifiers (SAs, also referred to as
row buffer); then a READ (RD) command is issued to fetch data from the row buffer. The
interval between ACT and RD is constrained by tRCD. A DRAM read is destructive, and
hence the charge in the storage capacitors needs to be restored. The restore operation is
performed concurrently with RD, and a row cannot be closed until restoring completes,
which is determined by tRAS-tRCD. Once the row is closed, a PRECHARGE (PRE) can
be issued to prepare for a new row access. PRE is constrained by timing tRP. The time
for the whole read process is tRC=tRAS+tRP.

WRITE: write works similarly to read, with ACT as the first command to be per-
formed. After tRCD has been elapsed, a WRITE (WR) is issued to overwrite the content
in the row buffer and then update (restore) the value into the DRAM cells. Before issu-
ing PRE, the new data overwritten in the sense amps must be restored into the target
bank, taking tWR time.

To summarize, both ACT and WR commands involve the restoring operation, and
hence a change in restore time shall affect both DRAM read and write accesses.

2.2. Scaling Effects

DRAM scaling has been the major drive for capacity growth in past decades. How-
ever, DRAM exhibits non-negligible scaling effects as it scales down to 20nm, 14nm
[Samsung 2013], and further to 10nm [Goering 2014; Mayberry 2011; Kang et al. 2014].
When the feature size scales down, the physical geometry of the devices also needs to be
downsized, including gate length, transistor supply voltage, and trench capacitor size.
It becomes increasingly difficult to precisely control the fabrication process at small
feature technologies.

One DIMM, given that it consists of multiple DRAM chips, exhibits both within-die
(WID) and die-to-die (D2D) variations, which can be categorized to systematic and ran-
dom components. While systematic variations are mostly introduced by lithographic
aberrations, and show high spatial correlation, random variations are caused by ran-
dom doping fluctuation and are essentially unpredictable [ITRS 2012].

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 26, Pub. date: February 2017.



26:4 X. Zhang et al.

Table I. Modeling Parameters

tech node μbulk σbulk μtail σtail φ random weight

20nm 2.031 0.21 3.081 0.063 0.3 0.5
14nm 2.048 0.247 3.283 0.0735 0.3 0.5

Because of the process variation, future DRAM behavior will be more statistical than
deterministic, and thus more cells are expected to violate current timing constraints.
For example, smaller cells tend to require longer time to fully charge the storage
capacitor and hold the charge for shorter period of time, which results in longer cell
restore time and shorter cell retention time, respectively. To maintain an acceptable
yield rate and to keep manufacturing cost under control [Kang et al. 2014], the timing
constraints need to be relaxed, which results in performance degradation.

3. MOTIVATION

3.1. Modeling PV Effects on Restoring Time

To study the effects of DRAM scaling, we model PV in the deep sub-micron regime
and study its impact on DRAM timing. Our model studies both access transistor and
storage capacitor in a DRAM cell. For DRAM scaling, the access transistor can be either
FinFET or VCAT [ITRS 2012; Mueller et al. 2005; Kim 2005], both of which feature gate-
surrounded channel structure to suppress Iof f while boosting Ion. In this article, FinFET
is picked for our circuit model, and the BSIM-CMG version of Predictive Technology
Model (PTM) is utilized for simulation. The trench capacitor is assumed to have a
capacitance of 27fF [Vogelsang 2010; Mueller et al. 2005] and stays constant in all
simulated technology sizes. The core circuits of a DRAM array are built, including cell,
sense amplifier, write driver (WD) and column mix, and so on, and those components
are simulated in HSPICE. The column circuits have generic topologies [Jacob et al.
2007] and their transistor parameters are taken (and scaled) from a DRAM modeling
tool from Rambus [Vogelsang 2010]. Bitline (BL) capacitance due to wire and transistor
parasitic is also modeled. In the simulation, the wordline is kept at boosted VP P (e.g.,
2.4V at 20nm), and BL and cell are initially grounded by SA. Next, WD overpowers SA,
which then pulls up the BL. Meanwhile, the BL voltage is gradually forced onto the cell
capacitor by charging through the access transistor. We simulate the write-bit-1 case,
which is typically slower than writing bit 0, because the access transistor is gradually
source degenerated as the storage capacitor is charged up. The simulation is repeatedly
performed on 20nm and 14nm technology nodes.

Using the above cell model, we generate 100K samples and perform curve fitting
using log-normal distribution. Similar to recent PV studies [Liu et al. 2012; Agrawal
et al. 2014], we include bulk distribution to depict the normal variation that dominates
the majority of cells and tail distribution to depict random manufacturing defects.1
Table I summarizes the parameters for bulk and tail distributions after curve fitting
with our cell samples.

To obtain the chip maps, we use the VARIUS tool [Sarangi et al. 2008], which is
a novel microarchitecture-aware model for both WID and D2D process variations.
VARIUS works by taking a variable’s distribution parameters, including mean (μ),
standard variance (σ ), and spatial correlation (φ) to output its variation map. For D2D
variations,2 the μ difference among different dies follow normal distribution, and we
borrow the setting of Zhao et al. [2013], Bowman et al. [2002], and Liang et al. [2007]
to model the D2D variation. As mentioned, WID variation can be further divided into

1Note that not all cells following the tail distribution are treated as defects. The worst ones are covered by
conventional redundant repairs [Agrawal et al. 2014].
2Differing from Zhang et al. [2015], we take D2D variation into consideration in this article.
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Fig. 2. Comparing performance and yield with different tWR values.

systematic and random effects [Teodorescu and Torrellas 2008; Agrawal et al. 2014].
In VARIUS, systematic variation is modeled using a multivariate normal distribution
with a spherical correlation structure [Sarangi et al. 2008]. Moreover, random variation
is also modeled with normal distribution. The two distributions are independent and
each has its own sigma, denoted as σsys and σrand, respectively; hence, the overall
normal distribution can be achieved by superposing both components, that is, the

overall standard variation is σtotal =
√

σ 2
sys + σ 2

rand.
Similar to previous PV studies [Karnik et al. 2004; Agrawal et al. 2014], we assume

the same share of systematic and random components and choose φ = 0.3, meaning
that the correlation range equals to 30% of the chip’s side length, as shown in Table I.

3.2. Performance Degradation due to Timing Relaxation

Conventionally, each timing constraint for DRAM has a single fixed value, for example,
tWR remains at 15ns in the existing DRAM standard [Samsung 2001]. Given that more
cells in the deep sub-micron regime are likely to violate tWR, it is beneficial to relax
it to allow most of these cells to finish restoring operations after a destructive read or
write operation, which helps to preserve high chip yield. A larger tWR indicates longer
bank occupancy and lower bank throughput.

Figure 2 compares the performance and yield with different relaxed tWR values at
the 20nm technology node. If tWR is set to 15ns, then the scaling effect would lead
to no chip satisfying the existing specification, that is, yield rate is 0%. At the 20nm
technology node, the majority of chips have large tWR values in a tight range (28–29).
To achieve 99% yield rate, tWR has to be relaxed to 30ns, which prolongs the execution
by over 25%; A smaller degradation, for example, 21%, can be observed when tWR is
relaxed to 28ns. However, the yield is seriously lowered to 45%.

From the figure, we see that it is challenging to achieve high chip yield while mini-
mizing its impact on system performance.

4. THE PROPOSED DESIGNS

In this section, we elaborate the proposed designs. For discussion purpose, we focus on
tWR relaxation while tRAS is relaxed accordingly in each design.

4.1. Chip-Specific tWR Control

We start with a simple enhancement to the current DRAM standard of adopting one
tWR—by exposing chip variations, we may set different tWRs for different chips.
For this purpose, a post-fabrication test process is performed by the manufacturer to
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Fig. 3. Comparison of different schemes: (a) the chip-specific tWR; (b) the chunk-specific tWR; (c) the chunk-
specific tWR with chunk remapping. For illustration purpose, each rank consists of two chips while each chip
contains two four-row banks. One DIMM-row (i.e., the row exposed to the OS) consists of two chip-row
segments—the number in each chip-row indicates its corresponding tWR, that is, the tWR of the weakest
cell.

determine the tWR of each chip while a DIMM is then constructed using chips with
the same or similar tWRs. Each DIMM derives its tWR from the chip-row3 that has
the worst tWR of the entire DIMM (as shown in Figure 3(a)) or the worst one after
adopting a small number of spares to rescue those slowest chip-rows.

The chip-specific tWR design helps to improve chip yield rate, as otherwise a chip
with tWR = 24ns would be discarded if tWR is set as 23ns or less in the standard.
While technically all fabricated chips can now be treated as good ones, those with very
large tWR (e.g., twice as large as the expected tWR) should still be marked as failed
chips, as DIMMs constructed from them tend to have very low performance.

4.2. Chunk-Specific tWR Control

Even though tWR exhibits a wide range of variations when scaling in the deep sub-
micron regime, only a small number of cells need long recovery time. Setting a DIMM’s
tWR based on the chip-row that has the worst tWR is often too pessimistic. We therefore
propose to partition each memory bank into a number of smaller chunks and set the
chunk-level tWR based on the worst chip-row within the chunk. The chunk-level tWR
is then exposed to the memory controller for better scheduling.

3A chip-row refers to the portion of cells of a row that reside on one chip. A DIMM-row refers to all the cells
of a row.
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In Figure 3(b), one chunk consists of two rows. Since the first chunk has 23ns and
18ns tWRs for its two chip-rows, its chunk tWR is set to 23ns. By taking advantage
of these fast chunks, a chunk-tWR-aware memory controller can speed up memory
accesses that fall into the fast chunks.

For discussion purpose, in this article, a chip-chunk is referred to as one chunk
within one chip; a DIMM-chunk is referred to as the set of same-index chip-chunks
from different chips of the DIMM. For example, the second DIMM-chunk consists of
the second chip-chunk from each chip.

4.3. Constructing Fast Chunks through Chunk Remapping

The previous design can only form a DIMM-chunk from the same-index chip-chunks,
which can be optimized to further reduce tWR values. This is because the chip-chunks
those are of the same index may exhibit significant tWR difference. It would be benefi-
cial to form a chunk using chip-chunks that are of the same or similar tWRs.

For the example in Figure 3(c), if we form the first DIMM-chunk using the fourth
chip-chunk from chip 0 and the first chip-chunk from chip 1, the tWR of this chunk can
be as low as 18ns. Constructing a number of such fast chunks helps to speed up the
average row access time of the given DIMM.

The chunk remapping is done in two steps: (1) after detecting the tWR for each
chip-chunk, we compute the averaged tWR for each chip-bank and sort chip-banks
independently on each chip. A DIMM-bank consists of chip-banks that are of the
same index on the sorted list. (2) For chip-chunks within each chip-bank, we sort them
again such that each DIMM-chunk consists of chip-chunks that are of the same index
on the sorted list.

While only one access is allowed to access one bank at any time, the multiple banks in
a DIMM can be accessed simultaneously. To maintain the same bank-level parallelism,
we treat the chip-chunks from one bank as a group in chunk remapping. In Figure 3(c),
DIMM-chunks 0 and 1 belong the DIMM-bank 0. Since DIMM-chunk 0 is constructed
using chip-chunk 3 on chip 0, DIMM-chunk 1 needs to use chunks from the same group,
that is, chip-chunk 2 on chip 0. In this way, simultaneously accessing two different
DIMM-banks will never compete for the same chip-bank on any chip.

4.4. Restore-Time-Aware Rank Construction

A DIMM rank is composed of multiple chips, which work in lockstep fashion. The access
speed of one logical row is determined by its worst chip-row. While chunk-remapping
does not have to form a DIMM-row using the chip rows that of the same physical index,
it may still be ineffective when one of the chips that form a rank contains many slow
rows. A bad chip would lead to a slow rank no matter how the chunks are remapped.

In this article, we propose to construct DRAM ranks using similar chips rather than
random chip selection in the baseline design. Algorithm 1 illustrates the details. Given
N DRAM chips, our goal is to construct a better rank set (and each rank contains R
chips). The rows in each chip are divided into K chunks, and we use M bins to assist
rank construction in the algorithm.

We first compute the average chip-level tWR, which uses the chunk-level tWR values
of each chip. The latter can be collected during post-fabrication testing. We sort the
chips based on their average tWR values and choose M seed chips, that is, the chips
on the sorted chip list whose indice can be divided by �N/M�. The seed chips are
distributed to M bins.

We then place the rest of chips into M bins based on their similarity to the seed chip
of each bin. The chunk-level tWR values of each chip are treated as a K-item vector.
The similarity of two chips is calculated using the Hamming distance of the two K-
item vectors. The candidate chip is placed in the bin whose seed chip has the smallest
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Fig. 4. Rank construction consists of three steps: (1) chip sorting and seed chip selection; (2) distributing
chips to bins; (3) constructing DRAM ranks using chips from each bin.

ALGORITHM 1: Bin-Based Rank Construction
Input: Chunk-level tWR values of all candidate chips
Arguments : N-total number of candidate chips; K-chunks in each chip; M-total clustering bins;
R-chips in a rank;
Output: N/R formed ranks
1. Preprocessing: calculate the average tWR of each chip, and order the chips;
2. Seed pick-up: assign one seed chip per bin by selecting one every N/M chips;
3. Scan the remaining non-seed chips, and put each into a bin;

chipID = 0; bin size = �N/M/R� × R;
create one extra bin, BinM+1;
repeat

fetch the ChipchipID from the pool;
min dist = IMAX; min id = −1;
for id = 0; id < M; id++; do

if (Binid is full) then
continue;

end
dist = Hamming distance(seed chip of Binid, ChipchipID);
if (dist < min dist) then

min dist = dist; min id = id;
end

end
if (min id ! = −1) then

put the chip into Binmin id;
else

put the chip into BinM+1;
end
chipID ++;

until chipID >= N − M;
4. Sequentially scan the classified chips of each bin, and form R-chip ranks;

Hamming distance, that is, the highest similarity, to the candidate chip. Once a bin
reaches its size limit, that is, n × R, where n = �N/M/R� and n × R ≤ N/M, it can
no longer accept new chips. In the algorithm, an extra bin BinM+1 is used to hold the
leftover chips. When filling chips to each bin, we construct a rank if a bin has R chips
(the seed chip is used to form a rank in the last batch).
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Table II. Comparison of Average tWRs for 20nm and 14nm Nodes (10 Ranks Were
Constructed and Each Chip Has 4,096 Chunks)

rankID Baseline1 (ns) Chunk2 (ns) ChunkBin3 (ns) ChunkSortBin4 (ns)

0 25.9 22.4 25.9 27.3
1 30.1 27.1 30.7 27.3
2 25.9 22.2 25.9 22.4
3 30.7 27.2 25.9 22.2
4 28.8 27 31.8 22.2
5 28.8 27 25.9 22.2
6 28.8 27.1 25.9 22.2
7 28.8 27.1 25.9 22.3
8 25.9 22.3 25.9 22.2
9 28.8 27.0 25.9 22.2

avg(20nm) 28.25 25.64 26.97 23.25

avg(14nm) 35.04 31.71 33.33 28.73

The table lists the rank-level tWR values and their averages for 20nm node; and the
average tWR values for 14nm node.
Note:
1Baseline is the baseline that constructs ranks using random grouping.
2Chunk is the scheme that conducts chunk remapping on the basis of Baseline.
3ChunkBin is the scheme that adopts our proposed restore-time-aware rank construction.
Chunks within each chip are not remapped.
4ChunkSortBin is the scheme that remaps chunks after the rank construction.

Since Algorithm 1 needs to scan each chip and compute its similarity with all seed
chips, the time complexity is O(N × M × K). Here M and K are constant. M is usually
small (M << N) while K can be relatively large, for example, K = 1,024. Therefore,
the time complexity is linear to the number of candidate chips. This is a light weight
rank construction scheme. As a comparison, the recently proposed rank construction
scheme [Wang et al. 2015] needs to sort the candidate chips continuously, which results
in time complexity up to O(N3). Our experiments show that the two algorithms achieve
similar rank-level tWR results.

Table II compares the average tWR values when using different rank construction
algorithms. We constructed 10 ranks, and the rows in each bank are divided into 4,096
chunks. We list the rank tWR values and the average tWR values at 20nm technology
node and the average tWR values at 14nm technology node. From the table, we find
that, without chunk remapping, the slow rows can significantly affect the rank-level
tWR values. For example, for Baseline at 20nm node, the average tWR of all ranks is
28.25ns while the average tWR of rank-1 is 30.1ns. Performing chunk remapping after
bin-based rank construction is the most effective scheme. In the experiments, we set
the number of bins to 5. Varying the bin counts from 2 to 10 shows similar results. In
addition, we compare the results with the scheme that performs heavy weight rank
construction [Wang et al. 2015] and observe similar average tWR values of all ranks.

4.5. Restore-Time-Aware Page Allocation

The translation of virtual to physical address is supported in hardware by a Memory
Management Unit (MMU), and the virtual-physical mapping is determined by the
operating system (OS). Traditional page allocation is restore time oblivious, as all
physical pages have the same access latency. However, when a set of fast DRAM chunks
are constructed and exposed to the memory controller, it is beneficial to exploit the
access latency difference to speed up program execution.

Clearly, the memory system can be more effective if fast chunks are assigned to ser-
vice performance-critical pages. In this article, the page criticality is estimated using its
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Fig. 5. The page access distributions in SPEC CPU2006.

Fig. 6. The portion of touched pages for each benchmark. The memory capacity is 2GB, which can be divided
into 52K 4KB-page.

access frequency [Son et al. 2013; Lee et al. 2001]. Studies have shown that it is usually
a small subset of pages, referred to as hot pages, that are frequently accessed in modern
applications [Bhattacharjee and Martonosi 2009; Ramos et al. 2011; Ayoub et al. 2013].
We adopt the offline profiling approach as in Son et al. [2013] to identify hot pages.

Figure 5 studies the page access distribution of a set of SPEC CPU2006 applications.
The figure shows that different applications have very different access behaviors: for
some workloads, for example, 459.Gem and 470.lbm, accesses are evenly distributed
such that the number of accumulative requests grows linearly with the number of
touched pages; for some other applications, for example, 429.mcf and 403.gcc, most
memory accesses come from a small subset of hot pages. The hot pages are the ones to
be allocated in fast DRAM chunks.

The benefit of restore-time-aware page allocation also depends on the number of hot
pages, that is, whether the hot page set can all be allocated in the fast chunks. Figure 6
compares the number of touched pages of different benchmarks. From the figure, the
majority touch less than one-eighth of the total memory space, while some benchmarks
(i.e., 459.lbm and 429.mcf ) use up all available space.

In this article, our goal is to illustrate that a restore-time-aware page allocator can
take advantage of the latency difference of the DRAM chunks. For this purpose, we
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Fig. 7. The on-DIMM architectural enhancement.

Table III. Remap Table

DIMM_chunk chip0_chunk chip1_chunk . . . chip7_chunk
. . . . . . . . . . . . . . .

10 1220 124 . . . 256
. . . . . .

adopt a simple strategy that profiles program execution offline and statically allocates
hot pages to fast chunks. In the case where profiles are not accurate, we may need to
design and enable more flexible strategies, such as the detailed behavioral synthesis
[J. Cong and Zou 2011] and data migration and compression [Ozturk and Kandemir
2008]. We leave this as our future work.

4.6. Architectural Enhancements

In order to exploit restore time variations at either chip- or chunk-level, post-fabrication
testing needs to be performed to detect restore time at fine granularity. Given that cell
restore time is thermal dependent, study has shown that it becomes worse at low
temperature [Kang et al. 2014], the manufacturer needs to examine different types of
data patterns [Venkatesan et al. 2006; Liu et al. 2012, 2013] to record the worse timing
constraints under a chip’s allowed working conditions. The values are organized as
a table (with each entry in the table recording affected timing constraints tWR/tRAS
of its corresponding DIMM chunk) and saved in non-volatile storage in the DIMM
[Seshadri et al. 2013].

The memory controller loads this table at boot time and schedules memory accesses
accordingly to maximize bandwidth and avoid conflicts. As an example, two READ
operations cannot be scheduled back to back to a DIMM bank if the later one accesses
a fast chunk and shall compete with the preceding READ for using the data bus.

To enable chunk re-organization, we need one extra chunk remapping table as shown
in Figure 7. Similarly as HP’s MC-DIMM [Ahn et al. 2009] and Mini-rank [Zheng et al.
2008], our design integrates an enhanced registering clock driver (RCD) [JEDEC 2009]
to remap and redrive the physical address. Differing from rank-subsetting designs
where only partial chips are involved for each memory access, our proposed design
follows the chips’ original lockstep working fashion, but only requires each chip to
receive a dedicated row address. Compared to conventional DIMM RCD, an additional
register, together with some pins, and DIMM PCB traces [Micron 2008] are needed
to implement address remapping. For the chunk remapping table, each entry maps
the corresponding DIMM-chunk to the chip-chunk at each chip. Given the following
Table III, when the bridge chip receives a request asking for data in the 10th DIMM-
chunk, it translates the requests to asking for segment data from the 1,220th chunk
from chip 0, the 124th chunk from chip 1, and so on.
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Table IV. System Configuration

Processor Four 3.2GHz cores; four-issue; 128 ROB size
L1(private): 64KB, 4-way, 3 cycles

Cache L2(shared): 2MB, 6-way, 32 cycles
64B cacheline

Memory Bus frequency: 1066 MHz
Controller 128-entry queue; close page

1 channel, 2 ranks/channel, 8 banks/rank,
DRAM 16K rows/bank, 8KB/row,

1066 MHz, tCK = 0.935ns, width: x8

Table V. System Configuration

Timing Parameters Time(ns) DRAM Cycles(CLK)

CL 13.09 14
tRCD 13.09 14
tRC 46.09 50
tRAS 33.0 36
tRP 13.09 14

5. EXPERIMENTAL SETUP

5.1. Configuration

To evaluate the effectiveness of our designs, we compared them to traditional repair
solutions using an in-house chip-multiprocessor system simulator. We modeled a quad-
core system with the parameters shown in Table IV.

For both 20nm and 14nm technology nodes, we used VARIUS to generate 90 chips
and then form ranks in a different fashion, discussed in Table II. The memory system
to be simulated is composed of two ranks. We constructed five rank pairs and tested
the proposed designs with all pairs.

The DRAM timing constraints follow the Hynix DDR3 SDRAM data sheet [Hynix
2010] and are summarized in Table V. For the schemes exploiting chunk-level timing
constraints, we added two CPU cycles to access the timing table. For the schemes
performing chunk-remapping, we added one extra DRAM cycle to access the mapping
table.

5.2. Workloads

We used SPEC CPU2006 and simulated 1 billion instructions after skipping the warm-
up phase of each benchmark. The Read and Write memory accesses per kilo instructions
(MPKI) for each workload is profiled to indicate the memory intensiveness. Based
on MPKI, the applications are classified into three categories (Spec-High/Spec-Med/
Spec-Low), as shown in Table VI. The workloads are running in rate mode, where all
cores execute the same task.

We performed timing simulation until all cores finish the execution and averaged
the execution time of all the four cores. We constructed five rank pairs, that is, DIMMs.
One simulation run used one DIMM while the reported results are the average of the
runs using different DIMMs.

6. RESULTS

We evaluated the following schemes:
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Table VI. Benchmark Characteristics

Class Workload Read MPKI Write MPKI

429.mcf 58.07 4.56
470.lbm 31.31 23.38
450.sop 26.77 2.69
433.mil 24.85 8.38
471.omn 19.26 0.04

Spec-High 459.Gem 19.04 2.66
462.lib 17.48 0.52
484.xal 16.89 0.45
403.gcc 14.69 0.52
482.sph 14.14 1.11
410.bwa 10.04 1.67
437.les 8.70 2.48
481.wrf 5.18 1.40
436.cac 5.13 1.52

Spec -Med 434.zeu 4.69 1.22
401.bzi 3.92 1.72
473.ast 3.53 0.96
447.dea 3.15 0.20

456.hmm 3.11 2.88
400.per 1.73 0.22
464.h26 1.47 0.66
445.gob 1.27 0.92
435.gro 1.06 0.28

Spec -Low 458.sje 0.90 0.45
454.cal 0.66 0.35

444.nam 0.65 0.62
465.ton 0.30 0.03
416.gam 0.18 0.04
453.pov 0.01 0

—Baseline. The baseline sets tWR to 15ns, the same as existing DRAM specification.
It is the ideal baseline due to scaling. The results of other schemes are normalized
to the baseline for comparison.

—Relax-x. Given that scaling in the deep sub-micron regime leads to worse timing,
this scheme relaxes time constraints to achieve x% yield. We relaxed tWR and set
tRAS/tRC accordingly. We tested x = 85 and x = 100, respectively.

—Spare-x. One commonly adopted post-fabrication repair approach is to integrate
sparing rows/columns to mitigate performance and yield loss. It is implemented
by using a laser programmable link to disconnect the abnormal rows/columns and
connect the spare ones [Jacob et al. 2007]. In our experiments, we set the spare
density as high as 16 spare rows per 512-row block, which resides in the aggressive
spectrum [Kirihata et al. 1996; Koren and Krishna 2010]. Given that spares may be
reserved for high-priority repairs, such as defects and retention failures, we tested
x = 0, 2, 8, 16 spares from each 512-row block, respectively.

—ECC. ECC is implemented by placing one extra ECC chip to correct errors in data
chips. Though ECC is conventionally used to correct soft errors, it can be potentially
used to tolerate weak cells. Exploiting ECC chips to rescue slow rows sacrifices soft
error resilience and hurts reliability [Su et al. 2005].
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Fig. 8. The execution time comparison of different schemes for 20nm and 14nm technology nodes under
random page allocation policy. Representative applications and the geometric means for highly memory-
intensive (Spec-High) and all applications (Spec-All) are presented here.

—Chunk-x. This scheme implements the chunk-specific restore time control, with each
bank being divided into x chunks. Each DIMM chunk has its own timing constraints,
which are exposed to the variation-aware memory controller.

—ChunkSort-x. This scheme implements the chunk-specific restore time control with
chunk remapping, with each bank being divided into x chunks. Similarly as Chunk-x,
the timing constraints of each chunk are exposed to the memory controller.

—ChunkBin-x. This schemes is similar as Chunk-x. The difference is that it constructs
ranks using the proposed bin-based matching scheme.

—ChunkSortBin-x. This schemes is similar as ChunkSort-x. The difference is that it
constructs ranks using the proposed bin-based matching scheme.

We compared these schemes on memory access latency and system performance, and
studied their sensitivity to different system configurations.

6.1. Impacts on Program Execution Time

Figure 8 compares the execution time with random page allocation policy under dif-
ferent schemes for 20nm (Figure 8(a)) and 14nm (Figure 8(b)) technology nodes. The
execution time is normalized to the ideal baseline, that is, tWR is 15ns. The figure
reports the results from representative benchmarks of all classified categories (e.g.,
Spec-High is the set of highly memory-intensive subset) and the full set (Spec-All).
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6.1.1. 20nm Technology Node. From Figure 8(a), we observed that (1) DRAM scaling
has a large impact on restore time. To maintain a high yield rate, the timing con-
straints have to be vastly relaxed from 16 cycles to over 30 cycles, which significantly
hurts performance. On average, Relax-100 and Relax-85 prolong the execution time
by 25.3% and 22.1%, respectively. Highly memory-intensive applications tend to have
large degradation (i.e., over 30%). (2) Adding spare rows helps to mitigate performance
losses: Spare-8 is 20.6% worse than the ideal. (3) ECC works only slightly better than
Spare-8. This is because SEC-DED ECC can only correct one bit in each 64-bit block.
Since there might be multiple cells violating timing constraints within such a 64-bit
block, ECC lacks the ability to effectively adapt restore time variations. (4) Chunk-4k is
1% better than ECC as it exposes chunk-level restore time variations. There are a small
number of chunks that have smaller tWRs than the single tWR in ECC. Due to ran-
dom page allocation policy, the exposed fast chunks cannot be fully exploited, and thus
the performance improvement is pretty limited. (5) ChunkSort-4k works better than
Chunk-4k because it helps to construct more fast chunks. On average, ChunkSort-4k
helps to reduce the performance loss from 25.3% in Relax-100 to 16.6% and 3% better
than Chunk-4k for Spec-High.

In addition, restore-time-aware rank construction helps to reduce tWR: ChunkBin-4k
is 2% better than Chunk-4k while ChunkSortBin-4k is 4.3% better than ChunkSort-
4k. Interestingly, ChunkBin-4k and ChunkSort-4k achieve comparable performance im-
provements over the baseline. While both schemes require post-chip-fabrication testing
to extract chunk-level tWR values, the former needs rank clustering, which imposes
an extra step and cost during fabrication; the latter needs to embed mapping table
and thus introduces extra runtime overhead. ChunkSortBin-4k achieves the best per-
formance while it incurs both extra fabrication cost and runtime overhead.

6.1.2. 14nm Technology Node. Figure 8(b) shows the normalized execution time for
14nm technology node. Comparing with Figure 8(a), the performance difference from
the ideal increases as the technology node scales down. For example, Relax-100 ex-
hibits a 25% loss at 20nm node while a 37% loss at 14nm node. In general, highly
memory intensive applications, for example, 403.gcc, show large losses. Due to the fact
that more memory cells violating timing constraints, it becomes increasingly difficult
to mitigate performance loss at small technology nodes.

With more slow cells at 14nm, both ECC and Sparing become less effective and their
impacts on performance become smaller. ChunkSort-4k shows a tendency of better
improvement over traditional solutions and Chunk-4k. For Spec-High, ChunkSort-4k
executes 7% faster comparing to Spare-8 and ECC. ChunkSortBin-4k achieves over 20%
performance improvements over Spare-8 and ECC and 27.5% over Relax-100.

6.2. Restore-Time-Aware Page Allocation

Figures 9 and 10 compare the results using random and restore-time-aware page
allocation schemes at 20nm and 14nm technology nodes, respectively. From the figure,
by making better use of fast chunks, restore-time-aware page allocation speeds up the
execution of all chunk based schemes, for example, for ChunkSortBin-4k, restore-time-
aware allocation achieves 10% and 15% improvement over random allocation for 20nm
and 14nm nodes, respectively. Restore-time-aware allocation is very effective for most
benchmark programs—on average, ChunkSortBin-4k is only 2% worse than the ideal
Baseline.

In the figure, 470.lbmachieves small improvement because it evenly accesses a large
number of memory pages and lacks very hot pages. Given that a small number of
chunks have shorter than 15ns tWR values, it is not surprising to find that some

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 26, Pub. date: February 2017.



26:16 X. Zhang et al.

Fig. 9. The execution time comparison of different schemes at 20nm technology node.

Fig. 10. The execution time comparison of different schemes at 14nm technology node.

benchmark programs, for example, 403.gcc and 400.per, have their hot pages fit in
these fast chunks and thus outperform Baseline.

Also in the figure, we observed that the effectiveness of restore-time-aware rank
construction diminishes after adopting restore-time-aware allocation. For example, on
average, ChunkSort-4k and ChunkSortBin-4k have a less than 1% difference when using
restore-time-aware allocation at the 20nm node. Nevertheless, those benchmarks with
a large footprint and relatively uniform access pattern, for example, 470.lbm, can still
achieve distinct benefits.

6.3. Impacts on Memory Access Latency

Figure 11 compares the average memory access latencies under different schemes.
Among these schemes, ChunkSortBin-4K achieves the lowest latency, which is 7% lower
than ChunkBin-4K, about 12% lower than Spare-8 and ECC, and 17% lower than Relax-
100 for the 20nm technology node with random page allocation. There is a clear latency
increase for the 14nm technology node, for example, the average memory access la-
tency of ChunkSortBin-4K increases from 280ns to 434ns. This is mainly due to further
relaxed timing constraints. In addition, restore-time-aware allocation offers great help
in lowering the latency for chunk-based schemes.
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Fig. 11. Comparing memory latencies under different schemes (values are averaged over all SPEC bench-
marks).

Fig. 12. Sensitivity study of scheme ChunkSortBin-4k for both the 20nm and 14nm tech nodes, under
different cases (φ-w), in terms of the spatial correlation parameter (φ) and the ratio of systematic and
random distributions (w).

6.4. Sensitivity Study

The effectiveness of the conventional Sparing technique strongly depends the sparing
levels being used; the proposed chunk-based schemes depends on the chunk granular-
ity. We conducted the sensitivity studies on these two key parameters.

6.4.1. Varying Variation Correlation. As discussed in Section 3.1, restore variation is the
combination of systematic and random components: The systematic part is character-
ized by the spatial correlation, which is depicted by φ; random variation is reflected
by the weight of sigmas, that is, w = σrand/σsys. To study the correlation effects, we
sweep over different combinations of σ -w, as reported in Figure 12. As φ decreases and
w increases, cells’ restoring becomes more randomly distributed; in contrast, combina-
tion 1.0 − 0 gives the extreme cases that all cells in the chip are correlated and the
distribution is solely systematic.

Figure 12 shows that our proposed scheme is always efficient because of the exposed
cell variation, which agrees with the existing observation that manufacturing defects
always provide some weak cells [Agrawal et al. 2014]. In addition, the achieved results
are even better under some extreme cases, for example, 0.0-10 and 1.0-0. The reason
is that both provide more fast cells and thus larger remapping opportunities to expose
fast regions to improve performance.
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Fig. 13. Sensitivity study using different spares and chunks under hot page allocation policy.

6.4.2. Varying Sparing Levels. Figure 13(a) compares the performance with different
spare rows4 in each 512-row block. The X-axis shows the results for Spec-High and
Spec-All benchmark sets at 20nm and 14nm nodes. While better performance can be
achieved with more spares, the improvement gradually diminishes. For example, the
difference between Spare-8 and Spare-16 is only 0.4% at the 14nm node. The reason is
that after rescuing a very small number of super slow rows, we expect to encounter a
relatively large number of slow rows (due to scaling effect), which is beyond the ability
that a sparing approach has.

6.4.3. Varying the Number of Chunks. Figure 13(b) compares the performance with dif-
ferent numbers of chunks for chunk-specific restore time scheduling. The X-axis Anm_B
indicates the results for the schemes using B chunks at A-nm technology node. The
results are normalized to the ideal Baseline. From the figure, all schemes show better
performance when using more chunks. For example, ranging from 1K to 16K chunks,
ChunkSortBin-16K reduces the performance losses from 15% to 2% at the 14nm node.
ChunkSortBin-16K achieves better than Baseline performance at the 20nm node be-
cause exposing tWR at fine-granularity leads to more faster chunks, which reduces the
average memory access latencies.

We observed that the performance gap between Chunk and ChunkBin reduces sig-
nificantly when there are more than 4K chunks. This is because restore-time-aware

4Note that Spare-0 differs from Relax-100, while Spare-0 places no spares and uses the chip-specific tWR,
Relax-100 sets tWR to ensure all chips can work. As a result, Spare-0 usually has a lower tWR.
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Table VII. Tested Chunk Configuration

#CKs MC area (KB) DIMM area (KB) total area (KB)

1k 24 224 248
4k 96 896 992
8k 192 1792 1984
16k 384 3584 3968

allocation makes better use of fast chunks, and exposing tWR at 8K granularity is
often sufficient to identify the set of fast chunks to service the hot page set of the tested
benchmark programs. The gap between ChunkSort and ChunkSortBin reduces similarly.

The performance gap enlarges between Chunk and ChunkSort with more chunks. This
is because remapping finer granularity chunks helps to form a number of faster chunks,
which brings down the average memory access latency when they are fully exploited
through restore-time-aware allocation. From the figure, we also found that ChunkSort-
4K is better than Chunk-8Kwhile ChunkSortBin-4K is better than ChunkSort-8K, showing
that chunk remapping is very effective in reducing average memory access latency.

6.5. Testing Overhead

The proposed method requires memory manufacturers to test the restoring time of
each chunk5 and then to cluster chips into different ranks/DIMMs. Hence, the manu-
facturing time will be definitely lengthened. To avoid dramatical increase, chunk-level
timing measurement can be performed in a binary search fashion, that is, starting
from a middle value (e.g., 22ns), and then halving to the left (e.g., 16-21ns) or right
part (e.g., 23-30ns). Further, the number of chunks is fixed to be smaller than that of
rows, and thus the testing time of each chip is O(1).

For rank construction, thousands of chips should be clustered into different bins,
as discussed in Section 4.4, for later rank formation. To make the algorithm more
practical, we propose to run the algorithm for a group of, for example, 10K, already-
manufactured chips, instead of running until after 1-day production. Apparently, the
algorithm cost would not be too high given the moderate number of chips, and the chip
production would have tolerable impact.

6.6. Storage, Area, and Latency Overhead

To enable variation-aware memory scheduling, we added two tables: one is for ex-
tracting the timing constraints of each chunk while the other is for chunk address
remapping. Table VII summarizes the storage overhead with different chunks.

From Table VII, ChunkSort-4k requires 896KB DIMM storage to save the chunk
mapping. The table is evenly divided among the banks in the DIMMs, that is, 56KB
per bank. We used CACTI 5.3 to model the table as a direct-mapped cache with 8B
line size. For 32nm6 technology, it has 0.348ns access latency, 0.229mm2 area overhead,
and 0.0181W standby leakage power and consumes 0.012nJ dynamic energy per access.
Similarly, for the 96KB cache at the memory controller side, we have 0.414ns access
latency, 0.349mm2 area overhead, 0.015nJ energy per access, and 0.03W standby leak-
age power. The area, power, and energy overheads are very moderate for the DIMM
and the memory controller.

The remap table occupies about 1.83mm2 area in total, which is trivial compared to
conventional RCD area of 108mm2 [JEDEC 2009] and DIMM area of over 4000mm2

[Micron 2009]. The overheads of added register and DIMM PCB traces are moderate

5As in Wang et al. [2015], manufacturing testing results are unnecessary to be saved inside DRAM.
6Differing from sub-20nm DRAM chips, caches are constructed with 32nm process technology, which is
supported by the CACTI tool.
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[Ahn et al. 2008], and the overheads can be even smaller by combining adjacent chips
into groups [Ahn et al. 2008]. Based on the latency overheads calculated by CACTI,
we charged one memory cycle7 and two CPU cycles to access the chunk mapping table
and the timing table, respectively. We observed less than 1% performance overhead on
average.

7. RELATED WORK

7.1. Process Variation

Further scaling DRAM is subject to challenging process variations on write recovery
(tWR) and refresh [Kang et al. 2014]. The process variation on retention time has been
well studied. Kong et al. [2008] from IBM observed that the variation of retention time
follows log-normal distribution. Kim and Lee [2009] investigated the main and tail
distributions of retention time. By exploiting the non-uniformity of cell retention time,
different refresh schemes have been devised in the literature [Kim and Papaefthymiou
2001; Ohsawu et al. 1998; Venkatesan et al. 2006; Liu et al. 2012]. RAIDR [Liu et al.
2012] classifies DRAM rows into bins according to retention time and applies different
refresh rates to save power. Recently, Agrawal et al. [2014] proposed Mosaic to model
the process variation of retention time in eDRAM and divide the module into regions
to refresh each region at a different rate. Only limited works addressed the process
variations on restore time. Kang et al. [2014] pointed out that the time to charge
DRAM capacitor increases with technology scaling down. They proposed sub-array
level parallelism (SALP) [Kim et al. 2012] to compensate the performance loss. Our
design is orthogonal to SALP.

7.2. Timing Reduction

Reducing timing constraint values can significantly improve memory system perfor-
mance. By segmenting a long bitline using an isolation transistor, TL-DRAM [Lee et al.
2013] creates a segment of rows with low ACT and PRE latencies. CHARM [Son et al.
2013] achieves the latency reductions by attaching fewer DRAM cells to each bitline.
NUAT [Shin et al. 2014] exploits the electric charge variation to speed up the charge
sharing and sensing operations. Usually, DRAM vendors incorporate excessive timing
margins to ensure high yield and reliability, which indicates that DRAM devices are
possible to function better than the standard timing constraints. For this purpose,
Chandrasekar et al. [2014] proposed to identify the excess in process-margins to save
timing constraints. Lee et al. [2015] took advantages of the large margins to improve
performance.

The schemes proposed in this article differ from the above designs. We focus on
relaxed restore timing constraints due to scaling. It is orthogonal to the schemes that
exploits excessive margins in fabrication.

7.3. Fault Tolerance

Due to the fast scaling in memory process technology, we expect to see large process
variations such that the number of weak bits tends to increase in future DRAM chips
[Wang 2014; Wang et al. 2014]. Different schemes have been proposed to rescue weak
cells. Sparing is one commonly used approach to disconnect the abnormal cells and
connect to the spare ones [Jacob et al. 2007]. Another widely approach is to tolerate
weak cells using ECC, which is implemented by placing one extra ECC chip onto the
commodity DIMMs to handle errors (mainly transient soft errors) [Schechter et al.

7One memory cycle is enough because only one-eighth of the table is being looked up for each access, whereas
the total size of the remap table is hundreds of KBs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 22, No. 2, Article 26, Pub. date: February 2017.



On the Restore Time Variations of Future DRAM Memory 26:21

2010]. Reviriego et al. [2010] provided two models to enable quick evaluation of mean
time to failure of single event upsets (SEUs). Maestro et al. [2011] exploited the locality
of errors within an multiple cell upset to correct most double errors. Both Sparing and
ECC can be used to cover slow cells, but Sparing must be reserved for higher priority
repairs (e.g., defects and retention failures) and using ECC to tolerate faulty cells
sacrifice soft error resilience and neither is able to work efficiently under the case of
high bit error rate because of the pricy storage and latency overhead [Schechter et al.
2010].

Our experiments show that Sparing and ECC offer little help to mitigate the restore
time variations. The schemes proposed in this article are designed to alleviate the
performance degradation caused by slow tWR.

7.4. Wafer/Die Matching

Carefully matching wafers and dies during fabrication can effectively improve yield.
Smith et al. [2007], Verbree et al. [2010], and Taoul et al. [2015] investigated wafer
matching in 3D Stacked IC to avoid stacking of good dies on bad dies and further
to improve the compound yield. As for conventional 2D DRAM, Wang et al. [2015]
proposed to integrate compatible devices to alleviate refresh overhead. A drawback of
the scheme is its up to O(N3) time complexity. The rank construction scheme in this
article is linear to the number of candidate chips, that is, O(N) time complexity.

8. CONCLUSION

In this work, we studied DRAM scaling effects on restore time and showed that fu-
ture DRAM chips need relaxed timing constraints to maintain high yield rates and to
keep the manufacturing cost low. Existing approaches are ineffective to address the
performance losses. We proposed schemes to expose restore time variations at chunk
level and devised architectural enhancements to enable find-grained variation-aware
scheduling. We then proposed restore-time-aware rank construction and criticality-
aware page allocation schemes to make better use of fast chunks. We evaluated the
proposed schemes with the experimental results showing that our schemes achieve as
high as 25% average performance improvement over traditional solutions.
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