
DrMP: Mixed Precision-aware DRAM for High
Performance Approximate and Precise Computing

Xianwei Zhang+, Youtao Zhang+, Bruce R. Childers+ and Jun Yang *

University of Pittsburgh
+{xianeizhang, zhangyt, childers}@cs.pitt.edu, *juy9@pitt.edu

Abstract—Recent studies showed that DRAM restore time
degrades as technology scales, which imposes large performance
and energy overheads. This problem, prolonged restore time
(PRT), has been identified by the DRAM industry as one of
three major scaling challenges.

This paper proposes DrMP, a novel fine-grained precision-
aware DRAM restore scheduling approach, to mitigate PRT. The
approach exploits process variations (PVs) within and across
DRAM rows to save data with mixed precision. The paper
describes three variants of the approach: DrMP-A, DrMP-P,
and DrMP-U. DrMP-A supports approximate computing by
mapping important data bits to fast row segments to reduce
restore time for improved performance at a low application error
rate. DrMP-P pairs memory rows together to reduce the average
restore time for precise computing. DrMP-U combines DrMP-A
and DrMP-P to better trade performance, energy consumption,
and computation precision. Our experimental results show that,
on average, DrMP achieves 20% performance improvement
and 15% energy reduction over a precision-oblivious baseline.
Further, DrMP achieves an error rate less than 1% at the
application level for a suite of benchmarks, including applications
that exhibit unacceptable error rates under simple approximation
that does not differentiate the importance of different bits.

I. INTRODUCTION

Today’s chip-multiprocessors, with an increasing number
of cores, demand large-capacity main memory for scalable
performance. For more than four decades, DRAM has been the
de facto choice for main memory. JEDEC’s standard specifies
the timing values for DRAM device operations [16]. Servicing
either a read or write request requires a restore operation to
charge cells in a DRAM row to a target voltage for reliable
access.

DRAM faces severe scaling challenges at 20nm and be-
low [15], [38], [37]. Scaling DRAM leads to smaller cells that
are slower and leakier [13], [40] with larger process variations
[30], [3]. As a result, it takes more time to charge the cells to a
target voltage due to (1) increased resistance of the bitlines and
the transistor-capacitor contact, and (2) decreased drivability of
smaller transistors [37]. This phenomenon, termed prolonged
restore time (PRT), has been identified as one of the three most
critical impediments to DRAM scaling [19], [8]. This paper
addresses PRT and its impact on performance.

Existing timing values are in jeopardy under extreme tech-
nology scaling. Since scaling leads to large process variation
(PV), future DRAM modules will have so many weak cells
that feasible repair schemes cannot mask all [40], [52], [41].
Consequently, staying with the current standard for timing
will harm chip yield and increase manufacturing cost dra-
matically. Relaxing (i.e., increasing) timing helps maintain

yield and supports tight profit margins. Unfortunately, timing
relaxation introduces significant performance degradation [19].
While the performance loss can be effectively mitigated with
recent schemes [58], [60], PRT remains a major performance
bottleneck.

Recently, approximation for DRAM has been proposed
to improve energy consumption by trading off computation
accuracy [27], [28]. By exploiting the intrinsic error resilience
of many modern applications, a DRAM sub-system can save
approximate data, while still achieving satisfactory computa-
tional results. Existing works on DRAM, e.g., Flikker [27],
focus on refresh energy reduction, which unfortunately has
limited impact on improving memory access latency [44],
[28]. Consequently, these schemes cannot mitigate the large
performance degradation due to PRT. In addition, the ben-
efits of these schemes can only be realized through error-
resilient applications, which greatly limits their applicability
for general-purpose computation.

This paper proposes a fine-grained precision-aware restore
scheduling technique, DrMP, that aggressively reduces restore
time to achieve high performance. DrMP is a suite of pro-
gressively capable techniques to support approximate, precise
and hybrid approximate-precise computing. We summarize our
contributions as follow:
• We propose DrMP-A to achieve high-performance ap-

proximate computing. By exploiting the variance in re-
store timing exhibited at different row segments of a
DRAM row, DrMP-A reduces the restore time such that
only two or four row segments are fully reliable. By
mapping the important data bits of different data types to
the reliable row segments, errors are avoided in critical
bit positions to keep application-level errors low. Using
this scheme, application performance is improved for
approximate computing.

• We propose DrMP-P to achieve high-performance precise
computing. DrMP-P stitches together fast, reliable row
segments from a pair of rows. One row of the pair has a
fast restore time, while the other row has a slow restore
time. Both rows are fully reliable. DrMP-P reduces the
average restore time to improve memory performance
with minimal architectural overhead.
We then propose DrMP-U that integrates DrMP-A and
DrMP-P to support both approximate and precise com-
puting. DrMP-U constructs two fast physical rows from
a row pair — one fast row for storing precise data and
one fast row for storing approximate data.

• We evaluate and compare our proposed schemes to the

2

state-of-the-art. Our experimental results show that, on
average, DrMP achieves 20% performance improvement,
15% energy reduction and below 1% application-level
error rate over the precision-oblivious baseline.

II. BACKGROUND

A. DRAM Restore Time Degradation

Although technology scaling has long been the impetus
behind building memory with ever-more capacity, there are
several threats to scaling at nano-scales [15]. A recent industry
study by Samsung identified three major threats to scaling:
prolonged restore time (PRT), frequent refresh, and variable
retention time (VRT) [19].

DRAM restore is the device operation required to charge
memory cells after normal accesses. A restore operation is
needed for both read and write accesses. For read, the restore
time is the duration required after the read command (RD)
and before issuing a precharge command (PRE) to service the
next request. For write, the restore time is the time required
after receiving the data sent with the write command (WR) and
before PRE. The above timing for write is the cell recovery
time (tWR) specified in the JEDEC standard [16] 1.

Figure 1 shows the tWR 2 distribution of memory cells in
one memory module at different DRAM technology nodes.
The figure illustrates two scaling effects on restore time. First,
the mean value becomes larger. Due to larger contact resis-
tance, bit-line resistance, and the on-current of the transistor,
it takes an increasingly longer time to charge the capacitor
to the target voltage level [19], [58]. Second, the cells from
one module show increasingly larger process variations due to
the difficulty of precisely controlling the nano-scale geometry
parameters, such as gate length and capacitor size [30], [3].

Fig. 1: The cell restore time degrades as DRAM scales.

The current cell recovery time value, tWR, is 15ns, which
has been kept across several generations [48]. This value rep-
resents a trade-off between system performance and manufac-
turing yield and cost. However, as DRAM is further scaled, a
larger number of cells in future chips will have longer recovery
time. It quickly becomes infeasible to rescue these slow cells
(using a reasonable ECC scheme or number of spares) to
meet timing specifications. Instead, tWR has to be relaxed to
maintain high chip yield and low per bit manufacturing cost,
causing significant performance degradation and/or serious
yield loss [58], [59].

1The JEDEC standard specifies many other timing relationships as well. In
this paper, we also refer to tRAS and tRCD. tRAS is the required time that
a row has to be active to ensure reliable access. tRCD is the time required
between sending a row address and sending a column address.

2For ease of illustration, we mainly discuss tWR. In the paper, the effects
on reads (tRAS) and writes (tWR) are both fully considered and evaluated.

To mitigate the performance degradation from PRT, Kang
et al. proposed the co-design of a memory controller and in-
DRAM ECC to address the scaling challenge [19]. Zhang
et al. utilized DRAM organization to construct fast restore
regions [58], [60]. Zhang et al. proposed to truncate restore
operations on basis of the distance to refresh operation [59].
DrMP expands the design space with approximate computing,
which are orthogonal to past approaches for mitigating PRT.

In addition to PRT, memory refresh is expected to introduce
performance and energy overhead in scaled DRAM [37], [4].
Recently, many schemes have been proposed to address this
issue [11], [39], [55], [26]. DRAM scaling also leads to
variable retention time (VRT), which demands profiling with
strong ECC and a large guardband [20], [43]. Several schemes
have been described to reduce timing constraints for improved
memory performance [23], [51], [9], [50], [5], [24]. Our design
is aligned in this direction with the goal to address the PRT
challenge.

Model of scaling in this paper. To study the restoring
degradation, we generated DRAM chips using a scaling model
in [58], [60]. The model is similar to others in the litera-
ture [22], [61], [26], [3]. It considers scaling effects on restore
time at both circuit and architecture levels. We verified the
model’s distribution of weak cells (with slow restore time) and
the impact on timing are correctly aligned to studies involving
real devices [6], [19] as well as predicted relaxed timing from
recent industry patents [1], [2].

B. Approximate Computing

Approximate computing is an emerging paradigm that ex-
ploits the inherent error resilience of many modern applica-
tions where a small number of hardware and software errors
have little impact on the quality of program output [27],
[46]. For these applications, user data are often categorized as
either critical or non-critical. While non-critical data has error
tolerance, critical data must be protected to ensure correctness.

For main memory, most approximate computing approaches
focus on DRAM refresh energy. Flikker partitions data into
critical and non-critical groups [27]. It uses different refresh
rates for the groups to save energy. Raha et al. further
divide memory pages into quality bins with different refresh
and error rates, and enable quality-aware data allocation to
the bins [44]. Sparkk refreshes different chips in a DIMM
with different rates to reduce refresh power [28]. Refresh
can also be disabled completely for a subset of dedicated
applications with negligible impact [17]. Jung et al. describe
an approximate DRAM simulation framework [18]. Compared
to refresh operations, the degradation of restore time with
scaling slows down both read and write operations, leading
to more significant performance degradation.

In addition, approximate computing caches have been pro-
posed to improve effective cache capacity and achieve energy
savings [34], [35], [36]. For non-volatile memory, such as
Phase Change Memory (PCM), reduced write precision can
improve device lifetime and performance [47]. A progressive
transform codec can be used to maximize storage density with
minimized image distortion [12].

3

chip 0

40

chip 1

19

chip 2

16

chip 3

14

R
C

D

chip 4

16

chip 5

34

chip 6

24

chip 7

20

row 64

row 64+M/2

bank 0

addr/cmd busdata bus

Rank 0
x8 x8 x8 x8

Rank 1 has row 73, 74, …, 81,
and row 73+M/2, …, 81+M/2

Rank 1

Physical
AddressSpace

From/To Processor

row 65

M
ro

w
s

x8 x8 x8 x8

bank 1

banks 2-7

Fig. 2: Baseline DIMM configuration. One row consists of eight row segments, one segment per chip. The number in the row
segment indicates the segment’s tWR value (in memory cycles).

To support approximate computing analysis, EnerJ uses
type qualifiers to map approximate data to low power stor-
age [46]. Schmoll et al. presented a flexible software-based
error handling [49]. Khudia et al. [21] and Mahajan et al.
[29] proposed to dynamically monitor errors and adjust com-
putation accuracy to meet the quality demand on the final
results. These schemes are orthogonal to our work so that they
can be combined with our design to further improve system
performance.

III. DRMP DESIGN DETAILS

A. Baseline Memory Organization
Figure 2 depicts the baseline memory organization in the

paper. A DIMM has two ranks while each rank has eight banks
that are spreading across eight DRAM chips (the baseline has
no ECC chip). We assume linear row layout across all banks
and ranks as follows. One row has 8KB data.
• Consecutive physical rows (i.e., the rows in physical

address space) are mapped to different banks. For exam-
ple, rows 0,1,...,15 are mapped to memory banks
0,...,7 in rank 0 and then to banks 0,...,7 in
rank 1.

• The physical address space is divided in half. Rows from
the two halves are interleaved. That is, after mapping rows
0,...,15, rows 0+K,...,15+K are mapped to banks
0,...,7 in rank 0 and banks 0,...,7 in rank 1,
respectively. We then continue to map rows 16,...,31
and so on. There are 2K memory rows in the memory
space.

In this configuration, each DRAM row has 8 segments spread
across 8 chips. Each segment is termed a row segment.

The memory controller sends addresses and commands to
the Register Clock Driver (RCD) on a DIMM, which enables
the synchronous operation of all eight DRAM chips. The data
are sent from each chip to the data bus independently. The
baseline follows JEDEC’s DDR3 specification [16]; we give
timing details in the experiments (see Section IV).

B. DRAM Restore Time Profiling
DrMP requires timing information about the memory. To

determine the required information, post-fabrication profiling

is done. In essence, this profiling tests memory under different
settings of tWR and tRAS to find the best restore timing for
DRAM row segments. The memory controller and the OS are
enhanced to do the profiling similarly to prior work [24], [56].
The enhancements are: (1) the OS and the memory controller
can alter timing values (tWR and tRAS) to check whether
specific timing values work correctly; (2) a March test [56]
checks the data integrity of each row by writing, reading and
verifying test bit patterns in different access orders; and, (3) the
test bit patterns are checked multiple times to ensure reliability
with given timing values.

Since DRAM restore has worse timing at lower temperature
[19], [1], profiling after a cold boot is safe. The timing
profile is then used in the online operation of DrMP. For
higher assurance, a temperature sensor could monitor memory
temperature and disable DrMP if the temperature falls below
the one during profiling, likewise to LPDDR [31]. Profiling
may need to address VRT through enhanced ECC and large
guardband, as described in prior work [20], [43].

Since DRAM cells use a similar charging process for both
reads and writes, tWR and tRAS are correlated, i.e., a row
segment having faster tWR also has a faster tRAS. Thus,
we only need to test a subset of typical combinations. For
example, tRAS and tWR have ranges [19,42] and [12,25],
respectively, in cycles. When setting tRAS=19, we try tWR=12
or 13. In total, we conduct binary search for 30 tRAS and
tWR combinations, resulting in around 5 tries to find the
best timing. Past work has demonstrated that a March test
can be performed at high speed, e.g., 0.4ms per row [56],
[45]. Therefore, the complete profiling can be done within 20
minutes.

The profile keeps two timing values (tWR and tRAS, 6
bits each) for each row segment, i.e., 12B per row, or 6MB
of profile data for a 4GB DIMM. The OS saves the profile
(including processed data, as we show next) in system storage,
i.e., hard drive or SSD, and loads it at boot-up.

C. Motivation

To motivate DrMP, we first examine the severity of PRT. We
followed the models in [58], [60] as described above. Although
PRT appears as a major scaling challenge, the number of weak

4

cells (i.e., cells that take a longer time to restore) actually
remains small in our observations. However, the portion of
slow cells is significantly beyond the desired DRAM reliability
in modern computer systems. For example, recent in-filed
study [54] shows that the reliability is as low as 25 FIT
(failure in time per billion device hours) per Mbit, making
it impractical to integrate ECC with practical space overhead
to rescue the weak cells.

Rather than trying to rescue the weak cells, an alternative
solution to boost system performance is to aggressively reduce
tWR for approximate computing. This approach exploits the
error-resilience of many modern applications. Intuitively, if the
errors induced by restoring bit cells faster than their required
restore timing cause a tolerable number of application errors
(similar to the errors induced by reducing refresh frequency
[27]), then we may adopt existing approximate designs to
mitigate PRT.

kmeans black ray sor lu smm0
20
40
60
80

100

Q
oS

 d
eg

ra
da

tio
n

(%
)

0.
21

0.
02

0.
08

0.
47

0.
0

0.
02

0.
7

0.
17

0.
16 3.
46

46
.4

9

0.
091.
62

0.
9

0.
31

15
.2

8

58
.1

3

0.
451.
65

0.
91

0.
33

15
.7

61
.3

6

0.
551.
82

1.
01

0.
37

18
.7

5

71
.2

0.
634.
48

4.
98

1.
0

50
.2

90
.9

5

3.
47

24
.2

52
.7

8

4.
69

93
.9

2

10
0.

0

42
.8

2

tWR-32
tWR-30
tWR-25

tWR-20
tWR-18

tWR-15
tWR-12

Fig. 3: The QoS degradation with larger tWR values.

We did an experiment to gradually reduce tWR to evaluate
the QoS degradation 3 for a suite of benchmark programs that
were used for approximate computing from the literature. The
results are summarized in Figure 3. The experimental setting
is described in Section IV. From the figure, it is clear that
application-level errors increase with decreasing tWR. This
effect happens because, given the same DRAM row, restoring
data with smaller tWR leads to more cells failing to reach
the target voltage level for reliable operation. The figure also
illustrates that different programs exhibit vastly different error
resilience. Some benchmarks, such as smm, only begin to
suffer from high application-level errors when tWR is reduced
to 15ns or smaller. Other applications, such as lu, begin to
suffer from significant errors at a larger tWR value of 20ns.
The high error rate (over 60%) observed for lu at 20ns is
generally considered unacceptable for approximate computing
[46], [34]. The figure shows that programs are sensitive to
the selected tWR value, and consequently, it is impractical to
uniformly reduce tWR.

Instead, we propose to reduce tWR at row granularity. DrMP
exploits process variations within and across DRAM rows such
that it can perform precision-aware restore scheduling.

D. DrMP-A: Approximate DRAM Restore

This section presents DrMP-A for high-performance ap-
proximate computing. In analyzing the ineffectiveness of the
simple approximation scheme in Figure 3, we observe that
restore errors may occur at random places in a row. Although

3QoS degradation is used to evaluate the output quality of approximate
computing, which is calculated by comparing the approximated outputs to
precise ones. The metrics are application dependent [46], [34]

these rows store non-critical data, depending on their data
types, the importance of erroneous data bits varies. As an
example, the sign bit and exponent bits of a floating point
representation tend to be more important than the last several
bits of the mantissa [28], [12]. For an integer that records
RGB colors, the first two or four bits of each byte are often
more important. Figure 4(a) shows the importance of bits of
a memory row located at different places for different data
types. If tWR is reduced below a reliable value, then errors
from the “too fast restore” will occur at fixed positions in an
application data value. If these positions are important bits,
then catastrophic errors might be induced.

Based on this observation, we propose DrMP-A to enable
per row approximation that achieves extremely low error rate.
Figure 4(b) illustrates how DrMP-A works.

Assume an approximate data declaration “float vf[...]”,
where the first 16 bits of each array element are tagged as
important. The OS support and the process to tag important
bits are discussed in later sections. DrMP-A attaches three
flags (Ui, Mi, tWRi) to each row i in the memory space
(0≤i<2K). The flags are used by the memory controller:
(i) Ui is a 3-bit usage flag to indicate how the important

bits of a row are categorized. DrMP-A uses the flags in
Table I; more flags can be added if needed.

(ii) Mi is an 8-bit bit vector to record the four fastest
row segments. For example, we have Mi=“01111000” in
Figure 4(b), which indicates that the row segments from
chips 1/2/3/4 are faster and precise.

(iii) tWRi is a 6-bit tWR value that records the tWR of
the second or the fourth (depending on Ui) fastest row
segment of a row. In the example, tWRi=19 indicates that
reducing the row tWR to 19 memory cycles ensures there
is no restore error in row segments from chips 1/2/3/4
while there might be errors in other row segments.

TABLE I: Definition of Usage Flag
“001” the first 2B of each 4B data are important
“010” the first 4b of each 1B data are important
“101” the first 2B of each 8B data are important
“110” the first 2b of each 1B data are important
“000” all bits are important; this is the baseline
“111” all bits are important; used in DrMP-P and DrMP-U

The memory controller schedules requests using the flags
as depicted in Figure 4(b). First, the controller uses Ui to
shuffle data bits into groups of important bits. Second, the
controller uses Mi to map the important bits to four reliable
faster row segments, i.e., the segments from chips 1/2/3/4 in
the example. At this point, the data are ready to be sent to
the memory module. Lastly, the memory controller uses tWRi
to determine when to schedule the next memory command to
maximize memory bandwidth usage.

DrMP-A is designed to achieve a good trade-off between
memory performance and computation accuracy. Using the
fourth fastest row segment’s tWR to determine the tWR of
the whole row ensures quick access to the row, improving
performance over a fully reliable baseline using the worst-
case row segment tWR. The majority of cells can be reliably
accessed with the fast tWR. In addition, by mapping important
bits to row segments with tWR values less than or equal to

5

1 8 23

sig
n bit

exponent
mantiss

a

1 11 52

1B
2B

4B

2B
8B

2 6

4 4

1B

1B or

Physical Memory Space

row

float vf[16];

double df[8];

byte bi[64];

0 1 2 3 4 5 6 7

40 2416 14 1619 34 20

chip 0 chip 1 chip 2 chip 3 chip 4 chip 5 chip 6 chip 7Bank

data shuffling
Shuffled

logical data

(a) High order bits (green colored boxes) are more important (b) Map important bits to faster segments (no restore errors)

001
Ui

01111000
Mi

19
tWRi

Row Flags Logical Data

4 5 0 1 2 6 3 7
Data ready
to device

data mapping

timing control

Fig. 4: The details of DrMP-A.

the row tWR, DrMP-A reduces the impact of restore errors,
which minimizes the error rate at the application level.

40 24
20

14 1619 34 20

C0 C1 C2 C3 C4 C5 C6 C7

Rank

20 36
16

22 1818 16 20

chip enable signal

RCD

addr/cmd bus data bus

mapping table
11000101
00111010

DrMP flags

LRS
HRS

Ui Mi tWRi

11000101 24111

00111010 40111
Ui+K Mi+K tWRi+K

Fig. 5: DrMP-P constructs one fast row for each row pair.
Each chip stores two row segments: LRS and HRS.

CMD Bus ACT ACT

ADDR Bus 64 64+M/2

RD

Col

RD

Col

Data Bus
(chip 2/3/4/6)

data data data data

Data Bus
(chip 0/1/5/7)

data data data data

RCD on DIMM TS TS

Chip En Signal 2/3/4/6 0/1/5/7

table lookup
whole

memory
line is
ready

tRCD tCAS

Fig. 6: The scheduling details of DrMP-P.

E. DrMP-P: Pairing Rows for Fast Precise Computing

While DrMP-A speeds up approximate computing by short-
ening the restore time, its effectiveness is often limited by
the amount of non-critical data. We next reuse this hardware
enhancement to speedup precise general-purpose computing.

Our study of tWR values at row segment level shows that
the slowest row segments of different rows often fall on
different chips. Figure 5 illustrates typical tWR values for
two consecutive device rows. In the figure, the slowest row
segments of row i and i+K are from chip 0 and chip 6
(with tWRs of 40 and 36), respectively. Thus, we pair two
consecutive device rows to construct a fast row and a slow
row so that the average restore time can be effectively reduced,
which speeds up precise computing.

DrMP-P first creates K row pairs so that pair i contains
row i and row i+K (there are 2K rows in total and 0≤i<K).
These two rows are K rows apart in physical address space
and, as shown in Figure 2, next to each other on the device.
Each chip j contributes two row segments to each row pair,
referred to as LRS j and HRS j, respectively, as in Figure 5.
Here, we have:

LRS j Low device address row segment from chip j
HRS j High device address row segment from chip j

Without pairing, row i always contains LRS segments while
row i+K always contains HRS segments. With pairing, we re-
distribute the 16 row segments in a pair such that a new row,
while still having 8 row segments from 8 chips, contains a
mix of LRS and HRS segments. Forming a pair is simple: for
two device row segments of a pair in a chip, DrMP-P assigns
the faster one to row i and the slower one to row i+K, i.e.,
we get one fast row, i, and one slow row, i+K, respectively.

For the example shown in Figure 5, row i is composed of
HRS0, HRS1, LRS2, LRS3, LRS4, HRS5, LRS6, and HRS7.
Row i+K consists of the complementary row segments for the
pair. The tWR of each row is determined by the worst tWR of
the composed segments, i.e., 24 and 40, respectively for these
two constructed rows.

Bit flags. DrMP-P reuses the bit flags from DrMP-A. For
row pair i, we attach (Ui,Mi,tWRi) and (Ui+K ,Mi+K , tWRi+K)
to the two rows, respectively. (i) Ui and Ui+K are always set
to “111” for precise computing. (ii) Mi records the faster row
segment from each chip — ‘0’/‘1’ indicate LRS/HRS. For
the above example, Mi=“11000101” so that Mi+K = ∼Mi =
“00111010”. (iii) DrMP-P sets the tWR of each physical row
using the largest tWR value from its component row segments.

Memory scheduling. Figure 6 illustrates the scheduling of
memory operations in DrMP-P. The memory controller always
fetch a row’s DrMP bit flags before accessing the row (similar
to DrMP-A). If Ui is “111”, then ACT/RD/PRE commands
are sent to operate eight DRAM chips. The commands may
operate on either LRS or HRS of a row pair. DrMP-P activates
and accesses the LRS or HRS segments in a chip in two
consecutive bus cycles as follows. In this discussion, we use
a closed page policy.

When sending ACT, DrMP-P supplies the row address i,
which is used to index into the mapping vector table on
the DIMM. In the example, this retrieves Mi = “11000101”.
With this mapping vector, chips 2/3/4/6 are activated first.
The complementary others (chips 0/1/5/7) are activated in
the next cycle. The activations are shown in bold fonts in
Figure 6. Given that the two chip groups receive ACT and
RD commands in two consecutive cycles, their output data
have one memory cycle difference in the time of arrival at the
processor (assuming two rows have the same tRAS).

6

While DrMP-P occupies two consecutive memory cycles for
activation, it does not trigger tRRD constraint (i.e., the row to
row delay, which restricts the number of ACT commands with
a time window) as the total number of row segments activated
is eight, the same as the baseline.

Extra timing. In DrMP-P, the RCD of each DIMM inte-
grates a 256-entry mapping vector table that holds recently
used mapping vectors, Mi. In addition, a one-bit enable wire
is added from the RCD to each chip, as shown in Figure 5.

Compared to traditional memory scheduling, DrMP-P intro-
duces two extra memory cycles on an access (modeled using
CACTI [14] as detailed in Section 3.8): (1) one cycle is used
to search the mapping vector table to determine which chips
to activate and access; (2) a second cycle is required due to
the delayed access to the second chip group.

DrMP-P for precise computing. DrMP-P speeds up precise
computing by adopting the new tWR timings when accessing
memory rows. As a comparison, in the row pairing-oblivious
baseline, row i has all LRS segments and row i+K has all
HRS segments — their tWR values are 40 and 36, respectively.
The average tWR is 38 assuming both rows are accessed with
same frequency. For the same access pattern, DrMP-P has an
average tWR of 32 = (24+40)/2+2 including the 2-cycle extra
access overhead.

F. DrMP-U = DrMP-A + DrMP-P

In DrMP-A and DrMP-P, a row pair is used either for
approximate or precise computing, but not a mix of both. In
this section, we propose DrMP-U, which combines DrMP-A
and DrMP-P to fully exploit fine-grained differences in restore
time of row segments.

DrMP-U relies on the fact that the slow logical row of
a pair for DrMP-P still has several fast row segments. For
example, row i+K in Figure 5 has two row segments with
tWR values smaller than or equal to 19. If this row is used to
save approximate data with usage flag “110”, the 1/4 important
bits can be saved in fast segments, such that the row tWR can
be reduced to 19, achieving a large performance improvement
for approximate computing. In addition, the simple segment
grouping strategy in DrMP-P is sub-optimal to support both.
Given that the tWR of row i is 24, it is unnecessary to take
the faster row segment (LRS, tWR=16) from chip 2. Using
a slower row segment (HRS, tWR=20) has no impact on the
final row-level timing. Yet, this choice improves the chance
of a smaller tWR when using the slow row for approximate
computing — the important bits can be saved in LRS of chip
2.

DrMP-U exploits this observation to construct two fast rows,
instead of only one in DrMP-P. A row pair is created from two
physical rows that are K rows apart, similar to DrMP-P. For
the pair containing rows i and i+K (0≤ i < K), DrMP-U uses
row i to save precise data and row i+K to save approximate
data. The pair bit flags (PUi, PMi, PtWRi) combine the flags
from the two rows, e.g., PUi consists of two sub-flags Ui and
Ui+K .

DrMP-U integrates DrMP-A and DrMP-P in one framework
with the flags. When PUi=“000/000”, the baseline is adopted

for the row pair and DrMP is disabled (no approximation).
When PUi=“111/111”, the row pair is in the DrMP-P mode
(precise-only computing). When PUi=“aaa/bbb” and “aaa” is
neither 111 or 000, the mode is DrMP-A and “bbb” cannot be
111 or 000 (approximate-only computing). If PUi is not one
of these cases, then PUi must be “111/bbb” where bbb can be
001, 010, 101, or 110, depending on what approximate data to
save in row i+K. This mode is DrMP-U (hybrid approximate-
and precise-computing).

PMi has two 8-bit bit vectors. The first vector assists the
access of row i for precise computing, as discussed for DrMP-
P. DrMP-U uses (1) the negation of the first bit vector; and
(2) the second bit vector to access row i+K . The former
determines the row segments to hold approximate data while
the latter determines the subset of segments to hold important
bits, as shown in Figure 7.

PtWRi saves two tWR values for accessing row i and i+K,
respectively. Both are fast accesses.

40 24
20

14 1619 34 20

C0 C1 C2

20 3622 1818 16 20

111001

DrMP flag table

C3 C4 C5 C6 C7

Bank

i i i

i 1,6,7 0,2,3,4,5

i+K i i+K i+K

i 0,2,3,4,5 1,6,7

i+K 2,3,4 1

1011110001111000 24 18

Ui, Mi, tWRi

Ui+K, Mi+K tWRi+K
16

Fig. 7: DrMP-U combines DrMP flags and uses two mapping
vectors to enable approximate computing.

For the example in Figure 7, when accessing row i+K
for approximate computing, DrMP-U uses “∼Mi”, i.e.,
“01000011’, to find that the approximate data are saved in
LRS0, HRS1, LRS2, LRS3, LRS4, LRS5, HRS6, and HRS7.
Given that Mi+K is “01111000”, the middle four segments
save important bits in chips 1/2/3/4, i.e., HRS1, LRS2, LRS3,
and LRS4.

Row segment grouping. To maximize the scheduling op-
portunity for approximate computing, DrMP-U needs to find
a better row segment grouping solution. The optimization
goal depends how the row pair is used. After profiling to
determine the best row segment tWR values, the OS performs
an exhaustive search to find the best row segment grouping for
different usage patterns. For a 4GB memory, it takes less than
20 seconds for one pattern, and less than 2 minutes for all five
usage patterns. If chip manufacturers conduct post-fabrication
test and regrouping, we will need a better heuristic. We leave
this to future work.

G. Precision-aware Memory Management

DrMP-P and DrMP-U couple the usage of paired rows,
which brings new constraints on memory allocation. For exam-
ple, assume rows i and i+K (0≤i<K) are paired by DrMP-U
such that rows i and i+K save precise and approximate data,
respectively. Row i, after being reclaimed by the memory
allocator, may not be allocated to store approximate data. This
is because storing approximate data in row i needs a new Mi

7

0

4 001/001

10 111/001

Buddy FreeLists

111/111 111/010 111/001 111 001

void *malloc (one page, “001”); DrMP Flag Table

Usage: Mapping bit vec: tWR:

00110011 251111000 19

One entry stores the flags for
one pair (two rows);

(a) DrMP enhances MMU with usage flag (b) DrMP flag table is filled in based on usage flag

The starting address of the block
determines if the first 3-bit or
the second 3-bit flag is used

Row segment profiling test result

grouping goal

The mapping bit
vector and tWR
for different
usage pairing

Fig. 8: The OS assisted memory management for DrMP.

while row i+K needs the negation of the old Mi to determine
data locations, which prevents loading another Mi.

We use Figure 8 to illustrate precision-aware memory allo-
cation. For simplicity, we apply DrMP only to allocate normal
user data. We do not allocate memory space for device drivers
or DMA operations. Modern OSes, like Linux, adopt buddy
allocation to allocate blocks of consecutive memory pages to
user applications. Linux’s buddy allocator maintains an array
of 11 freelists that link free blocks of 2l pages (0≤i≤10). A
request asking for more than 210 pages is served by multiple
blocks. Given a 2l-paged block whose first page address is
x, its paired block is defined as the 2l-paged block whose
first page address is either x+P/2 (if 0≤x<P/2) or x-P/2
(if P/2≤x<P), here P is the total number of memory pages.

In DrMP, a memory request specifies not only the size but
also the required precision:

void *malloc(int size, char UsageFlag);

Here, UsageFlag is a 3-bit flag as shown in Table I. To service
this request, DrMP adds a 6-bit usage flag “aaa/bbb” to each
block in the freelist. The flag describes the usage of the block
and its paired block. That is, a block whose starting address
is in the first half of the memory uses “aaa” while its paired
block uses “bbb”. The bold font in the figure indicates the flag
that is actually used by a free block.

When linking a 210-paged block to the freelist, the OS links
its paired block at the same time. The usage flags are initialized
for both blocks. DrMP saves the usage flag in the first byte of
each free block and this flag is carried to smaller blocks when
a large block is split, as shown in Figure 8. A valid usage flag
is one of the following:

1) “000/000” indicates that the two blocks are used as they
are in the baseline. DrMP is disabled.

2) “111/111” indicates that the two blocks are paired and
are used for precise computing only.

3) “111/aaa” indicates that the two blocks are paired and
used for mixed precision computing. The block with
the starting address in the low half of the memory is
for precise computing and the paired block (with higher
address) is for approximate computing. The flag aaa
can be one of “001”,“010”,“101”, and “110”, depending
on what approximate data to save in the block.

4) “aaa/aaa” (when aaa is neither “000” nor “111”)
indicates the two blocks are for approximate computing
only. They are not paired. aaa is set similarly as above.

With DrMP, a memory allocation request is serviced by the
memory allocator to provide a block of a matching size and
usage flag. In Figure 8, the request for one page of “001”-
type approximate data is satisfied by the third block in the #0-
freelist. The buddy allocator without DrMP extension would
return the first block instead.

The OS maintains a DrMP flag table to assist precision-
aware restore scheduling. Given each row pair, the table keeps
one entry that saves the usage flag, mapping bit vector, and
tWR values for both rows, as shown in Figure 8.

The OS fills in the DrMP flag table when it updates a
corresponding page table entry. The usage flags are extracted
from the allocated memory block. Based on the usage flag,
the OS loads the mapping bit vectors and tWR values from
the grouping results (as described in Section 3.6).

Fragmentation optimization. A concern for memory allo-
cation is that DrMP may increase system fragmentation. In
Figure 8, a request for a 24-paged block for precise computing
may not be satisfied even though there is a block with a
matching size. The request triggers a bigger block to be split,
creating additional small blocks in the system. We next discuss
optimization to minimize fragmentation.

DrMP combines compatible usage flags such that the OS
may return a block with a compatible (i.e., not exactly the
same) usage flag. For the example in Figure 8(a), to satisfy the
request for a 24-paged block with “010” flag, it is acceptable
to return a block with “111/001” flag and its starting address
is in the second half of the memory. We dynamically alter the
usage flag of the block to “111/010”. It is safe to do so because
either “001” or “010” set the tWR to the fourth fastest row
segments, and thus, they share the same mapping bit vectors
and tWR values for the row pair. In addition, DrMP can satisfy
the request with “010” flag with a block of a “001” flag. Here,
the OS returns a more reliable but slightly slower block.

H. Architecture Enhancements

Figure 9 shows an overview of the architectural enhance-
ments. The light color shaded boxes indicate the enhancements

8

to support DrMP-A and the dark color shaded boxes indicate
the additional enhancements to support DrMP-P and DrMP-U.

Row segment profiling result

The mapping bit
vector and tWR
for different
usage pairing

Fig. 9: An overview of architectural enhancements.

Space overhead. In the HDD, we save the row segment
profiling information that marks the best tRAS and tWR for
each row segment. The profile needs 6MB of storage for a 4GB
main memory. The OS then applies the row segment grouping
algorithm to get the mapping bit vectors and tWR/tRAS values
for each different pairing pattern. Given that we have five pat-
terns and each row is of 8KB, we need (8b+6b)×4GB/8KB×5
= 4.4MB HDD space for the mapping bit vectors. The DrMP
flag table occupies 1.1MB (= 4GB/8KB×(3b+8b+6b)) space.

Given that the bit flags are for 8KB rows, they show good
access locality, i.e., similar to the locality of a TLB buffer. We
use a 512-entry on-chip DrMP flag table to buffer the most
frequently accessed entries, which requires about 2KB space.
To support DrMP-P and DrMP-U, we add a 256-entry mapping
bit vector buffer in each DIMM, which occupies about 512B.
The buffer is organized as a direct-mapped cache with tag
fields maintained in the memory controller. Overall, the space
overhead is modest.

Timing overhead. We used CACTI [14] to model timing
overhead. DrMP has minimal timing overhead for DrMP-A.
It introduces two CPU cycles of extra latency to extract the
DrMP flags and shuffle the data based on approximate usage
flag. The overhead is added for both read and write accesses
because the data need to be remapped between the device
layout and logic layout.

DrMP introduces extra latency to pair rows for DrMP-P and
DrMP-U. As described in DrMP-P, two extra memory cycles
are needed — one cycle determines which chips to activate
and the other cycle is needed to send the device command.

Energy overhead. By introducing chip enable wires, DrMP
activates the same number of subarrays as the baseline. We use
CACTI to model the flag cache in the memory controller and
the map table buffer in the DIMM. The energy overhead is
negligible as shown in the experiments.

IV. EXPERIMENTAL METHODOLOGY

To evaluate the effectiveness of DrMP on approximate
computing, we adopted the two-phase methodology from past
work [34], [36]. In the first phase, we used a Pin-based

TABLE II: System Configuration
Processor four 3.2Ghz cores; 128 ROB size

Fetch width: 4, Retire width: 2, Pipeline depth: 10
Bus freq.: 800 MHz; Write queue capacity: 64

Memory Write queue high/low watermark: 40/20
Controller Address mapping: rw:cl:rk:bk:ch:offset

Page management policy: close-page with FRFCFS
1 channel, 2 ranks/channel, 8 banks/rank,
32K rows/bank, 8KB/row, 64B cache line
tCK=1.25ns, width: x8

DRAM tCAS(CL): 13.75ns, tRCD: 13.75ns, tRC: 48.75ns
tCWD: 6.25ns (5 cycles), tBURST: 5.0ns (4 cycles)
tRAS: 35ns, tRP: 13.75ns, tFAW: 24 cycles,
tRRD: 5 cycles, tRFC: 208nCK, tREFI: 7.8µs

simulator to instrument programs annotated for approximate
computing. The simulator tracks all loads and stores of integer
and floating-point variables and, based on the memory map of
weak cells (where timing exceeds reliable operation), injects
faults into memory operands at runtime. The memory map was
generated following the model of Zhang et al. [58], [60], and
the timing parameters were aligned with the industrial values
[19], [1], [2]. We integrated the usage flags in the memory
map so that different row segment pairing strategies lead to
different error rates at runtime. For this phase, we ran the
benchmarks to completion and compared the final output with
the one from the baseline run (i.e., with no restore errors).

In the second phase, we used a cycle accurate simulator,
USIMM [7], to compare performance and energy consump-
tion. USIMM executed the instructions tracked in the first
phase to make sure the two runs had the same instruction
flow. We modeled a 4-core chip multiprocessor following past
research [50], [39]. For the DRAM main memory, we used
the Micron SDRAM DDR3 [33] 4. Table II lists the details.

A. Benchmarks

We selected a suite of benchmark programs that were used
in the literature to evaluate approximate computing. As shown
in Table III, the benchmarks are from different domains,
including machine learning, financial analysis and scientific
computing. In addition, we included two memory intensive
applications libq and leslie from SPEC CPU2006 [53].
These two applications always demand precise computing.
They are used to form workloads with mixed precision de-
mands.

TABLE III: Evaluated Applications
Application Description Quality Metric % of approx

(Input) mem accesses
kmeans Machine Learning Image diff 45.4%

(Color image)
blackscholes Financial Analysis Avg. 6.3%

(Portfolio options) price error
raytracer 3D Image Renderer Image diff 4.0%

(Light, texture, etc)
sor Scientific Comp Mean 79.5%

(Grid pattern) entry diff
lu Scientific Comp Mean 98.0%

(Dense matrix) entry diff
smm Scientific Comp Mean 73.5%

(Dense matrix) normalized diff
For the evaluation, we manually annotated the benchmarks

to identify the data that can be approximated. This approach

4Whereas we are studying DDR3 in the paper, the proposed techniques are
applicable to other DRAM types, e.g., DDR4, LPDDR and HMC

9

is the same as past work [35], [46]. Table III summarizes the
percentage of memory accesses that access approximate data.

B. Evaluation for Approximate Computing

To evaluate QoS, we compared the results from approximate
execution to those from the baseline with precise execution
and followed prior studies [46], [34] to compute application-
specific metrics. Traditionally, a flat threshold of 10% error
rate was set as the upper bound [46], [10], [34], [57]. However,
this error rate often leads to a large deviation [42], [25]. For ex-
ample, blacksholes is a financial analysis application from
PARSEC 3.0. Its QoS metric is stock/option price difference.
A 10% error for a $20 option leads to $2 difference, which is
significant and generally unacceptable [25]. Therefore, we did
not set a fixed percentage threshold. Our design goal is instead
to minimize the error rate with a performance improvement.

V. RESULTS AND ANALYSIS

We studied and compared the following schemes.
— Baseline. This scheme mitigates PRT with fully

relaxed restore timing, i.e., tRAS=42, tWR=25, and
tRCD=15 [59]. The baseline adopts built-in spare rows
and columns to rescue the worst set of cells. The same
timing is applied to all chips.

— PRT-Free. This scheme assumes future DRAM chips
are free from PRT, and thus use the current JEDEC
timing, i.e., tRAS=28, tWR=12, and tRCD=11 [33].

— Approx-base-#. This scheme is baseline approxima-
tion schemes without dedicated techniques to protect
important bits. # is either 2 or 4, indicating whether the
row tWR is set to the 2nd or 4th fastest row segment.

— DrMP-A-#. This scheme is DrMP-A, where rows are
being utilized for approximate computing with important
data bits being protected.

— DrMP-P-#. This scheme is DrMP-P. The paired rows
are used to save precise data only.

— DrMP-U-#. This scheme is DrMP-U. Given one row
pair, the row with the low address saves precise data,
while the row with high address saves approximate data.

A. QoS of Approximate Computing

We first evaluated the effectiveness of our approximate
computing strategy. Figure 11 compares the QoS of different
schemes. Approx-base-n uses the tWR of the nth fastest
row segment. It is similar to DrMP-A-n except important bits
in a row are not mapped. From the figure, we observe that
mapping important bits greatly mitigates QoS degradation. For
example, mapping reduces 100% QoS degradation of lu to
0.31% in DrMP-4 when ensuring the reliability of four row
segments in each row.

We examined kmeans to check the visual effect of the
output image, as shown in Figure 10. Figure 10(a) shows the
precise output image with no restore errors. We observe that
Figure 10(b)(c)(d) shows a color change — the gray tail of the
eagle turns pinkish; and Figure 10(b)(d) shows visible noise.
DrMP-A-4 (Figure 10(e)) has no visible change compared to

the baseline. Therefore, it is important to reduce the error rate
in approximate computing. The bit remapping in DrMP-A is
effective in mitigating the QoS degradation.

B. Performance

Figure 12 reports the execution time of different schemes.
The results are normalized to Baseline. In the figure,
Gmean is the geometric mean of all workloads. For DrMP-A
and DrMP-U, we compared the schemes when setting the row
tWR to the 2nd and 4th fastest row segment for approximate
computing. For DrMP-P, we studied two page allocation
schemes — DrMP-P-rand is the baseline allocation that
returns a random page; DrMP-P-fast returns a random fast
page first, i.e., it uses all fast pages before allocating slows
ones.

On average, DrMP-A-4, DrMP-P-fast, and DrMP-U-4
have a 17%, 10.2% and 19.8% improvement over the base-
line, respectively. Not unexpected, random page mapping in
DrMP-P-rand lowers the speedup to 5.2%. The difference
between DrMP-A-2 and DrMP-A-4 (similarly, DrMP-U-2
and DrMP-U-4) is usually small. For applications that have
dominant approximate data accesses, such as lu and smm,
DrMP-U does better than PRT-Free. This improvement
happens because many rows that save approximate data have a
tWR faster than the standard 15ns tWR in PRT-Free. DrMP-
U achieves lower improvement for applications that are less
memory intensive with fewer approximate accesses, such as
kmeans and raytracer. Given the moderate difference of
performance and the notable contrast in QoS as reported in
Figure 11, we use the 4th fastest row segment in subsequent
sections.

C. Timing Values

Table IV compares the average restore timing in different
schemes. PRT-Free has the best timing, while Baseline
has the worst. Baseline, PRT-Free, DrMP-A-n do not
use row pairing, and thus, they have one set of average values.
The tRAS of DrMP-A is even better than PRT-Free because
the timing is aggressively reduced, which introduces restore
errors in some row segments. DrMP-A-2 has better timing
than DrMP-A-4 as it reduces the tWR more aggressively.

TABLE IV: Restore Timing Value of Each Row Pair
Low Address Row High Address Row

Scheme tRAS tWR tRCD tRAS tWR tRCD
(memory cycles)

Baseline 42 25 15 same as left
PRT-Free 28 12 11 same as left
DrMP-A-2 20 13 15 same as left
DrMP-A-4 22 15 15 same as left
DrMP-P 30 20 15 40 24 15
DrMP-U-2 30 20 15 19 12 15
DrMP-U-4 33 21 15 20 13 15

In DrMP-P, each pair has a fast row and a slow row. The
average of slow rows in DrMP-P is close to Baseline
as the slowest row segments do not change. The average
of approximate rows in DrMP-U-n is close to DrMP-A-n,
indicating that DrMP-U makes better use of device rows.
DrMP-P and DrMP-U report similar timings for low address

10

(a) Precise baseline (0%) (b) Approx-base-2 (5.97%) (c) DrMP-A-2 (1.98%) (d) Approx-base-4 (2.16%) (e) DrMP-A-4 (0%)
Fig. 10: Visual effects for approximated runs for kmeans.

kmeans black ray sor lu smm0
20
40
60
80
100

Q
oS

 d
eg
ra
da
tio

n
(%

)

5.
97 7.
51

1.
82

55
.2
2

10
0.
0

4.
48

1.
98 4.
2

1.
56

0.
45

16
.7
5

0.
011.
86

0.
77

0.
28

12
.0
8

10
0.
0

0.
29

0.
0

0.
15

0.
27

0.
04

0.
31

0.
0

Approx-base-2
DrMP-2

Approx-base-4
DrMP-4

Fig. 11: QoS degradation in different schemes.

kmeans black ray sor lu smm Gmean0.8

1.0

1.2

1.4

1.6

Sp
ee
du
p
w
rt
B
as
el
in
e DrMP-A-4

DrMP-A-2
DrMP-P-rand
DrMP-P-fast

DrMP-U-4
DrMP-U-2

PRT-Free

Fig. 12: Performance comparison.

rows because DrMP-U exploits mainly the fast row segments
in the slow rows.

D. Energy Consumption

DrMP reduces system energy consumption by speeding up
the program execution. Next, we study the memory energy
reduction in more details. Figure 13 reports memory energy
consumption in terms of background (bg), active/precharge
(act/pre), read/write (rd/wr) and refresh (ref). We fol-
lowed the Micron power equations and parameters [32], [33].
We used CACTI to model the DrMP flag cache in the
memory controller and in the DIMM. We observed that,
by improving application performance, the DrMP schemes
reduce the background energy the most. Overall, DrMP-U-4
achieves 15% energy consumption reduction, which is within
7% gap of PRT-Free. The primary contributor is the reduced
background energy because of the shortened execution time.
Read/write power/energy is also optimized with the reduction
in the restore time.

E. System Overhead

In DrMP, the 512-entry flag cache in the memory controller
is organized as 4-way set associative cache. On average, it has
97.8% hit rate. The CACTI simulation shows that the cache
has 0.35ns access latency, 0.02mm2 area, 1.5mW standby
leakage power and 5.45pJ energy per access. The DIMM
mapping table is organized as a 256-entry direct-mapped cache

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

B
as
el
in
e

D
rM

P-
A
-4

D
rM

P-
P-
fa
st

D
rM

P-
U
-4

PR
T-
Fr
ee

0.0
0.2
0.4
0.6
0.8
1.0

N
or
m
al
iz
ed
 E
ne
rg
y

kmeans black ray sor lu smm avg
bg act/pre rd/wr ref

Fig. 13: Energy comparison.
with tags maintained in the memory controller. It has an
average 97.9% hit rate. The CACTI simulation shows that
this structure has 0.22ns access time, 0.016mm2 area, 1.14mW
standby leakage and 2.96pJ energy per access.

Frequently used flag cache entries are captured in the L2
cache and loaded to the flag cache and mapping table on
misses of these structures. The performance overhead is less
than 1%.

Due to limitations of our evaluation framework, we did not
evaluate the overhead of the buddy memory allocation. We
expect it to be low due to its invocation, i.e., to allocate blocks
of consecutive pages to processes, is less frequent per process.

F. Integration with Restore Truncation.

Restore truncation (RT) [59] is a recent PRT mitigation
approach. It partially restores memory cells to a low voltage
level, depending on the distance of an access to the next
row refresh. Since DrMP exploits error resilience through
approximate computing, these two designs are orthogonal.
Figure 14 reports the results when both schemes are adopted
(RT+DrMP). From the figure, RT+DrMP achieves a larger
performance improvement over RT: on average, RT+DrMP is
13.7% better than RT.

kmeans black ray sor lu smm Gmean0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p
w
rt

B
as

el
in
e Baseline RT RT+DrMP PRT-Free

Fig. 14: Performance comparison of DrMP and RT [59].

VI. CONCLUSIONS

This paper proposes DrMP, a fine-grained precision-aware
DRAM restore scheduling design, to mitigate performance

11

degradation due to PRT in future DRAMs. We devised three
schemes to achieve the best trade-off between performance,
energy consumption, hardware overhead, and computation pre-
cision. Our experimental results show that, on average, DrMP
achieves 20% performance improvement over a conventional
relaxed timing design, while minimizing QoS degradation for
a suite of benchmark programs.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their constructive
feedbacks. This work is supported in part by NSF under
grants CCF-1422331, CNS-1012070, CCF-1535755 and CCF-
1617071.

REFERENCES

[1] “Memory Device With Relaxed Timing Parameter According To Tem-
perature, Operating Method Thereof, and Memory Controller And
Memory System Using The Memory Device,” US 20140359242 A1,
2014.

[2] “Backward Compatible Dynamic Random Access Memory Device and
Method of Testing Therefor,” US 9123441 B1, 2015.

[3] A. Agrawal, et al., “Mosaic: Exploiting the Spatial Locality of Process
Variation to Reduce Refresh Energy in On-Chip eDRAM Modules,” in
HPCA, 2014.

[4] I. Bhati, et al., “DRAM Refresh Mechanisms, Penalties, and Trade-
Offs,” in TC, 2015.

[5] K. Chandrasekar, et al., “Exploiting Expendable Process-margins in
DRAMs for Run-time Performance Optimization,” in DATE, 2014.

[6] K. Chang, et al., “Understanding Latency Variation in Modern DRAM
Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[7] N. Chatterjee, et al., “USIMM: the Utah SImulated Memory Module,”
Technical report, University of Utah, 2012.

[8] B. R. Childers, et al., “Achieving Yield, Density and Performance
Effective DRAM at Extreme Technology Sizes,” in MEMSYS, 2015.

[9] J. Choi, et al., “Multiple Clone Row DRAM: a Low Latency and Area
Optimized DRAM,” in ISCA, 2015.

[10] H. Esmaeilzadeh, et al., “Neural Acceleration for General-Purpose
Approximate Programs,” in MICRO, 2012.

[11] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced Memory
Controller Design for Reducing Energy in Conventional and 3D Die-
Stacked DRAMs,” in MICRO, 2007.

[12] Q. Guo, et al., “High-Density Image Storage Using Approximate Mem-
ory Cells,” in ASPLOS, 2016.

[13] S. Hong, et al., “Low-voltage DRAM Sensing Scheme with Offset-
cancellation Sense Amplifier,” in JSSC, 2002.

[14] http://www.hpl.hp.com/research/cacti/, “CACTI: An Integrated Cache
and Memory Modeling Tool,” http://www.hpl.hp.com/research/cacti/,
2009.

[15] ITRS, “The International Technology Roadmap for Semiconductors
Report,” , 2013, URL http://www.itrs.net/.

[16] JC-42.3, “JESD79-3F, DDR3 Stdandard,” JEDEC, 2010.
[17] M. Jung, et al., “Omitting Refresh: A Case Study for Commodity and

Wide I/O DRAMs,” in MEMSYS, 2015.
[18] M. Jung, et al., “Efficient Reliability Management in SoCs - An

Approximate DRAM Perspective,” in ASPDAC, 2016.
[19] U. Kang, et al., “Co-Architecting Controllers and DRAM to Enhance

DRAM Process Scaling,” in MEMORY FORUM, 2014.
[20] S. Khan, et al., “The Efficacy of Error Mitigation Techniques for

DRAM Retention Failures: A Comparative Experimental Study,” in
SIGMETRICS, 2014.

[21] D. S. Khudia, et al., “Rumba: An Online Quality Management System
for Approximate Computing,” in ISCA, 2015.

[22] W. Kong, et al., “Analysis of Retention Time Distribution of Embedded
DRAM - A New Method to Characterize Across-Chip Threshold Voltage
Variation,” in ITC, 2008.

[23] D. Lee, et al., “Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture,” in HPCA, 2013.

[24] D. Lee, et al., “Adaptive-latency DRAM: Optimizing DRAM timings
for the common-case,” in HPCA, 2015.

[25] S. Lee, et al., “Synthesis of Quality Configurable Systems,” in WAX,
2016.

[26] J. Liu, et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” in
ISCA, 2012.

[27] S. Liu, et al., “Flikker: Saving DRAM Refresh-power through Critical
Data Partitioning,” in ASPLOS, 2011.

[28] J. Lucas, et al., “Sparkk: Quality-Scalable Approximate Storage in
DRAM,” in Memory Forum, 2014.

[29] D. Mahajan, et al., “TABLA: A Unified Template-based Framework for
Accelerating Statistical Machine Learning,” in HPCA, 2016.

[30] J. Mandelman, et al., “Challenges and Future Directions for the Scaling
of Dynamic Random-access Memory (DRAM),” in IJRC, 2002.

[31] Micron, “TN-46-12: Mobile DRAM Power-Saving Fea-
tures/Calculations,” Technical Note, 2001.

[32] Micron, “TN-41-01: Calculating memory system power for DDR3,”
Technical report, Micron, 2007.

[33] Micron, “TwinDie DDR3 SDRAM, MT41J512M8 Datasheet,”
http://www.micron.com, 2011.

[34] J. S. Miguel, et al., “Load Value Approximation,” in MICRO, 2014.
[35] J. S. Miguel, et al., “Doppelganger: A Cache for Approximate Comput-

ing,” in MICRO, 2015.
[36] J. S. Miguel, et al., “The Bunker Cache for Spatio-Value Approxima-

tion,” in MICRO, 2016.
[37] J. Mukundan, et al., “Understanding and Mitigating Refresh OverhOver

in High-density DDR4 DRAM Systems,” in ISCA, 2013.
[38] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in

IMW, 2013.
[39] P. Nair, et al., “A Case for Refresh Pausing in DRAM Memory Systems,”

in HPCA, 2013.
[40] P. J. Nair, et al., “ArchShield: Architectural Framework for Assisting

DRAM Scaling by Tolerating High Error Rates,” in ISCA, 2013.
[41] P. J. Nair, et al., “XED: Exposing On-Die Error Detection Information

for Strong Memory Reliability,” in ISCA, 2016.
[42] J. Park, et al., “AXGAMES: Towards Crowdsourcing Quality Target

Determination in Approximate Computing,” in ASPLOS, 2016.
[43] M. K. Qureshi, et al., “AVATAR: A Variable-Retention-Time (VRT)

Aware Refresh for DRAM Systems,” in DSN, 2015.
[44] A. Raha, et al., “Quality-Aware Data Allocation in Approximate

DRAM,” in CASES, 2015.
[45] M. Rahman, et al., “COMeT+: Continuous Online Memory Testing with

Multi-Threading Extension,” in TC, 2014.
[46] A. Sampson, et al., “EnerJ: Approximate Data Types for Safe and

General Low-power Computation,” in PLDI, 2011.
[47] A. Sampson, et al., “Approximate Storage in Solid-State Memories,” in

MICRO, 2013.
[48] Samsung, “DRAM tWR,” http://www.samsung.com/global/business/

semiconductor/file/product/tWR-0.pdf, 2001.
[49] F. Schmoll, et al., “Improving the Fault Resilience of an H.264 Decoder

using Static Analysis Methods,” in TECS, 2013.
[50] W. Shin, et al., “NUAT: A Non-Uniform Access Time Memory Con-

troller,” in HPCA, 2014.
[51] Y. H. Son, et al., “Reducing Memory Access Latency with Asymmetric

DRAM Bank Organizations,” in ISCA, 2013.
[52] Y. H. Son, et al., “CiDRA: A Cache-inspired DRAM Resilience Archi-

tecture,” in HPCA, 2015.
[53] SPEC, “SPEC CPU2006,” http://www.spec.org/.
[54] V. Sridharan, et al., “Feng Shui of Supercomputer Memory Positional

Effects in DRAM and SRAM faults,” in SC, 2013.
[55] J. Stuecheli, et al., “Elastic Refresh: Techniques to Mitigate Refresh

Penalties in High Density Memory,” in MICRO, 2010.
[56] A. van de Goor and I. Tlili, “March Tests for Word-oriented Memories,”

in DATE, 1998.
[57] D. Wong, et al., “Approximating Warps with Intra-warp Operand Value

Similarity,” in HPCA, 2016.
[58] X. Zhang, et al., “Exploiting DRAM Restore Time Variations in Deep

Sub-micron Scaling,” in DATE, 2015.
[59] X. Zhang, et al., “Restore Truncation for Performance Improvement in

Future DRAM Systems,” in HPCA, 2016.
[60] X. Zhang, et al., “On the Restore Time Variations of Future DRAM

Memory,” in TODAES, 2017.
[61] B. Zhao, et al., “Variation-Tolerant Non-Uniform 3D Cache Manage-
ment in Die Stacked Multicore Processor,” in MICRO, 2009.

