
EFIM: Efficient Serving of LLMs for Infilling
Tasks with Improved KV Cache Reuse

Tianyu Guo1∗†[0009−0005−2979−4486], Hande Dong2∗�, Yichong Leng3, Feng
Liu2, Cheater Lin2, Nong Xiao1[0000−0002−2166−977X], and Xianwei

Zhang1�[0000−0003−3507−4299]

1 Sun Yat-sen University, Guangzhou, China
guoty9@mail2.sysu.edu.cn,{xiaon6,zhangxw79}@mail.sysu.edu.cn

2 Tencent, Shenzhen, China
{donghd66,neolscarlet}@gmail.com,cheaterlin@tencent.com
3 University of Science and Technology of China, Hefei, China

lyc123go@mail.ustc.edu.cn

Abstract. Large language models (LLMs) are often used for infilling
tasks, which involve predicting or generating missing information in a
given text. These tasks typically require multiple interactions with sim-
ilar context. To reduce the computation of repeated historical tokens,
cross-request key-value (KV) cache reuse, a technique that stores and
reuses intermediate computations, has become a crucial method in multi-
round interactive services. However, in infilling tasks, the KV cache reuse
is often hindered by the structure of the prompt format, which typically
consists of a prefix and suffix relative to the insertion point. Specifi-
cally, the KV cache of the prefix or suffix part is frequently invalidated
as the other part (suffix or prefix) is incrementally generated. To ad-
dress the issue, we propose EFIM, a transformed prompt format of FIM
to unleash the performance potential of KV cache reuse. Although the
transformed prompt can solve the inefficiency, it exposes subtoken gen-
eration problems in current LLMs, where they have difficulty generating
partial words accurately. Therefore, we introduce a fragment tokeniza-
tion training method which splits text into multiple fragments before
tokenization during data processing. Experiments on two representa-
tive LLMs show that LLM serving with EFIM can lower the latency
by 52% and improve the throughput by 98% while maintaining the
original infilling capability. EFIM’s source code is publicly available at
https://github.com/gty111/EFIM.

Keywords: FIM · KV cache · Subtoken · LLM serving.

1 Introduction

Infilling tasks involve predicting or generating missing words, phrases, or even
entire sentences within a given text. Recently, there has been a growing trend of
* Equal contribution.
† This work was done during an internship at Tencent.

https://github.com/gty111/EFIM


2 T. Guo et al.

def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
    else:
        return fib(n-1) + fib(n-2)

prefix

middle

suffix

def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        re
    else:
        return fib(n-1) + fib(n-2)

Fig. 1: A python code snippet where a programmer wants to insert code inside
a function. The prefix/suffix part represents content before/after the insertion
point. The middle part is the content expected to infill.

using large language models (LLMs) like Codex [6], StarCoder [25, 27], CodeL-
lama [31], Qwen2.5-coder [22] and DeepSeek-Coder [20] for such tasks. As a
result, many companies are starting to provide online services for infilling, such
as OpenAI canvas [5], GitHub Copilot [9] and Amazon CodeWhisperer [8]. How-
ever, prompts of infilling tasks require long context around the insertion point
and users often need multi-turn interactions with LLMs, leading to high com-
putational demands. Efficient serving of LLMs for infilling tasks has become an
important research problem (a detailed analysis is given in §5.3).

As the de facto technique to reduce computation and accelerate LLMs infer-
ence, KV cache [1,23,30] stores attention keys and values to prevent recomputa-
tion. While traditional KV cache operates within a single request, cross-request
KV cache reuse1 [18, 37, 39, 41] has been proposed to minimize redundant KV
cache recomputation in multi-turn services [34], significantly reducing latency.
However, cross-request KV cache reuse imposes strict constrains that prefix of
prompt tokens must remain identical. In the infilling scenario as shown in Fig-
ure 1, the prompt typically follows the fill-in-the-middle (FIM) format [3], i.e.,
“<P>prefix<S>suffix<M>”, where <P>, <S> and <M> are FIM special to-
kens to connect prefix, suffix and middle parts. A common behavior in infilling
tasks is the continuous expansion of the prefix, which invalidates the KV cache
of the suffix. This occurs because incremental changes in the prefix alter the
preceding tokens of the suffix. Thus, KV cache of the suffix need to be recom-
puted in each interaction, requiring high computation resources. To solve it, we
propose transforming the FIM format from “<P>prefix+inc<S>suffix<M>” to
“<P>prefix<S>suffix<M>inc” (EFIM), where inc represents the incremental
prefix change. This modification ensures that both the prefix and suffix remain
unchanged, with the variation confined to inc. Consequently, KV cache reuse
can be extended from solely the prefix to include both the prefix and suffix.

Despite EFIM improves KV cache reuse, it reveals a hidden subtoken2 gen-
eration problem in current LLMs. The issue stems from EFIM’s requirement for
models to generate subtokens after inc, a capability not supported by existing
LLMs. To enable universal subtoken generation, we propose a fragment tok-
enization training method, involving randomly splitting sentences into multiple
segments, tokenizing each segment individually, and then concatenating the re-

1 If not explicitly stated, KV cache reuse in this paper is cross-request.
2 In the paper, we refer to incomplete words as subtokens like “pri” in “print”. Incom-

plete words caused by tokenizer are not included.



EFIM: Efficient Serving of LLMs for Infilling Tasks 3

sults. In this way, the model can learn the ability to generate the remaining
subtokens based on the initial subtoken during training, thereby addressing the
subtoken issue encountered by EFIM.

In summary, the contributions of this paper are:

– We identify that the efficiency of LLM inference for infilling tasks is hindered
by the FIM format, as the KV cache of the prefix/suffix part is frequently
invalidated by the growing suffix/prefix.

– We propose EFIM, the first method to transform the FIM prompt format,
unlocking the potential of KV cache reuse.

– To enhance subtoken generation ability, we introduce a fragment tokeniza-
tion training method on data processing.

– Experiments on two pretrained LLMs show that EFIM reduces average la-
tency by 52% and increases throughput by 98%, while preserving model
capability.

2 BACKGROUND AND MOTIVATION

2.1 Training LLMs with FIM

PSM <P> prefix <S> suffix <M> middle <E>

SPM <S> suffix <P> prefix <M> middle <E>

prefix middle suffixDataset

Fig. 2: Comparison of PSM and SPM. <P> follows prefix part, <S> follows
suffix part, <M> follows middle part and <E> marks the end of infilling span.

Current decoder-based autoregressive (AR) language models [2, 4, 7, 14] are
capable of generating text from left to right. However, they struggle with infilling
tasks, where the model is required to generate text at a specific location within
a snippet, conditioned on both a prefix and a suffix. To address this limitation,
FIM capabilities have been integrated into AR models without compromising
their standard left-to-right generation [3, 17, 28, 29]. The core idea of FIM in-
volves splitting the documents into three parts, and then relocating the middle
part to the end. Models are trained on a mixture of FIM transformed data and
standard left-to-right data. As shown in Figure 2, FIM can be prepared in two
ways denoted as prefix-suffix-middle (PSM) and suffix-prefix-middle (SPM). In
general, the LLMs can own both abilities.

2.2 KV Cache Reuse Inefficiency with FIM

LLMs notably feature their self-attention mechanism, and the KV cache is used
to accelerate the inference [10,11,24,33,35,36,38,40]. Additionally, the KV cache
of shared prefix across different sequences can be reused to avoid redundant com-
putations [18, 19, 37, 39]. In infilling scenarios, users usually need to engage in



4 T. Guo et al.

PSM <P> prefix <S> suffix <M>

SPM <S> suffix <P> prefix <M>

inc

inc

EFIM <P> prefix <S> suffix <M>

<P> prefix <S> suffix <M>

<S> suffix <P> prefix <M>

inc

inc

<P> prefix <S> suffix <M>

prefix tail growth suffix head growthreusable part

inc inc

Fig. 3: Reusable part between PSM, SPM and EFIM when the growth (inc)
happens either at the prefix tail or at the suffix head. The reusable part includes
the content before inc.

multi-round interactions with LLMs, especially when dealing with long contexts.
According to our statistics from online infilling services, most of modifying be-
haviors involve appending tokens to the tail of the prefix or the head of the suffix.
Figure 3 illustrates the reusable parts of the KV cache across different prompt
formats. It shows that changes to the tail of the prefix invalidate the KV cache
of the suffix in PSM, while changes to the head of the suffix invalidate both
the prefix and suffix in SPM. To address unnecessary KV cache invalidation, we
propose EFIM, which relocates the prefix increment to the end of the prompt in
PSM. EFIM combines the advantage of PSM and SPM, achieving the most KV
cache reuse in both scenes (prefix tail growth and suffix head growth).

0

4

8

12

16

20

FIM w/o reuse FIM w/ reuse EFIM w/ reuse

E
la

p
se

d
 T

im
e 

(s
) prefill decode

(a) Deepseek-coder-6.7B

0
20
40
60
80

100
120
140

FIM w/o reuse FIM w/ reuse EFIM w/ reuse

E
la

p
se

d
 T

im
e 

(s
)

(b) Llama3.1-8B

Fig. 4: Elapsed time breakdown of prefill and decode stage for infilling serving
(average input/output length is 2100/32) between FIM and EFIM.

We also analyze the end to end elapsed time breakdown for infilling serving as
illustrated in Figure 4. Without cross-request KV cache reuse (FIM w/o reuse),
the prefill overhead can be up to 9 times (114 vs. 12) than decode. Even with KV
cache reuse (FIM w/ reuse), the time gap between prefill and decode remains
significant, reaching up to 6 times (69 vs. 12). With EFIM, the overhead of prefill
stage is significantly reduced by 40% on average (114 vs. 69) compared to FIM
w/ reuse. This demonstrates EFIM’s superior computational efficiency during
the prefill phase.

2.3 Subtoken Generation Capability with LLMs

During the pre-training of LLMs, the models are typically trained on vast cor-
pora of text data to assimilate the statistical regularities and semantic repre-



EFIM: Efficient Serving of LLMs for Infilling Tasks 5

PSM <P> code <S> models <M>

Prompt code comp models

EFIM <P> code <S> models <M> comp

comp

letion

letion

letionX

SPM <P> code<S> models <M>comp letion

Fig. 5: Subtoken generation ability between different prompt formats considering
prompt “code comp[] models”.

sentations of language. Despite their prowess in generating coherent text, LLMs
exhibit limitations when it comes to handling subtoken generation tasks due to
the lack of relevant cases in their training data. For instance, existing models fail
to generate “nt” after “pri”. Whereas infilling LLMs overcome this limitation by
training on documents split into three parts and joined with FIM special tokens.
This process introduces subtokens into the dataset, as the splits created by the
FIM special tokens often result in partial tokens (subtokens). Therefore, subto-
kens typically appear around FIM special tokens, i.e., “subtoken<M>subtoken”,
and their generation relies on the context provided by these tokens. Without this
context, the model loses the ability to generate subtokens effectively. For exam-
ple, as shown in Figure 5, when the input prompt is ‘code comp[] models’, where
‘[]’ represents the missing content, both PSM and SPM can successfully generate
the subtoken ‘letion’. However, EFIM fails to generate sutokens correctly when
the prefix ends with a subtoken, highlighting the limitations of directly applying
LLMs in such cases. To address this challenge, we must enhance LLMs with a
universal subtoken generation capability, ensuring that the model can generate
subtokens regardless of the presence of FIM special tokens.

3 DESIGN

Training dataset

LLM

Prompt
w/FIM

Enhanced LLM

Fragment
tokenization

Enhanced
training dataset

Pretrain
(3.2)

Prompt transform 
(3.1)

Prompt
w/EFIM

User

Fig. 6: Overall diagram of design with EFIM.

Our proposed design with EFIM consists of two key parts as illustrated in Fig-
ure 6. The first part operates between the user and the LLM to seamlessly and
automatically convert the prompt format from FIM to EFIM. This transforma-
tion is fully transparent to the user, ensuring a smooth and intuitive experience.
The second part introduces a fragment tokenization training method focused on



6 T. Guo et al.

data processing. This method is designed to augment the LLM’s ability to gener-
ate subtokens, a critical requirement for EFIM functionality. Our implementation
introduces no architectural changes, making EFIM accessible for integration into
existing LLM frameworks.

3.1 From FIM to EFIM

LLM

match

PSM

N
Y prefix/suffix

EFIM

PSMsession
pool

1

2

3 4

5

Fig. 7: The prompt transformation process from FIM to EFIM.

To automatically convert prompt format from FIM to EFIM, we use a per-
user session pool to track the most recent interaction between users and the
LLMs as shown in Figure 7. Each session stores the prefix and suffix parts
extracted from the user’s previous request. ❶ When a new request is received,
we first check if the user has an existing session in the pool and identify the prefix
and suffix parts. ❷ If no matching session is found, we forward the prompt in
PSM format to the LLM inference engine and create a new session for the user. ❸
If a matching session is located, we compare the prefix/suffix in the new request
with the one from the previous interaction. ❹ If the prefix in the new request
contains additional content compared to the session prefix, we split the new
prefix into a common part and an incremental part referred to as inc. We then
construct the EFIM-formatted prompt by concatenating the common part, the
new suffix, and inc, before sending it to the LLM. In this way, the incremental
prefix content does not invalidate the KV cache for the suffix, unlike in the PSM
format. ❺ If the suffix of new request has an incremental part compared to the
session suffix, we send the request in PSM format directly to the LLM inference
engine. In this scenario, the KV cache for the common prefix can still be reused,
offering an advantage over the SPM format.

3.2 Fragment Tokenization Training Method

To equip LLMs with universal subtoken generation capability, we propose a novel
fragment tokenization training method focused on data processing. It fundamen-
tally differs from FIM in how the training dataset is processed. Figure 8 shows
the similarities and differences parts between the two approaches. Both FIM
and our method apply the transformation to the documents to adjust the order
of prefix, suffix and middle. While FIM directly tokenize the three parts, our
method split the text into multiple segments to allow subtokens to be generated
at more locations. We also provide an example on data processing in Figure 9.



EFIM: Efficient Serving of LLMs for Infilling Tasks 7

Randomly split the documents into three
parts: prefix, middle and suffix

Concatenate tokens of segments into three
parts: prefix, middle and suffix

Tokenize each part separately

Randomly Split the documents into 
multiple segments 

Tokenize each segment separately

Concatenate the tokens of each part using
FIM special tokens

FIM Fragment tokenization

Concatenate the tokens of each part using
FIM special tokens

Fig. 8: Data processing diagram between FIM (left) and fragment tokenization
(right). The length of each segment follows uniform distribution [1,200].

def fib(n):
    if n == 1:
        return 0
    elif n == 2:
        return 1
    else:
        return fib(n-1) + fib(n-2)

de f fib(n):
    if n == 1:
        retu rn 0
    elif n == 2:
        re turn 1
    else:
        return f ib(n-1) + fib (n-2)

FIM Fragment tokenizationprefix

middle

suffix

Fig. 9: Comparison between FIM (left) and fragment tokenization (right) data
processing examples. FIM-based method only splits the text into three parts,
while our method splits the text into multiple segments and employ tokenization
for each segment.

The fragment tokenization approach allows subtokens to appear not only ad-
jacent to FIM special tokens but also throughout any position in the sequence.
As a result, the model develops a more comprehensive and universal subtoken
generation capability. By embedding subtokens across varied contexts within the
training data, the enhanced LLM becomes better equipped to generate subto-
kens seamlessly in diverse scenarios, making it far more versatile and effective
for real-world applications. It is important to note that our approach can serve
as a drop-in replacement of current LLM training process, incurring no addi-
tional overhead. For existing LLMs, our method can be applied during continued
pretraining.

4 EXPERIMENTAL METHODOLOGY

We conduct continue pretraining with 64 A100 GPUs on two representative
LLMs, Deepseek-coder-6.7B3 [20] and Llama3.1-8B [16], using fragment tok-
enization method to enhance their sub-token generation ability. The pretraining
process for each model takes less than a week. Notably, the additional overhead
can be avoided if the fragment tokenization training method is applied from
the beginning. The training dataset consists of 108 billion tokens collected from
StarCoderData [32]. For Llama3.1-8B, we pretrain a baseline version (based on
the original LLM) to equip it with FIM ability. The experiments mainly focus
on three questions:
3 This enhanced model has been used in production for AI Code Assistant.



8 T. Guo et al.

1. Does fragment tokenization method impact infilling ability and truely make
LLMs possess subtoken generation ability? (§4.1 and §5.1)

2. Can EFIM improve the KV cache reuse and the efficiency of LLM serving?
(§4.2 and §5.2)

3. Is it worth the training overhead to gain inference speed? (§5.3)

4.1 Infilling and Subtoken Generation Ability

CCEval

prefix1 suffixprefix2 EFIM <P> prefix1 <S> <M> prefix2suffix

PSM <P> prefix1 <S> <M>prefix2 suffix

content

code snippet

HumanEval
prefix

prefix1 prefix2 suffix

suffix
SPM <P> prefix1<S> <M>prefix2suffix

Fig. 10: Prompt creation procedure and prompt format between FIM and EFIM.

Current infilling evaluations rely on FIM, which is incompatible with EFIM.
To assess both infilling and universal subtoken abilities with EFIM, we adapt the
prompt format from HumanEval Infilling [3] and CrossCodeEval (CCEval) [15],
focusing on the scenario where tokens are appended to the prefix. This scenario
highlights the behavioral differences between PSM and EFIM.

Prompt creation. Figure 10 illustrates the prompt creation process and
prompt format of FIM and EFIM. Based on HumanEval Infilling, we randomly
split the prefix into prefix1 and prefix2, use prefix1 as the original prefix and
prefix2 as the increment of prefix. Note that, HumanEval Infilling includes three
infiling benchmarks, single-line, multi-line and random-span. In the single-line
and multi-line benchmarks, prefix2 does not end with subtokens because they
require the generation of complete single or multiple lines of code. In contrast, the
random-span benchmark may have subtokens at the end of prefix2. In CCEval,
we modify the prompt format by randomly splitting the entire code snippet into
four parts (prefix1, prefix2, content to infill and suffix). Prefix1 is used as the
original prefix, suffix as the original suffix and prefix2 as the increment of prefix.
Since the splitting process is entirely random, prefix2 may end with subtokens.

Metrics We use pass@1 for HumanEval Infilling, EM and ES for CCEval.

– Pass@1: One code sample is generated per problem, a problem is considered
solved if the sample passes the unit tests, and the percent of problems solved
is reported.

– Exact Match (EM): The percent of the situations when the generated
code is exact the ground truth.

– Edit Similarity (ES): Similarity score between the generated code and
the ground truth using the Levenshtein distance algorithm. The score ranges
from 0 to 100, where higher values indicate greater similarity.

Schemes We conduct a comparative analysis between the original LLM (oLLM)
and our proposed enhanced LLM (eLLM), both of which utilize FIM or EFIM.



EFIM: Efficient Serving of LLMs for Infilling Tasks 9

4.2 Inference Speedup

To evaluate the efficiency of different reusable KV cache levels (none, prefix,
and prefix+suffix), we compare EFIM with FIM4 in a scenario where tokens
are appended to the prefix. This setup simulates infilling cloud services, where
multiple users interact with LLMs over several rounds. In each round, a prefix is
extended with new tokens. Instead of a fixed request rate, an unrealistic scenario,
we adjust the service load based on the number of users. Each user acts as an
individual client, sending a request for the next round only after receiving the
previous response. For our experiment, we set the number of rounds to 5 and
the number of users to 16. The average input/output length is 2355/128.

Environment We utilize the vLLM inference framework (v0.6.2) [23]. The
experiments are performed on a server with an AMD EPYC 7742 processor,
256GB of host memory and an NVIDIA A100 GPU.

Metrics

– Latency: Average end to end latency for each request.
– Input throughput: Average input token processing throughput.
– Request throughput: Average request completion rate.
– Reuse rate: Cross-request KV cache reuse rate.

Schemes

– Baseline: PSM without KV cache reuse.
– FIM: PSM with KV cache reuse.
– EFIM: EFIM with KV cache reuse.

5 RESULTS AND ANALYSIS

5.1 Infilling and Subtoken Generation Ability

Table 1 presents the evaluation results of infilling performance. For the Hu-
manEval Infilling single/multi-line benchmark, the pass rates between oLLM
w/FIM and oLLM w/EFIM remain close (with a difference of less than 1%) as the
single/multi-line tasks do not require subtoken generation (there are no subto-
kens at the end of the prefix increment). This demonstrates that EFIM has little
influence when subtoken generation is not required. However, for the random-
span benchmark, the pass rate drops significantly by 24% from oLLM w/FIM to
oLLM w/EFIM, highlighting the model’s inability to generate subtokens. In con-
trast, eLLM w/EFIM can maintain equivalent performance compared to oLLM
4 The advantage of EFIM compared to FIM can be seen different reusable KV cache

levels. Therefore, in this experiment, we focus on the efficiency of serving at different
reusable KV cache levels.



10 T. Guo et al.

Table 1: Evaluation results on infilling benchmarks. The left part shows Pass@1
rate (higher is better) in HumanEval Infilling where S stands for single-line, M
stands for multi-line and R stands for random-span. The right part shows EM
and ES metric (higher is better) in CCEval. oLLM and eLLM abbreviate for
LLM training with FIM and fragment tokenization, respectively. The underlined
numbers indicate a decrease in the model’s ability due to the lack of subtoken
generation capability.

Benchmark HumanEval Infilling CCEval

Model Deepseek Llama Deepseek Llama

S M R S M R EM ES EM ES

oLLM w/FIM 89.64 61.96 76.77 87.32 56.90 62.99 33.51 78.43 29.40 71.30

oLLM w/EFIM 90.03 62.25 52.44 86.35 56.54 38.35 11.19 71.04 6.82 53.44

eLLM w/FIM 88.48 61.62 75.12 87.12 57.73 67.20 33.27 79.24 31.51 71.15

eLLM w/EFIM 89.64 62.82 75.61 86.83 56.35 64.27 32.51 78.91 30.91 70.48

w/FIM, indicating that the fragment tokenization method (§3.2) can effectively
solve subtokens generation problems. eLLM w/FIM also exhibits close per-
formance compared to oLLM w/FIM, showing that the fragment tokenization
method has little impact on infilling ability. For CCEval, the metrics shows simi-
lar pattern. Compared to ES, EM shows a more significant decrease as the model
struggles to generate subtokens but performs well in generating other types of
content.

5.2 Inference Speedup

Figure 11 illustrates the overall inference performance. Among the three schemes,
Baseline performs the worst due to the lack of KV cache reuse, requiring the
entire prompt’s KV cache to be recomputed in each round which is highly time
consuming. Instead, FIM reduces latency by 21% and improves throughput by
26% on average by avoiding the recomputation of the prefix’s KV cache. However,
it still requires recomputing the suffix’s KV cache due to the inefficiency of FIM.
EFIM addresses this issue, achieving an average latency reduction of 52% and a
throughput increase of 98%. Besides, the average latency per request drops below
2 seconds, significantly enhancing user experience. EFIM achieves the lowest
latency and highest throughput by maximizing KV cache reuse, as evidenced by
the highest input token throughput.

Number of concurrently serving users. To evaluate the impact of the
number of concurrently serving users, we conduct a sensitivity study. Figure
12 illustrates the average latency and KV cache reuse rate as user count in-
creases. From the results, we observe that the latency of FIM increases almost
proportionally with the number of users. In contrast, EFIM exhibits a steeper
latency curve as the user count grows, which can be attributed to a significant



EFIM: Efficient Serving of LLMs for Infilling Tasks 11

0

1

2

3

4

5

deepseek llama
L

at
en

cy
 (

s)

Baseline FIM EFIM

(a) Average latency

0

2

4

6

8

10

deepseek llama

R
eq

u
es

t 
th

ro
u

gh
p

u
t

(r
eq

/s
)

(b) Request throughput

0

5

10

15

20

25

deepseek llama

In
p

u
t 

th
ro

u
gh

p
u

t
(k

to
k

/s
)

(c) Input token throughput

0 0
0

20

40

60

80

100

deepseek llama

R
eu

se
 r

at
e 

(%
)

(d) KV cache reuse rate

Fig. 11: Overall inference performance on average latency, request throughput,
input token throughput and KV cache reuse rate to illustrate the efficiency of
different degrees of reusable KV cache.

decline in its KV cache reuse rate. When the number of users is relatively low,
EFIM maintains a stable reuse rate of around 80%. However, as the user count
increases, the total capacity of the KV cache for completed requests gradually
exceeds available GPU memory, leading to a drop in reuse rate. On the other
hand, FIM consistently shows a lower reuse rate, remaining below 40% across
all user counts.

5.3 Cost Efficiency

While existing LLMs require continued pretraining to enable subtoken gener-
ation abilities, our method demonstrates superior cost efficiency. For instance,
Meta’s Llama3.1-8B model requires 1.46 million H100 GPU hours for train-
ing [26]. In contrast, our fragment tokenization approach consumes only 10,752
A100 GPU hours (64 × 7 × 24), representing merely 0.74% of training cost of
Llama3.1-8B. According to the Deepseek technical report [12,13], the Deepseek
V3 model requires 2.788 million H800 GPU hours for training, with an average
daily serving cost of 43,536 H800 GPU hours per day (1.56% of its training
cost). By improving throughput by 98%, EFIM reduces serving costs by 49.5%
(1− 1

1+0.98 ), which translates to 0.77% of the total training cost. This reduction
enables the training cost for fragment tokenization method to be offset within a
single day. It is important to note that Deepseek is used here as an illustrative
example. Other companies may incur higher serving costs depending on their
specific deployment scenarios. Nevertheless, the cost efficiency of EFIM remains
a compelling advantage for scaling LLM inference.



12 T. Guo et al.

0
1
2
3
4
5
6
7

8 16 24 32

L
at

en
cy

 (
s)

EFIM FIM

0

5

10

15

20

25

32 64 96 128

L
at

en
cy

 (
s)

0

20

40

60

80

100

8 16 24 32

R
eu

se
 r

at
e 

(%
)

(a) deepseek

0

20

40

60

80

100

32 64 96 128

R
eu

se
 r

at
e 

(%
)

(b) llama

Fig. 12: Variation of latency (above) and KV cache reuse rate (below) as the
number of users (horizontal axis) increases.

6 RELATED WORK

Cross-request KV cache reuse. Cross-request KV cache reuse is a key feature
in LLM inference framework [23,41], aimed at reducing computation during the
prefill stage. Several studies [18,19,37,39] have addressed the challenge of limited
GPU memory for storing KV cache by utilizing CPU host memory or even disk
storage to expand capacity. While these approaches focus on leveraging physical
resources to improve KV cache reuse, our work improves it by transforming the
prompt format in the infilling scene.

LLMs for infilling tasks. Using LLMs to infill contents has become a cru-
cial technique in assisted programming, with numerous open-source models de-
veloped to support this application [17,20,22,25,27–29,31]. Existing research typ-
ically focuses on acquiring, curating, and generating large-scale training datasets,
as well as optimizing the training process to enhance the performance and ac-
curacy of infilling tasks. In contrast, our work targets a specific aspect of model
functionality which improves the subtoken generation ability without compro-
mising overall model performance.

7 CONCLUSION

This paper identifies that the efficiency of LLM inference in infilling tasks can be
hindered by the FIM format. To address this issue, we propose EFIM, a modified
format designed to increase KV cache reuse. However, EFIM reveals universal
subtoken generation problems in current LLMs. To solve it, we introduce an
augmented training method during data processing to empower LLMs’ sub-token
generation. Experiments on two typical LLMs shows that EFIM reduces average
latency by 52% and increases throughput by 98%, while maintaining the model’s
original capabilities.



EFIM: Efficient Serving of LLMs for Infilling Tasks 13

Acknowledgements and Artifact Availability. We are grateful to the anony-
mous reviewers for their helpful suggestions. Special thanks are extended to Yi
Liu and Qiang Lin at Tencent for their contributions. This research was sup-
ported by the National Natural Science Foundation of China-#62472462/#62402
534/#62461146204, and sponsored by CCF-Tencent Rhino-Bird Open Research
Fund (CCF-Tencent RAGR20240102). The artifact is available in the Zenodo
repository [21].

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Aminabadi, R.Y., Rajbhandari, S., Awan, A.A., et al.: Deepspeed-inference: En-
abling efficient inference of transformer models at unprecedented scale. In: SC
(2022). https://doi.org/10.1109/SC41404.2022.00051

2. Anil, R., Borgeaud, S., Wu, Y., et al.: Gemini: A family of highly capable multi-
modal models. arXiv (2023). https://doi.org/10.48550/ARXIV.2312.11805

3. Bavarian, M., Jun, H., Tezak, N., et al.: Efficient training of language models to
fill in the middle. arXiv (2022). https://doi.org/10.48550/ARXIV.2207.14255

4. Brown, T.B., Mann, B., Ryder, N., et al.: Language models are few-shot learners.
In: NeurIPS (2020)

5. OpenAI canvas. https://openai.com/index/introducing-canvas/
6. Chen, M., Tworek, J., Jun, H., et al.: Evaluating large language models trained on

code. arXiv (2021)
7. Chowdhery, A., Narang, S., Devlin, J., et al.: Palm: Scaling language modeling

with pathways. J. Mach. Learn. Res. (2023)
8. Amazon CodeWhisper. https://docs.aws.amazon.com/codewhisperer/
9. GitHub Copilot. https://github.com/features/copilot

10. Dao, T.: Flashattention-2: Faster attention with better parallelism and work par-
titioning. In: ICLR (2024)

11. Dao, T., Fu, D.Y., Ermon, S., et al.: Flashattention: Fast and memory-efficient
exact attention with io-awareness. In: NeurIPS (2022)

12. DeepSeek-AI, Liu, A., Feng, B., Xue, B., et al.: Deepseek-v3 technical report. arXiv
(2024). https://doi.org/10.48550/ARXIV.2412.19437

13. DeepSeek V3 serving. https://zhuanlan.zhihu.com/p/27181462601
14. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep

bidirectional transformers for language understanding. In: NAACL-HLT (2019).
https://doi.org/10.18653/V1/N19-1423

15. Ding, Y., Wang, Z., Ahmad, W.U., et al.: Crosscodeeval: A diverse and multilingual
benchmark for cross-file code completion. In: NeurIPS (2023)

16. Dubey, A., Jauhri, A., Pandey, A., et al.: The llama 3 herd of models. arXiv (2024).
https://doi.org/10.48550/ARXIV.2407.21783

17. Fried, D., Aghajanyan, A., Lin, J., et al.: Incoder: A generative model for code
infilling and synthesis. In: ICLR (2023)

18. Gao, B., He, Z., Sharma, P., et al.: Cost-efficient large language model serving for
multi-turn conversations with cachedattention. In: ATC (2024)

https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2207.14255
https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.48550/ARXIV.2407.21783


14 T. Guo et al.

19. Gim, I., Chen, G., Lee, S., et al.: Prompt cache: Modular attention reuse for low-
latency inference. In: MLSys (2024)

20. Guo, D., Zhu, Q., Yang, D., et al.: Deepseek-coder: When the large language model
meets programming - the rise of code intelligence. arXiv (2024). https://doi.org/
10.48550/ARXIV.2401.14196

21. Guo, T., Dong, H., Leng, Y., Liu, F., Lin, C., Xiao, N., Zhang, X.: EFIM: Efficient
Serving of LLMs for Infilling Tasks with Improved KV Cache Reuse (Jun 2025).
https://doi.org/10.5281/zenodo.15580572

22. Hui, B., Yang, J., Cui, Z., et al.: Qwen2.5-coder technical report. arXiv (2024).
https://doi.org/10.48550/ARXIV.2409.12186

23. Kwon, W., Li, Z., Zhuang, S., et al.: Efficient memory management for large lan-
guage model serving with pagedattention. In: SOSP (2023). https://doi.org/10.
1145/3600006.3613165

24. Lee, W., Lee, J., Seo, J., Sim, J.: Infinigen: Efficient generative inference of large
language models with dynamic KV cache management. In: OSDI (2024)

25. Li, R., Allal, L.B., Zi, Y., et al.: Starcoder: may the source be with you! TMLR
(2023)

26. Llama3.1 model card. https://huggingface.co/meta-llama/Llama-3.1-8B
27. Lozhkov, A., Li, R., Allal, L.B., et al.: Starcoder 2 and the stack v2: The next

generation. arXiv (2024). https://doi.org/10.48550/ARXIV.2402.19173
28. Nijkamp, E., Hayashi, H., Xiong, C., et al.: Codegen2: Lessons for training llms on

programming and natural languages. arXiv (2023). https://doi.org/10.48550/
ARXIV.2305.02309

29. Nijkamp, E., Pang, B., Hayashi, H., et al.: Codegen: An open large language model
for code with multi-turn program synthesis. In: ICLR (2023). https://doi.org/
10.48550/ARXIV.2312.11805

30. Pope, R., Douglas, S., Chowdhery, A., et al.: Efficiently scaling transformer infer-
ence. In: MLSys (2023)

31. Rozière, B., Gehring, J., Gloeckle, F., et al.: Code llama: Open foundation models
for code. arXiv (2023). https://doi.org/10.48550/ARXIV.2308.12950

32. Starcoderdata. https://huggingface.co/datasets/bigcode/starcoderdata
33. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: NeurIPS

(2017)
34. Wang, X., Wang, Z., Liu, J., et al.: MINT: evaluating llms in multi-turn interaction

with tools and language feedback. In: ICLR (2024)
35. Wang, Y., Chen, K., Tan, H., Guo, K.: Tabi: An efficient multi-level inference

system for large language models. In: EuroSys (2023). https://doi.org/10.1145/
3552326.3587438

36. Xiao, G., Tian, Y., Chen, B., et al.: Efficient streaming language models with
attention sinks. In: ICLR (2024)

37. Ye, L., Tao, Z., Huang, Y., Li, Y.: Chunkattention: Efficient self-attention with
prefix-aware KV cache and two-phase partition. In: ACL (2024). https://doi.
org/10.18653/V1/2024.ACL-LONG.623

38. Yu, G., Jeong, J.S., Kim, G., et al.: Orca: A distributed serving system for
transformer-based generative models. In: OSDI (2022)

39. Yu, L., Lin, J., Li, J.: Stateful large language model serving with pensieve. In:
EuroSys (2025). https://doi.org/10.1145/3689031.3696086

40. Zhang, Z., Sheng, Y., Zhou, T., et al.: H2O: heavy-hitter oracle for efficient gener-
ative inference of large language models. In: NeurIPS (2023)

41. Zheng, L., Yin, L., Xie, Z., et al.: Sglang: Efficient execution of structured language
model programs. In: NeurIPS (2024)

https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.5281/zenodo.15580572
https://doi.org/10.5281/zenodo.15580572
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2305.02309
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.1145/3552326.3587438
https://doi.org/10.18653/V1/2024.ACL-LONG.623
https://doi.org/10.18653/V1/2024.ACL-LONG.623
https://doi.org/10.18653/V1/2024.ACL-LONG.623
https://doi.org/10.18653/V1/2024.ACL-LONG.623
https://doi.org/10.1145/3689031.3696086
https://doi.org/10.1145/3689031.3696086

	EFIM: Efficient Serving of LLMs for Infilling Tasks with Improved KV Cache Reuse

