
GoPTX: Fine-grained GPU Kernel Fusion by PTX-level
Instruction Flow Weaving

Kan Wu, Zejia Lin, Mengyue Xi, Zhongchun Zheng, Wenxuan Pan, Xianwei Zhang#, Yutong Lu#

Sun Yat-sen University, Guangzhou, China
{wukan3, linzj39, ximy, zhengzhch3, panwx5}@mail2.sysu.edu.cn, {zhangxw79, luyutong}@mail.sysu.edu.cn

Abstract—GPUs have been heavily utilized in diverse applications, and
numerous approaches, including kernel fusion, have been proposed to
boost GPU efficiency through concurrent kernel execution. However, these
approaches generally overlook the opportunities to mitigate warp stalls
and improve instruction level parallelism (ILP) in inter-kernel resource
sharing. To address this issue, we introduce GoPTX, a novel design for
kernel fusion that improves ILP through deliberate weaving instructions
at the PTX level. GoPTX establishes a merged control flow graph
(CFG) from original kernels, enabling to interleaving of instructions that
were sequentially executed by default and minimizing pipeline stalls on
data hazards. We further propose a latency-aware instruction weaving
algorithm for more efficient instruction scheduling and an adaptive code
slicing method to enlarge the scheduling space. Experimental evaluation
demonstrates that GoPTX achieves an average speedup of 11.2% over the
baseline concurrent execution, with a maximum improvement of 23%.
The hardware resource utilization statistics show significant enhance-
ments in eligible warps per cycle and resource use.

Index Terms—GPU, Kernel Fusion, ILP, Warp Stall, Data Hazard

I. INTRODUCTION

As GPUs incorporate an increasing amount of computing re-
sources, it becomes difficult for a single GPU kernel to fully utilize
the vast resources. One solution is to share resources through concur-
rent kernel execution, where GPU vendors provide hardware parallel
task queues and management, such as cuStream, MPS [1], and MIG
[2] to execute multiple tasks. Essentially, these solutions rely on the
GPU’s thread-block (TB) scheduler to allocate resources among the
co-running kernels. Nonetheless, the leftover policy [3], [4] employed
by the TB scheduler results in imbalanced resource allocation, greatly
limiting the effectiveness of intra-SM resource sharing.

To overcome the hardware limitations, software-based approaches
have been proposed for improving inter-kernel resourcing utilization.
One such representative method is kernel fusion, which has been
adopted by mainstream deep learning frameworks [5], [6], tools [7],
[8] and systems [9], [10]. The fused kernel enforces the co-execution
of instructions from two kernels onto the same SM which issues
warps that utilize complementary resources, thereby improving the
overall SM utilization. However, such warp-level concurrency incurs
frequent thread context switching and stalls because of resource
contention [3], which can negatively impact the instruction pipeline
and further ILP. To mitigate such overhead, carefully instruction
scheduling is needed and thus a fine-grained technique to weave
instruction flows from concurrent kernels into a unified flow is
urgently demanded. By weaving independent instructions, the data
dependency length can be increased, allowing instructions from
another kernel to proceed without stalling or warp switching, filling
pipeline bubbles, hiding the execution latency, as shown in Figure 1.

However, several unique challenges are associated with instruction
weaving. First, kernels may have complex control flow graphs (CFGs)
that include synchronization barriers for groups of threads. Weaving
the instructions of these kernels requires a careful operation to merge

#Corresponding author.

Second Kernel
1 mov %s1, 1
2 mov %s2, %s1

First Kernel
1 mov ��1, 1
2 mov ��2, ��1
3 mov ��3, ��2

 data dependency

Weaved Kernel
1 mov ��1, 1
2 mov %s1, 1
3 mov ��2, ��1
4 mov %s2, %s1
5 mov ��3, ��2

Fig. 1: Increase dependency length by instruction weaving.

the diverging CFGs into a unified structure while ensuring correct-
ness and avoiding potential deadlocks. Second, achieving perfect
instruction reordering is an NP-hard problem [11], [12], especially
for GPUs with thousands of parallel threads. Identifying a near-
optimal weaving output within a limited time is crucial for a feasible
solution. To the best of our knowledge, no existing software-based
solutions automatically weave instructions from distinct kernels to
share resources and optimize ILP. Previous attempts [13], [14] have
been limited to fusion at the source code level, focusing primarily
on exploiting TLP.

In this paper, we present GoPTX, a novel design for kernel fusion
that operates at the PTX level. GoPTX introduces a new CFG merging
algorithm to unify CFGs from multiple kernels, which involves
critical techniques to preserve the execution semantics and resolve
deadlocks caused by synchronization. Moreover, we develop a latency
model to guide the interleaving of independent instructions within
the basic blocks of newly generated CFGs, which effectively helps
fill pipeline bubbles to optimize execution performance. Additionally,
the latency model is used to estimate the elapsed cycles of basic
blocks (BBs), enabling the adaptive slicing of long codes into
balanced segments before CFG merging, creating more opportunities
for instruction weaving.

The contributions of this paper are summarized as follows:
• Our analysis reveals that GPU warp stalls primarily originate

from the scoreboard, hinders the achievable ILP.
• We propose GoPTX, a design for kernel fusion that weaves

instructions from distinct kernels and fills the pipeline bubbles.
GoPTX is further augmented with code slicing to expose more
ILP opportunities. GoPTX particular handles to avoid deadlocks.

• Evaluations show that GoPTX effectively improves execution
performance with optimized hardware utilization and reduced
stalls, outperforming the prior arts of kernel fusion.

II. BACKGROUND AND MOTIVATION

A. Background

a) GPU Hardware Architecture: A GPU1 consists of multi-
ple streaming multiprocessors (SMs), each containing hundreds of
processing cores and on-chip components like register files and

1We use the terms from NVIDIA GPU design in this paper.

L1 caches. Logical threads execute on these cores in a single-
instruction multiple-thread (SIMT) fashion. A group of 32 threads (a
warp) operates in lock-step within the execution pipeline. If a warp
stalls, the scheduler switches to another eligible warp, continuously
issuing instructions (Figure 2). This thread-level parallelism (TLP)
hides instruction pipeline latency, making the GPU a high-throughput
computational device.

selected
warp

instruction

warp scheduler

eligible warp

switch

stalled
warp

stalled

Fig. 2: The GPU warp scheduler frequently encounters stalls, causing
a switch to another thread and resulting in “bubbles” (pink colored)
on the execution path.

b) CUDA Compilation Workflow: Programmers define parallel
portions of their applications as kernels within the vendor’s dialect
(e.g., CUDA C). As shown in Figure 3, the CUDA frontend (e.g.,
nvcc or clang [15]) parses the source code and generates an
intermediate representation (IR) named PTX. Subsequently, the PTX
code is compiled by the backend compiler ptxas into an executable
binary file (cubin) that is tailored for the target GPU architecture.
PTX is defined by NVIDIA and resembles LLVM IR [16]. A kernel
in PTX consists of basic blocks (BBs) forming a control flow graph
(CFG). Each BB contains a bunch of diverse instructions and ends
with a terminator instruction (e.g., a branch or function return).
All the instructions are in single-assignment form with limitless
registers available and may include hardware-specific primitives like
barriers and tensor core operations. PTX offers a direct abstraction of
the underlying GPU hardware, enabling effective backend compiler
optimizations.

CUDA C
1__global__ void relu(float *x){

2 if (*x >= 0) return;

3 *x = 0;

4 }

nvcc

01100110
1010100...

cubin

ptxas

PTX

1.visible.entry relu(.para�.u64 x){

2 L0: ld.para�.u64 %rd1, [x];

3 ld.global.f32 ��1, [�rd1];

4 setp.ge.f32 %p, ��1, 0

5 @%p bra L2;

6 L1: mov.u32 %r1, 0;

7 st.global.u32 [�rd1], %r1;

8 L2: ret;

9 }

CFG

0 1 2p=true

p=false

Fig. 3: CUDA compilation workflow.

c) Kernel Fusion: Targeting improved utilization and perfor-
mance, kernel fusion combines two concurrent kernels at the software
level to share on-chip resources. Unlike hardware methods, kernel
fusion incurs no hardware overhead or limitations, making it flexible
and efficient. Figure 4 shows two primary existing fusion techniques
and our desire. Vertical fusion (VFuse) [13] sequentially combines
the instructions from input kernels, horizontal fusion (HFuse) [14]
distributes the instructions to different warps, while our desired fine-
grained weaves two kernels together.

B. Opportunity to Mitigate Warp Stalls

We analyze utilization statistics from representative application
kernels (Section IV-B) to explore the potential of ILP. Figure 5a

compares the average number of eligible warps per cycle (EWPC)
of the kernels. We observed that the EWPC of other kernels is sig-
nificantly lower compared to the computationally intensive MICND
kernel. Figure 5b shows the stall reasons. The most prevalent stall
cause for kernels other than MICND is the scoreboard, which handles
data dependencies and enables out-of-order instruction execution.
This suggests that data hazards and resource contention cause pipeline
stalls and limit the achievable EWPC and ILP.

To alleviate the scoreboard stalls , fine-grained instruction schedul-
ing is required. However, current intra-kernel instruction reordering
techniques reach a performance ceiling because of data dependents.
Therefore, we turn to “weave” instructions between concurrent
kernels for further scheduling space. Figure 1 shows an example,
where each instruction depends on the previous one so all the data
dependency length is 1, and can not be reordered or pipelined to
improve ILP. After weaving, all the dependency length increases to
2, improving the pipeline’s ability to process dependent instructions.

III. DESIGN

In this section, we present GoPTX, a novel design for kernel fusion
that improves ILP by weaving instructions at PTX level, enabling
efficient resource sharing between kernels while mitigating warp
stalls. Figure 6 depicts the overall workflow of GoPTX, generating
a weaved PTX code from two input PTX codes. The workflow
comprises three phases:

a) CFG Merging: A new control flow graph (CFG) is con-
structed, unifying the execution paths of both kernels. Branching
conditions and dummy nodes are inserted to maintain equivalents
and avoid deadlocks.

b) Instruction Weaving: A low-complexity weaving strategy
constructs a locally optimal instruction sequence, minimizing pipeline
stalls. Instructions are scheduled based on latencies measured via
micro-benchmarking.

c) Code Slicing (Optional): Long BBs are split into multiple
short segments before CFG merging, creating opportunities for cross-
BB instruction weaving.

A. CFG Merging

Algorithm 1 describes CFG merging (CFM) as a traversal proce-
dure working on BB-level. CFM merges the input kernels, denoted
as F and S into a merged CFG M , ensuring that the generated CFG
preserves the execution semantics of both original kernels. Initially,
the output CFG M is set to empty. The traversal begins at the initial
state ⟨0, 0⟩ of M , corresponding to the starting BBs F0 and S0

of both CFGs (lines 3–6). For each traversed state ⟨f, s⟩ (line 8),
the followings are performed. Firstly, CFM fuses BBs Ff and Ss

into a single BB M [⟨f, s⟩], providing the foundation for instruction
weaving. Then, the successors of the merged BB are retrieved using
the function get next list (line 10). The traversal continues until
all possible state M [⟨f, s⟩] are consumed (lines 11–15).

The function get next list is tailored to handle branching in CFG
merging. Figure 7 illustrates the outputs of this function, depending
on the characteristics of the origin basic blocks (BB) F [f], S[s].
For trivial BBs without branches (Figure 7a), the function returns
the succeeding BB if M [⟨f, s⟩] is not an end node, otherwise an
empty node. When the BB has conditional branches (Figure 7b),
the function exhaustively combines each conditional branch from the
original kernels. To handle the branching logic correctly, two dummy
nodes are inserted, allowing the complete conditions to be determined
and facilitating correct execution across the merged paths.

VFuse Kernel
1 __global__ __launch_bounds__(32)
2 void vfuse(float x, float y) {
3 x1 = 1; x2 = 2;
4 if (x < 0) {
5 x2 = 1; x1 = 2;
6 }
7 y1 = 1; y2 = 2;
8 if (y < 0) {
9 y2 = 1; y1 = 2;
10 }
11 }

HFuse Kernel
1 __global__ __launch_bounds__(64)
2 void hfuse(float x, float y){
3 if (threadIdx.x < 32) {
4 x1 = 1; x2 = 2;
5 if (x < 0) {
6 x2 = 1; x1 = 2;
7 }
8 } else {
9 y1 = 1; y2 = 2;
10 if (y < 0) {
11 y2 = 1; y1 = 2;
12 }
13 }
14 }

First Kernel

1 __global__ __launch_bounds__(32)

2 void first(float x) {

3 x1 = 1; x2 = 2;

4 if (x < 0) {

5 x2 = 1; x1 = 2;

6 }

7 }

Second Kernel

1 __global__ __launch_bounds__(32)

2 void second(float y) {

3 y1 = 1; y2 = 2;

4 if (y < 0) {

5 y2 = 1; y1 = 2;

6 }

7 }

1 __global__ __launch_bounds__(32)
2 void desire(float x, float y) {
3 x1 = 1; y1 = 1;

5 if (x < 0 && y < 0) {
6 x2 = 1; y2 = 1;

8 } else if (x < 0) {
9 x2 = 1; x1 = 2;
10 } else if (y < 0) {
11 y2 = 1; y1 = 2;
12 }
13 }

4 x2 = 2; y2 = 2;

7 x1 = 2; y1 = 2;

Desire Kernel

Fig. 4: Illustrative examples of first and second input kernel with coarse-grained (VFuse, HFuse) and fine-grained (Desired) fusion.

0 1,000 2,000
EWPC

GELU
HARRIS

LUD
MICND
SORT
STMS
WMMA

(a) Significant disparity
of EWPC.

0 50 100
Stall Percent (%)

long_scoreboard
wait
not_selected
math_pipe_throttle
no_instruction

(b) Stall reasons breakdown, of which score-
board contributes the most.

Fig. 5: EWPC and stall reasons distribution.

Algorithm 1 Control Flow Graph Merging

1: input: F ̸= ∅, S ̸= ∅ {the first and the second input CFG}
2: output: M {the merged CFG}
3: M ← ∅
4: M.add node(< 0, 0 >)
5: Stack ← {< 0, 0 >}
6: Pushed← {< 0, 0 >}
7: while Stack ̸= ∅ do
8: < f, s >← Stack.pop()
9: M [< f, s >].block ← F [f].block + S[s].block

10: for < u, v >∈ get next list(< f, s >, F, S) do
11: if < u, v >/∈ Pushed then
12: M.add node(< u, v >)
13: Stack.push(< u, v >)
14: Pushed.insert(< u, v >)
15: end if
16: M.add edge(< f, s >,< u, v >)
17: end for
18: end while
19: return M

B. Latency-Aware Instruction Weaving

Having fused the BBs from two kernels in Section III-A, we now
focus on scheduling instructions from both input BBs within a limited
time frame. However, finding the best instruction scheduling for a
given basic block is a well-known NP-hard problem [11], [12] when
the instruction dependencies form a directed acyclic graph (DAG)
instead of a tree. To generate an optimized heuristic input for the
ptxas backend compiler, we simplify the problem and propose a
latency-aware instruction weaving method. We propose a latency-
aware weaving algorithm based on the metrics measured in Paragraph
III-D0b, which can be viewed as a greedy algorithm that takes
instructions lists of the fusing BBs as input. As shown in Figure 8,
in each iteration, GoPTX calculates the sum of instruction latencies
for instructions already woven from each list, and selects a new

instruction from the list with the lower sum. If the sums are equal, the
instruction with the higher individual latency is chosen. The process
continues until all instructions are woven.

C. Adaptive Code Slicing

The basic CFM approach can overlook weaving opportunities when
block sizes differ significantly as the smaller block may not provide
sufficient instructions to hide the latency of the longer instruction
flow. To address this, we introduce code slicing, dynamically adjust-
ing block sizes to balance latencies and maximize weaving potential.
Slicing involves dividing blocks into smaller segments, ensuring
each segment’s execution time remains below a threshold, which is
determined by the average number of execution cycles of all basic
blocks, as shown in Equation 1. This strategy balances block sizes,
maximizes weaving opportunities, and improves latency hiding.

threshold =

∑Nblocks

i=1

∑Mblocki
j=1 latency(blocki, j)

Nblocks

 (1)

D. Implementation

a) PTX Code Transformation: Due to the lack of official PTX
processing tools from NVIDIA, we developed a custom PTX parser
based on ANTLR4 [17]. This parser enables in-depth control flow
and identifier analysis and allows us to rename identifiers from
two kernels before CFG merging to prevent namespace conflicts.
Compared to source code level work [13], [14], PTX-level transfor-
mation provides a closer abstraction to the underlying GPU hardware
while maintaining a simple intermediate representation, benefiting
instruction-level manipulation in GoPTX. Our design also avoids
modifying existing CUDA C source code and executables, ensuring
easy adaptability to existing code for current and future devices.

b) Instruction Latency Model: We measure instruction latency
via microbenchmark [18] which records the average execution cycles
of a single thread repeatedly executing the target PTX instruction. For
shared memory and global memory accesses, we employ a pointer-
chasing technique to ensure accurate latency measurements. This
technique serializes memory accesses, preventing simultaneous multi-
ple memory accesses that could lead to inaccurate measurements. The
resulting latency profile enables precise performance predictions and
optimizations specific to the GPU architecture, providing a versatile
solution for instruction weaving.

c) Race Condition Avoiding: GPU thread synchronization in-
structions, such as barriers and tensorcore operations, can lead to
deadlocks when weaving instructions from two kernels. As shown
in Figure 9a, both the input CFGs contain blocks with synchro-
nization instructions. However, one of the CFGs exhibits different
threads performing synchronization operations in different branches,
disrupting the synchronization order in the merged CFG, and leading
to potential deadlocks. To address this issue (Figure 9b), during

input PTX2 input PTX2 Ouput PTX

A
dd

 s
uf

fix

Pa
rs

in
g

②
 w

ea
vi

ng

PT
X

ge
ne

ra
tin

g

Merged CFG

1 mov ��,1

2 mov %2,2

3 mov %3,3

1 mov ��,1

���

9 mov %9,9

1 mov ��,1

2 mov %2,2

3 mov %3,3

1 mov ��f,1

���

9 mov %9f,9

Second CFG
First CFG

Second CFG
First CFG

Output CFG

1 mov ��f,1

���

17 mov %9s,9

18 mov %9f,9

 input PTX1 input PTX1

Preprocessing Postprocessing

③
 S

lic
in

g

①
 M

er
gi

ng

Fig. 6: Overall workflow of GoPTX, with three key phases of Slicing, Weaving and Merging, and additional phases of Preprocessing and
Postprocessing.

First CFG

F1F0

Second CFG

S1S0

Merged CFG

F1
S1

F0
S0

(a) Merge trivial nodes: directly merge BBs without branches.

Second CFG

S0

S2S1

First CFG

F0

F2F1

Merged CFG

F0
S0

dummydummy

F2
S2

F2
S1

F1
S2

F1
S1

(b) Merge conditional branches: insert dummy nodes and branching
for divergent control flow.

Fig. 7: Merging the control flow from two kernels.

6 7 8 9

3 4 51 2

1 26 7

Input Flow A

Output Flow

Selected

7

Remains

Input Flow B

Fig. 8: The weaving process. Instruction 7 is selected because
instruction 6’s latency is lower than the sum of instruction 1 and
instruction 2.

CFG merging, when encountering a block with synchronization
instructions from the second kernel, we insert dummy blocks before
it until the preceding block and its successors from the first kernel
have no synchronization instructions. This ensures that threads do not
stall indefinitely and preserves the original control flow, resulting in
deadlock-free instruction weaving.

d) Register Tuning: CFG merging can increase register pres-
sure, impacting occupancy and performance. Based on profiling, we
measure the optimal -maxrregcount parameter in (32, 40, 48, 64,
80, 128, 256) to balance ILP and TLP.

e) Multiple Kernel Fusing: N-kernel fusion can be decomposed
into sub-problems, e.g., (A+B)+C for 3-kernel fusion. However,
previous studies [14] showed that merging more kernels diminishes
returns due to the long tail effect.

IV. EVALUATION METHODOLOGY

A. Hardware and Software Platform

We conduct experiments on a server featuring AMD EPYC 7742
CPU, 256GB DRAM, and NVIDIA A100-PCIE-40GB GPU. We lock

Merged CFG with a deadlock

sync 1
sync 0

Deadlock

sync 0
sync 1

First CFG

sync 0

Second CFG

sync 1

sync 1

(a) Deadlock occurs when the synchronization barrier in different
branches of the kernels waits indefinitely for each other.

Merged CFG without deadlock

empty

dummy

sync 0

dummy sync 1

sync 0

sync 1

empty

Second CFG

dummy

dummy

sync 1 sync 1

First CFG

sync 0

(b) Deadlock solved by inserting dummy blocks before synchroniza-
tions, delaying the barriers to prevent conflicts.

Fig. 9: Addressing race condition in the weaved kernel.

the GPU on max frequency 1410 MHz. The operating system is
Ubuntu 24.04LTS, and CUDA driver version is 555.42.06. We use
nvcc and ptxas shipped with CUDA 12.5.1, and clang 17.0.6 as
the host compiler with compile option -O3 -arch=sm_80.

B. Workloads

We evaluate GoPTX using multiple representative kernels drawn
from realistic applications like the Rodinia Benchmark Suite [19],
ONNX-runtime [20], CUDA Samples [21], and HIPACC Sam-
ples [22]. Table I characterizes the kernels in terms of register
count (Reg), arithmetic operations (INT, FP), synchronization barrier
(Sync), shared memory (Smem) and Tensor Core use (TC). For
evaluation, we pair each kernel with all others, including itself,
to create concurrent execution cases per kernel. This showcases
GoPTX’s ability to transcend source code limitations and integrate
seamlessly into existing scheduling systems [23], [24]. To maintain
consistent experimental conditions, we adjust the kernels to employ a
standardized launch configuration without compromising correctness
or performance, as supported by previous studies [13], [14]. In detail,
we set the blockDim to (256,1,1) and the gridDim to (1048576,1,1).
For HFuse, the blockDim is specifically set to (512,1,1) since HFuse
directly combines two kernels at the block level. This launch config-
uration fulfills A100’s stream multiprocessors to isolate the impact
of instruction weaving and other factors on overall performance.

TABLE I: Kernels and their resource requirements.

kernel Time Reg INT FP Sync Smem TC

GELU [20] 1.96ms 19 ✓
HARRIS [22] 1.49ms 14 ✓

LUD [19] 3.68ms 30 ✓ ✓ ✓
MICND [21] 1.25ms 15 ✓
SORT [19] 3.19ms 17 ✓ ✓
STMS [22] 1.63ms 12 ✓ ✓

WMMA [21] 2.81ms 44 ✓ ✓ ✓

C. Metrics

To evaluate the effectiveness of our approach, we collect statistics
with the CUDA Profiling Tools Interface (CUPTI) [25], with metrics
being listed in Table II. EWPC is the indicator we focus on,
representing the average number of warps ready per clock cycle. The
higher the value, the more instructions can be executed at the same
time, and the higher the ILP. AOC is the number of active warps per
cycle divided by the GPU’s maximum supported, representing TLP.
Other indicators measure the GPU hardware utilization.

TABLE II: Hardware metrics to reflect resource usages.

Metric Note Type

EWPC eligible warps per cycle ILP indicator
AOC achieved occupancy TLP indicator
DU dram utilization

off-chip
resource

L2U l2 cache utilization
L2HR l2 cache hit rate
ISU issue slot utilization
LSU load-store unit utilization on-chip
SPU single precision unit utilization resource
TSU tex/l1 unified cache utilization
THR tex/l1 cache hit rate

D. Comparing Schemes

We compare GoPTX with the following schemes shown in Figure
4 in our experiments: ❶ Baseline, launching two kernels in separate
cuStreams to enable concurrent execution; ❷ VFuse [13], concate-
nating two kernels sequentially for fusion; ❸ HFuse [14], scheduling
two kernels into different warps; ❹ GoPTX, our proposed design,
merging control flow and weaving instructions.

V. RESULTS AND ANALYSIS

A. Performance Improvement

Figure 10 shows the overall speedup achieved by GoPTX, which
delivers an average of 11.2% speedup over the baseline, ranging from
23% (STMS+LUD) to -2% (WMMA+GELU). In contrast, VFuse and
HFuse achieve moderate geometric mean speedups of 6.4% and 1%,
respectively. While VFuse can achieve significant performance gains
in certain compute-intensive benchmarks (LUD, MICND, WMMA),
its benefits are less pronounced in others. HFuse, on the other hand,
does not always lead to performance improvements as it requires
extensive profiling to determine the optimal kernel combine ratio [14].
GoPTX significantly outperforms both HFuse and VFuse in the
vast majority of benchmarks, except for WMMA. The WMMA kernel
employs a large number of warp synchronization instructions to
utilize tensor cores. To avoid deadlocks, GoPTX adopts a conservative
merge strategy, which introduces overhead and leads to a slight
performance decrease (0.05%) compared to VFuse.

Figure 11 showcases the impact of our approach on instruction-
level parallelism (ILP), as measured by the number of eligible warps

GELU HARRIS LUD MICND SORT STMS WMMA geomean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

R
el

at
iv

e
S

pe
ed

up

Baseline VFuse HFuse GoPTX

Fig. 10: Performance improvement.

per cycle (EWPC). The data reveals that HFuse reduces EWPC by
14.4% in exchange for TLP improvement, while VFuse exhibits
minimal changes in EWPC due to the sequential concatenation of
kernels. In contrast, our approach demonstrably increases EWPC by
5.5% and max 50% (STMS, LUD) and min -35% (WMMA, GELU).
The SORT benchmark presents unique cases. SORT is memory-
bound, with a high volume of read operations and insufficient
computation to effectively hide latency with other kernels. Con-
sequently, despite performance gains achieved through inter-kernel
resource sharing, ILP remains impacted by -12%. The distribution of
EWPC acceleration across the benchmarks highlights the consistent
effectiveness of GoPTX in enhancing ILP over existing techniques,
and thus translates to performance gains, as demonstrated by the
overall speedup presented in Figure 10.

GELU HARRIS LUD MICND SORT STMS WMMA mean0
200
400
600
800

1,000
1,200
1,400

el
ig

ib
le

 w
ar

ps
 p

er
 c

yc
le Baseline VFuse HFuse GoPTX

Fig. 11: Eligible warps per cycle comparison.

B. Resource Utilization

Figure 12 shows that VFuse and GoPTX improve occupancy
(AOC) by 4% compared to the baseline, while HFuse suffers a 5.7%
decrease because it launches more warps in a block waiting for others
to finish. This suggests that register pressure did not significantly
impact performance, as modern GPU compilers use advanced register
allocation strategies to optimize even with high register usage.
For example, WMMA uses 40 registers per block (75% theoretical
occupancy), while HARRIS uses 14 registers (100% occupancy).
Our weaved kernel uses 40 registers (75% occupancy). VFuse and
GoPTX improve off-chip resource utilization, e.g DU by 3.7% and
6.5%, respectively, while HFuse shows no change. GoPTX also
achieves the highest instruction throughput (ISU) increase (4.0%).
For on-chip resources, VFuse and HFuse show increments but
suffer from inconsistent performance gains due to warp competition.
Overall, GoPTX’s ability to improve ILP and hide latency leads to
the best resource utilization and ISU among all evaluated techniques.

C. Case Study of Stalls

We analyze the impact of instruction weaving on warp stalls
using WMMA+GELU and WMMA+HARRIS. These workloads share
a common kernel (WMMA) but exhibit significantly different per-
formance improvements. GoPTX achieves a 20% performance im-
provement and a 38% increase in EWPC for WMMA+HARRIS,

AOC DU L2U L2HR ISU LSU SPU TSU THR0

20

40

60

80

100
P
er
ce
nt

Baseline VFuse HFuse GoPTX

Fig. 12: Hardware resource utilization comparison.

while experiencing a -2% performance degradation and a -35%
decrease in EWPC for WMMA+GELU. As Figure 13 illustrates,
after GoPTX processing, WMMA+HARRIS experiences a 20.5%
reduction in scoreboard stalls, while WMMA+GELU incurs a 30.4%
increase (still better than VFuse and HFuse). For total stall cycles,
WMMA+HARRIS sees a 34.5% reduction, while WMMA+GELU
remains unchanged. This disparity can be attributed to the differing
hardware resource contention between the kernels involved, as Table
I shows. Both WMMA and GELU involve a significant amount of
half-precision computation, leading to contention for ALU resources.
In contrast, WMMA and HARRIS (primarily integer computations)
exhibit complementary computation types. This result highlights the
importance of resource complementarity for ILP enhancement.

Baseline
VFuse
HFuse

GoPTX

WMMA+GELU WMMA+HARRIS

0 2,000,000 4,000,000
Number of Cycles

0 2,000,000 4,000,000
Number of Cycles

long_scoreboard wait not_selected math_pipe_throttle no_instruction Others

Fig. 13: Warp stalled cycles and reasons.

D. Performance Breakdown

a) Contributions of Merging, Weaving and Slicing: To isolate
the effects of each technique, we conducted a series of experiments
where we selectively enabled weaving and slicing. Even without both,
control flow optimization alone achieves a performance improvement
of 9.7%. This enhancement is attributed to the effective sharing of
resources within the SM and the instruction reordering capabilities
of the ptxas backend. Slicing incurs a slight decrease of 0.6%
while creating opportunities for weaving to achieve a significant
performance improvement of 2.1%. Without slicing, weaving only
improves 0.3%. These findings underscore the necessitity of both
weaving and slicing in facilitating instruction parallelism.

b) Threshold for Code Slicing: We compared our adaptive
slicing algorithm with fixed-threshold approaches, where the slicing
threshold ranged from 256 to 1024. As evident from Figure 14, the
effect of the threshold varies significantly and no single value is
universally optimal. Our adaptive algorithm outperforms the fixed-
threshold approach in most cases. However, the WMMA benchmark
exhibits better performance with the fixed-threshold approach due
to the presence of tensor core instructions, which occur at fixed
intervals. This highlights the sensitivity of the fixed-threshold ap-
proach to workload characteristics. In contrast, our adaptive approach
dynamically adjusts the slicing threshold, making it more robust and
adaptable to a wider range of workloads.

VI. RELATED WORK

a) Concurrent Kernel Execution: Methods based on cuStream,
MPS, or MIG [23], [26], [27] focus on scheduling and optimizing

GELU HARRIS LUD MICND SORT STMS WMMA geomean
1.00

1.05

1.10

1.15

1.20

R
el

at
iv

e
S

pp
ed

U
p

adaptive noSlicing 256 512 768 1024

Fig. 14: Speedup of the threshold for code slicing, compared to our
adaptive algorithm.

multiple kernels but don’t fully address resource under-utilization [3],
[28], [29]. Xu et al. propose Warped-Slicer [28], which dynamically
and statically schedules thread blocks from different kernels to a
single SM. Wang et al. introduce SMK [29], which uses preemption
for block-level scheduling by efficiently dividing resources. Although
these approaches can enhance utilization, Dai et al. [3] have shown
that intra-SM sharing schemes may reduce overall performance due
to substantial interference between kernels.

b) Code Combination Techniques: Guevara et al. [30] and
Gregg et al. [31] combine kernels at the thread block level, which can
incur significant overhead. Wang et al. [13] suggest three thread-level
fusion strategies, but their method cannot handle synchronization [4],
[13]. Li et al. [14] present automatic horizontal fusion, allowing
GPUs to distribute instructions to different warps. Even with the
above designs, severe kernel interference remains unresolved, and our
evaluation demonstrates that GoPTX outperforms those prior designs
on parallelism enhancement.

c) GPU ILP Optimization: Shobaki et al. [11] propose a
compile-time Branch-and-Bound algorithm to balance ILP and occu-
pancy, while their later work [12] parallelizes instruction scheduling,
further enhancing occupancy and reducing schedule length. WASP
[32] introduces warp specialization to enable parallel tasks within
a block, boosting utilization. These approaches generally overlook
resource sharing and latency hiding, thereby limiting ILP and uti-
lization across kernels constrained by hardware units, while our fine-
grained GoPTX method addresses this by enabling resource sharing
to enhance ILP.

VII. SUMMARY

Targeting at raising instruction-level parallelism of GPU execu-
tions, this paper presents GoPTX to weave instructions from two
different kernels, serving as a fine-grained kernel fusion at PTX level.
The design overall encompasses CFG merging, instruction weaving
and code slicing to generate highly efficient codes for better uti-
lization of the underlying resources. We implement the prototype of
GoPTX based on NVIDIA off-the-shelf CUDA software stack, with
particular handling of race conditions and deadlock. Experimental
results on representative kernels demonstrate that GoPTX effectively
improves performance with higher ILP and utilization.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive com-
ments and suggestions. This research was supported by the National
Natural Science Foundation of China-#62472462/#62461146204, and
sponsored by CCF-Tencent Rhino-Bird Open Research Fund (CCF-
Tencent RAGR20240102).

REFERENCES

[1] “NVIDIA Multi-Process Service (MPS).”
http://docs.nvidia.com/deploy/mps/index.html.

[2] “NVIDIA Multi-Instance GPU (MIG).” https://www.nvidia.com/en-
sg/technologies/multi-instance-gpu/.

[3] H. Dai, Z. Lin, C. Li, C. Zhao, F. Wang, N. Zheng, and H. Zhou, “Ac-
celerate gpu concurrent kernel execution by mitigating memory pipeline
stalls,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 208–220, 2018.

[4] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving gpgpu
concurrency with elastic kernels,” in Proceedings of the Eighteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, (New York, NY,
USA), p. 407–418, Association for Computing Machinery, 2013.

[5] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky,
B. Bao, P. Bell, D. Berard, E. Burovski, G. Chauhan, A. Chourdia,
W. Constable, A. Desmaison, Z. DeVito, E. Ellison, W. Feng, J. Gong,
M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar, L. Kirsch, M. La-
zos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. K. Luk, B. Maher,
Y. Pan, C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk,
S. Zhang, M. Suo, P. Tillet, X. Zhao, E. Wang, K. Zhou, R. Zou,
X. Wang, A. Mathews, W. Wen, G. Chanan, P. Wu, and S. Chintala,
“Pytorch 2: Faster machine learning through dynamic python bytecode
transformation and graph compilation,” in Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS ’24, (New York,
NY, USA), p. 929–947, Association for Computing Machinery, 2024.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: a system for large-scale
machine learning,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16, (USA),
p. 265–283, USENIX Association, 2016.

[7] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:
an automated end-to-end optimizing compiler for deep learning,” in
Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, (USA), p. 579–594, USENIX
Association, 2018.

[8] Z. Ye, R. Lai, J. Shao, T. Chen, and L. Ceze, “Sparsetir: Composable
abstractions for sparse compilation in deep learning,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
2023, (New York, NY, USA), p. 660–678, Association for Computing
Machinery, 2023.

[9] Y. Gui, Y. Wu, H. Yang, T. Jin, B. Li, Q. Zhou, J. Cheng, and F. Yu, “Hgl:
accelerating heterogeneous gnn training with holistic representation and
optimization,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15, IEEE, 2022.

[10] H. Zhao, W. Cui, Q. Chen, Y. Zhang, Y. Lu, C. Li, J. Leng, and
M. Guo, “Tacker: Tensor-cuda core kernel fusion for improving the gpu
utilization while ensuring qos,” in 2022 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 800–813,
2022.

[11] G. Shobaki, A. Kerbow, and S. Mekhanoshin, “Optimizing occupancy
and ilp on the gpu using a combinatorial approach,” in Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation
and Optimization, CGO 2020, (New York, NY, USA), p. 133–144,
Association for Computing Machinery, 2020.

[12] G. Shobaki, P. Muyan-Özçelik, J. Hutton, B. Linck, V. Malyshenko,
A. Kerbow, R. Ramirez-Ortega, and V. Gordon, “Instruction scheduling
for the gpu on the gpu,” pp. 435–447, 03 2024.

[13] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method
for better power efficiency on multithreaded gpu,” in 2010 IEEE/ACM
Int’l Conference on Green Computing and Communications & Int’l

Conference on Cyber, Physical and Social Computing, pp. 344–350,
2010.

[14] A. Li, B. Zheng, G. Pekhimenko, and F. Long, “Automatic horizontal
fusion for gpu kernels,” in 2022 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pp. 14–27, 2022.

[15] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar,
B. Roune, R. Springer, X. Weng, and R. Hundt, “gpucc: an open-source
gpgpu compiler,” in Proceedings of the 2016 International Symposium
on Code Generation and Optimization, CGO ’16, (New York, NY, USA),
p. 105–116, Association for Computing Machinery, 2016.

[16] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization, CGO ’04, (USA), p. 75, IEEE Computer
Society, 2004.

[17] A. community, “grammars-v4.” https://github.com/antlr/grammars-v4/
blob/753536777d827ccc0c9b108531ea67375c2039ac/asm/ptx/ptx-isa-2.
1/Ptx.g4, 2023.

[18] H. Abdelkhalik, Y. Arafa, N. Santhi, and A.-H. A. Badawy, “De-
mystifying the nvidia ampere architecture through microbenchmarking
and instruction-level analysis,” 2022 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–8, 2022.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), pp. 44–54, 2009.

[20] ONNX Runtime developers, “ONNX Runtime,” Nov. 2018.
[21] NVIDIA, “Cuda samples.” https://github.com/NVIDIA/cuda-samples/

tree/v12.5, 2024.
[22] B. Qiao, O. Reiche, F. Hannig, and J. Teich, “From loop fusion to

kernel fusion: A domain-specific approach to locality optimization,”
in 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 242–253, 2019.

[23] J. Kim, J. Kim, and Y. Park, “Navigator: Dynamic multi-kernel schedul-
ing to improve gpu performance,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2020.

[24] H. Wu, Y. Yu, J. Deng, S. Ibrahim, S. Wu, H. Fan, Z. Cheng, and H. Jin,
“StreamBox: A lightweight GPU SandBox for serverless inference
workflow,” in 2024 USENIX Annual Technical Conference (USENIX
ATC 24), (Santa Clara, CA), pp. 59–73, USENIX Association, July 2024.

[25] NVIDIA, “Cupti 12.5 documentation.” https://docs.nvidia.com/cupti/
index.html, 2024.

[26] J. Zhong and B. He, “Kernelet: High-throughput gpu kernel executions
with dynamic slicing and scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 6, pp. 1522–1532, 2014.

[27] Z. Lin, Z. Mo, X. Huang, X. Zhang, and Y. Lu, “Kesco: Compiler-based
kernel scheduling for multi-task gpu applications,” in 2023 IEEE 41st
International Conference on Computer Design (ICCD), pp. 247–254,
IEEE, 2023.

[28] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-
slicer: Efficient intra-sm slicing through dynamic resource partitioning
for gpu multiprogramming,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 3, pp. 230–242, 2016.

[29] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel gpu: Multi-tasking throughput processors via
fine-grained sharing,” in 2016 IEEE international symposium on high
performance computer architecture (HPCA), pp. 358–369, IEEE, 2016.

[30] M. Guevara, C. Gregg, K. M. Hazelwood, and K. Skadron, “Enabling
task parallelism in the cuda scheduler,” 2009.

[31] C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron, “Fine-grained
resource sharing for concurrent gpgpu kernels,” in Proceedings of the 4th
USENIX Conference on Hot Topics in Parallelism, HotPar’12, (USA),
p. 10, USENIX Association, 2012.

[32] N. C. Crago, S. Damani, K. Sankaralingam, and S. W. Keckler,
“Wasp: Exploiting gpu pipeline parallelism with hardware-accelerated
automatic warp specialization,” in 2024 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 1–16, 2024.

https://github.com/antlr/grammars-v4/blob/753536777d827ccc0c9b108531ea67375c2039ac/asm/ptx/ptx-isa-2.1/Ptx.g4
https://github.com/antlr/grammars-v4/blob/753536777d827ccc0c9b108531ea67375c2039ac/asm/ptx/ptx-isa-2.1/Ptx.g4
https://github.com/antlr/grammars-v4/blob/753536777d827ccc0c9b108531ea67375c2039ac/asm/ptx/ptx-isa-2.1/Ptx.g4
https://github.com/NVIDIA/cuda-samples/tree/v12.5
https://github.com/NVIDIA/cuda-samples/tree/v12.5
https://docs.nvidia.com/cupti/index.html
https://docs.nvidia.com/cupti/index.html

	Introduction
	Background and Motivation
	Background
	Opportunity to Mitigate Warp Stalls

	Design
	CFG Merging
	Latency-Aware Instruction Weaving
	Adaptive Code Slicing
	Implementation

	Evaluation Methodology
	Hardware and Software Platform
	Workloads
	Metrics
	Comparing Schemes

	Results and Analysis
	Performance Improvement
	Resource Utilization
	Case Study of Stalls
	Performance Breakdown

	Related Work
	Summary
	References

