
Hay: Enhancing GPU Sharing Performance With
Two-Level Scheduling for Ray

Lianghong Huang1, Zejia Lin1, Wei Liu2#, Xianwei Zhang1#

1School of Computer Science & Engineering, Sun Yat-sen University
2China Electronic Product Reliability and Environmental Testing Research Institute (CEPREI)

{huanglh59, linzj39}@mail2.sysu.edu.cn, liuwei@ceprei.com, zhangxw79@mail.sysu.edu.cn

Abstract—Graphics Processing Units (GPUs) are extensively
adopted in many clusters, providing computational services
concurrently for applications from a wide spectrum of do-
mains, especially deep learning (DL). To simplify DL training,
a unified framework like Ray has been developed to deploy
models on scaled clusters. Nevertheless, existing frameworks
commonly choose to allocate GPUs to DL training tasks in
an exclusive fashion to maximize performance. Inevitably, the
dispatched tasks are incapable of occupying the ample GPU
resources fully, and even worse the regular jobs are disallowed
to co-locate to guarantee exclusiveness. Towards the issue, this
paper proposes Hay, a resource-aware dynamic scheduler to
cooperatively dispatch DL training tasks and regular workloads
in GPU clusters. The design tracks the resource of all GPUs
in the cluster, and models node capacity by a busyness score
computed from corresponding GPUs’ utilization. Incoming tasks
are processed by a two-phase heuristic policy to select the
best node and GPU. Experiment results demonstrate that Hay
remarkably reduces the interference between GPU-sharing tasks
and achieves an average of 1.18x (up to 1.43x) performance
improvement compared to the Ray scheduler.

Index Terms—Workload balance, GPU-sharing, Scheduling

I. INTRODUCTION

The last decade has witnessed the excessive growth of

computation power in Graphics Processing Units (GPUs) to

accelerate a myriad of workloads, including deep learning,

data processing, and scientific computing. Multi-task schedul-

ing mechanisms are adopted to coordinate the tasks intra- and

inter- GPUs, ensuring minimal resource competition and max-

imizing hardware utilization. Targeting at allocating resources

and dispatching tasks, a plethora of solutions have been

proposed, including performance prediction-based schedulers

[1]–[3] and GPU sharing techniques [4].

Deep learning is a representative workload in GPU clusters,

whose computing requirement fluctuates temporally, espe-

cially for distributed training, and long stalls for scattering

and reducing data from multiple devices. Ray is a computing

framework that handles resource allocation and task place-

ment according to a logical resource requirement parameter

set by the user [5], [6]. It assumes training tasks occupy GPUs

exclusively, and allocates the entire GPU to each training

actor. This simple policy lacks the sharing of GPU resources.

To address the issue, techniques to share GPUs between deep

learning applications are proposed [4], [7]. These methods are

#Corresponding author.

based on the characteristics of the applications themselves,

and may not be suitable for sharing GPUs with other tasks.

To jointly schedule training and regular tasks in clusters

with load balance and improve GPU utilization, we pro-

pose Hay, a resource-aware runtime scheduler. We model

GPUs as state machines to indicate their availability and

quantify the busyness of nodes to account for GPUs’ state

and node capacity. Our task mapping heuristics prioritize

device selection based on the busyness level, enabling a load-

balanced compliant placement and facilitating the allocation

of supplementary tasks in the future. In the end, with unbiased

workloads on GPUs, concurrently executable tasks increase

thus improving utilization and performance.

In summary, the contributions of this paper are:

• We highlight the resource wastage scheduling mecha-

nisms of prior arts in scheduling distributed training and

regular tasks on GPU clusters, resulting in the under-

utilization of GPUs.

• We propose a resource-aware runtime scheduler for strik-

ing inter- and intra-node balance, well accounting for

hardware utilization and cluster performance, allowing

co-executing more tasks for higher throughput.

• Evaluations on real-world applications demonstrate that

our design can effectively reduce the run time of both

training tasks and regular workloads, outperforming the

state-of-the-art.

II. BACKGROUND & MOTIVATION

A. Ray

Ray is an open-source computing framework for scaling AI

and Python workloads. It enables machine learning developers

to scale their applications from laptops to production clusters

seamlessly without any code change , reduces friction go-

ing from development to production, and seamlessly scales

applications to ease programming and deployment burdens.

Each node has a raylet as a distributed scheduler, responsible

for scheduling tasks submitted to this node or spilled to

this node by raylets in other nodes. And there is a Global

Control Service (GCS) in the cluster, GCS pulls resource

availability from each raylet periodically and then aggregates

and rebroadcasts them back to each raylet. There is a cluster

task scheduler to choose the best node for running this task

2865

2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS)

2690-5965/23/$31.00 ©2023 IEEE
DOI 10.1109/ICPADS60453.2023.00410

20
23

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Sy
st

em
s (

IC
PA

D
S)

 |
97

9-
8-

35
03

-3
07

1-
7/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
PA

D
S6

04
53

.2
02

3.
00

41
0

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

130

140

150

160

170

180

190

0 1 4

R
ru

n
ti

m
e/

s

num of shared GPUs

Fig. 1. Comparison of different numbers of shared GPUs in training task.
Shared GPU means the GPU running more than one task.

0%

100%

200%

300%

400%

H
ar

dw
ar

e
ut

ili
za

ti
on

Time

GPU 0 GPU 1 GPU 2 GPU 3

Fig. 2. Accumulated resources usage during training.

and a local task scheduler to try to dispatch and schedule tasks

in this node.

B. Motivation

Workload imbalance in DDP. DistributedDataParallel

(DDP) training uses several GPUs to train the model with

different sampled input data. If part of the GPUs used for

training are much slower than the others, gradient synchro-

nization will be the bottleneck in DDP thus leading to

performance degradation. In this case, partial GPUs are busy

processing tasks, leaving the others to be idle. As shown in

Fig. 1, compared to no GPU sharing, the run time of training

becomes longer when we have a task sharing a GPU with this

training task. However, if we run the same task across all four

GPUs, the run time of training tasks will not be lengthened.

Resources wastage of Ray Train. Using Ray for DDP

model training allocates the entire GPU for each replica

by default. We use Ray Train to train Resnet50 with four

A100 GPUs, and the resource utilization is presented in

Fig. 2. At certain moments, the utilization of the GPU can

reach 100%, but at its lowest, the utilization is only about

30%. Additionally, due to the usage of multiple GPUs, it is

challenging for these GPUs to simultaneously achieve 100%

utilization.

III. DESIGN

We introduce Hay, a novel task scheduler for GPU tasks,

primarily addressing the issue of load imbalance among

clusters. By considering the load pressure of nodes and each

individual GPU, it schedules tasks to keep balance to avoid

overload of any GPU or node, so that distributed training

TABLE I
VARIABLE DEFINITION.

Notation Definition
Wf Weight of the fragmented GPU resource
We Weight of the entire GPU resource

Gfrag Remaining fragmented GPU resource in the node
Gentire Remaining entire GPU resource in the node
Gtotal Total GPU resource in the node

Task

Cluster scheduler

Calculate Node Score

Node scheduler

GUP State Switcher Resource
Allocator

Resource
granted

Resource

allocation
failed

Fig. 3. Architecture overview of Hay.

tasks are less likely to have performance degradation due to

some GPUs becoming bottleneck. We set different states for

the GPUs to grant varying priorities, thus preserving some

dedicated GPU resources. Table I introduces the notations we

use in this section.

A. Cluster Nodes Workload Balance

To balance the workload among nodes in the cluster,

we need to calculate the best node based on the resource

information of all nodes. In Hay, each node sends its own

resource status to the GCS and retrieves information about

other nodes from the GCS.

Different nodes in the cluster may have varying counts of

GPUs, so it is irrational to calculate the GPU usage of the

node to determine its busyness level. It is worth noting that

the resource requests can be a combination of fractional GPU

requests and entire GPU requests. We should consider the

proportion of remaining fragmented GPUs and entire GPUs

to score the node. Eq. 1 presents the algorithm to calculate

the score of the relative busyness level of the nodes to select

the best node for the requests.

Score =
Wf ∗Gfrag +We ∗Gentire

Gtotal
(1)

Since nodes with higher Score tend to have more idle GPU

resources, they possibly have the best GPU for the current

resource request. We follow a heuristic algorithm to select the

optimal node in the cluster task scheduler based on the Score,

picking up the node with the highest Score as the optimal

node. Since every time we schedule the task to a relatively

idle node, we can achieve load balance among nodes.

2866

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

Run out resource

Partial resource
released

All resource
released

Finish all runningtasks

Resources insufficiency

Activated Deactivated

Unavailable

Fig. 4. State machine of GPUs. There are three GPU states in Hay, and
these states can transit between each other based on specific conditions.

B. Local GPUs Workload Balance

We aim to balance the workload between GPUs while

reserving entire GPU resources as much as possible in this

scheduling step. To achieve this goal, we classify GPUs into

three states and transform GPU states according to the state

machine in Fig. 4. The activated GPUs are ready for any

resource request, and the deactivated GPU means that this

GPU is idle but we will not directly schedule tasks for this

group of GPUs. Deactivated GPUs are ready for tasks that

require an entire GPU, or when there is insufficient resource

in an activated GPU to be allocated to a task, these GPUs will

be activated whenever ready. Unavailable GPUs are the ones

that have already been allocated to one or more tasks, and

there are no remaining resources. Classifying GPUs in this

way enables us to prioritize the fractional GPU resources and

reserve the entire GPUs, and by scheduling tasks to the GPU

with the most resources we can ensure that the workload is

balanced among all activated GPUs. Therefore, there can be

more GPU resources in the servers to handle tasks that require

the entire GPU, balancing the workload among GPUs.

IV. EVALUATION

In this section, we conduct experiments to demonstrate the

effectiveness of our proposed design Hay. We first illustrate

the experimental platform configurations and the applications.

We compare our design to Ray both on single-node and multi-

node settings.

A. Experimental Setup

We set up a small cluster with two nodes for testing both

intra- and inter- node performance of Hay. Each node in our

experimental platform has 8 NVIDIA A100 40GB GPUs and

2 Intel(R) Xeon(R) Gold 6348 CPUs (28 cores).

Applications Resnet50 and mobilenet v3 small, classical

models in deep learning, are used as model training tasks

in evaluation. We select applications from NPBench [8] to

generate workloads for our experiments. The baseline is using

Ray with the default setting, allocating the whole GPU to

each training actor. We measure the performance of Ray with

GPU sharing and our proposed design Hay. We profile these

selected applications ahead of time to decide the resource

0
0.25
0.5

0.75
1

S M L

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(a) Training task speedup.

0

0.5

1

1.5

S M L

sp
ee

du
p

workload s i e

z aRy(default) z aRy(shared) HaR

(b) Workload speedup.

Fig. 5. Speedup of Resnet50 training tasks and workload in single node
experiment. The speedup is normalized to the default setting of Ray.

0
0.25
0.5
0.75

1

S M L

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(a) Training task speedup.

0

0.5

1

1.5

S M L

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(b) Workload speedup.

Fig. 6. Speedup of mobilenet v3 small training tasks and workload in single
node experiment. The speedup is normalized to the default setting of Ray.

request of each task in Hay and Ray. The GPU request

distribution of the workloads is based on the Alibaba public

cluster traces [9].

B. Performance Analysis

1) Intra-node Test: To demonstrate the scheduling ability

of multiple GPUs in the same node of Hay under various

workload pressures, we generate workloads of size S, M, and

L that contain 40, 80, and 160 tasks to share GPU with the

training task. The speedups, in terms of normalized execution

time, are presented in Fig. 5 and Fig. 6. The result shows

that sharing GPUs between training tasks and the normal

tasks significantly speeds up the normal ones, with a moderate

impact on training tasks. This is because Hay’s load balance

scheduling preserves more available GPUs for small tasks

than Ray. In Fig. 6(a) we observe that training tasks may be

severely interfered with when sharing with heavy workloads

in Ray, the performance drops to 42.2% compared to the

baseline. While Hay not only keeps training performance by

a downgrade of less than 3% but also gains a speedup up

to 1.4x and 1.43x in normal workload when running with

Resnet50 and Mobilenet v3 small, respectively.

2) Inter-node Test: We also measure the performance of

Hay in the inter-node scenario. As shown in Fig. 7 and

0
0.25
0.5

0.75
1

S M L

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(a) Training task speedup.

0

0.5

1

1.5

S M L

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(b) Workload speedup.

Fig. 7. Speedup of Resnet50 training tasks and workload in multi nodes
experiment. The speedup is normalized to the default setting of Ray.

2867

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

0
0.25
0.5
0.75

1

S M L

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(a) Training task speedup.

0

0.5

1

1.5

S M

sp
ee

du
p

workload size

Ray (default) Ray (shared) Hay

(b) Workload speedup.

Fig. 8. Speedup of mobilenet v3 small training tasks and workload in multi
nodes experiment. The speedup is normalized to the default setting of Ray.

Fig. 8, Hay also performs remarkably in this scenario. With

less than 2% performance decrease in training task, Hay
achieves up to 1.33x and 1.3x improvement of the workload

when running with Resnet50 and Mobilenet v3 small. The

results are similar to the single node test illustrated above,

Hay has no improvement compared to Ray when dealing

with a relatively small workload since the GPU resources are

sufficient. However, the results show that Hay can schedule

large workloads appropriately to minimize the interference

with the existing training task and maximize the speedup of

workloads.

V. RELATED WORK

Cluster Scheduling. Improving resource utilization [10] and

minimizing job completion time [11], [12] are the common

objectives of prior designs. Each scheduler is designed with

certain purposes, such as solving the scheduling problem for

long and short tasks [13], or ensuring the fairness of the sched-

uler [14], [15]. Furthermore, maximizing job performance

[16] and reducing resource fragmentation [17] are also factors

that have been well considered. Our work aims to balance the

workload among nodes and GPUs, meanwhile preserving as

many entire GPUs as possible.

GPU Sharing. Time-sharing GPU is the default way to

share a GPU, but it usually comes with a non-negligible

overhead of context switch, so some research works are

proposed to reduce the overhead [7]. And Nvidia officially

provides MPS and MIG for spatial sharing. Some works share

the GPU accounting for the characteristics of tasks [18], [19].

Spatial sharing for deep learning applications is also being

extensively researched [20], [21]. Our proposed design is

based on time-sharing the GPU, we advocate scheduling tasks

based on the resource usage to minimize the interference to

model training tasks.

VI. CONCLUSIONS

In this paper, we identify the problem of under-utilization of

GPU during distributed model training in Ray and discover

the workload imbalance during distributed training leads to

wastage of GPU resources. To address this problem, we

propose Hay, a scheduler to balance workload among GPUs

and reduce competition of shared GPU tasks on training tasks.

Our inter- and intra-node experiment results show that Hay
significantly reduces the interference among co-located tasks,

and outperforms Ray on shared GPU workload by 1.18x (up

to 1.43x) with trivial impact on training tasks.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their construc-

tive comments and suggestions. This research was sup-

ported by the National Natural Science Foundation of China-

#62102465, the Funding by Science and Technology Projects

in Guangzhou-#202201011241, and Open Project of China

Electronic Product Reliability and Environmental Testing Re-

search Institute (CEPREI)-#HK202201334.

REFERENCES

[1] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in INFOCOM, 2018.

[2] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Looking
beyond GPUs for DNN scheduling on multi-tenant clusters,” in OSDI,
2022.

[3] H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven
scheduling for distributed machine learning,” in SoCC, 2017.

[4] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “AntMan: Dynamic scaling on GPU clusters for deep learning,”
in OSDI, 2020.

[5] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging AI applications,” in OSDI, 2018.

[6] S. Wang, E. Liang, E. Oakes, B. Hindman, F. S. Luan, A. Cheng, and
I. Stoica, “Ownership: A distributed futures system for fine-grained
tasks,” in NSDI, 2021.

[7] Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “PipeSwitch: Fast pipelined
context switching for deep learning applications,” in OSDI, 2020.

[8] A. N. Ziogas, T. Ben-Nun, T. Schneider, and T. Hoefler, “NPBench: A
benchmarking suite for high-performance NumPy,” in ICS, 2021.

[9] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the wild: Workload analysis and
scheduling in Large-Scale heterogeneous GPU clusters,” in NSDI, 2022.

[10] Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in SIGCOMM, 2022.

[11] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A GPU cluster manager for distributed deep
learning,” in NSDI, 2019.

[12] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in EuroSys,
2018.

[13] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in USENIX ATC, 2015.

[14] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and efficient
GPU cluster scheduling,” in NSDI, 2020.

[15] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous GPU clusters for
deep learning,” in EuroSys, 2020.

[16] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in OSDI, 2020.

[17] Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, G. Yang, and L. Zhang,
“Beware of fragmentation: Scheduling GPU-sharing workloads with
fragmentation gradient descent,” in USENIX ATC, 2023.

[18] Y. Weng, T. Ge, X. Zhang, X. Zhang, and Y. Lu, “RAISE: Efficient
GPU resource management via hybrid scheduling,” in CCGrid, 2022.

[19] X. S. Tan, P. Golikov, N. Vijaykumar, and G. Pekhimenko, “GPUPool:
A holistic approach to fine-grained gpu sharing in the cloud,” in PACT,
2022.

[20] S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving
heterogeneous machine learning models on multi-GPU servers with
spatio-temporal sharing,” in USENIX ATC, 2022.

[21] M. Chow, A. Jahanshahi, and D. Wong, “KRISP: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers,” in HPCA,
2023.

2868

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

