2023 IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS) | 979-8-3503-3071-7/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICPADS60453.2023.00410

2023 1IEEE 29th International Conference on Parallel and Distributed Systems (ICPADS)

Hay: Enhancing GPU Sharing Performance With
Two-Level Scheduling for Ray

Lianghong Huang!, Zejia Lin!, Wei Liu?*#, Xianwei Zhang'#
1School of Computer Science & Engineering, Sun Yat-sen University
2China Electronic Product Reliability and Environmental Testing Research Institute (CEPREI)
{huanglh59, 1inzj39} @mail2.sysu.edu.cn, liuwei@ceprei.com, zhangxw79 @mail.sysu.edu.cn

Abstract—Graphics Processing Units (GPUs) are extensively
adopted in many clusters, providing computational services
concurrently for applications from a wide spectrum of do-
mains, especially deep learning (DL). To simplify DL training,
a unified framework like Ray has been developed to deploy
models on scaled clusters. Nevertheless, existing frameworks
commonly choose to allocate GPUs to DL training tasks in
an exclusive fashion to maximize performance. Inevitably, the
dispatched tasks are incapable of occupying the ample GPU
resources fully, and even worse the regular jobs are disallowed
to co-locate to guarantee exclusiveness. Towards the issue, this
paper proposes Hay, a resource-aware dynamic scheduler to
cooperatively dispatch DL training tasks and regular workloads
in GPU clusters. The design tracks the resource of all GPUs
in the cluster, and models node capacity by a busyness score
computed from corresponding GPUs’ utilization. Incoming tasks
are processed by a two-phase heuristic policy to select the
best node and GPU. Experiment results demonstrate that Hay
remarkably reduces the interference between GPU-sharing tasks
and achieves an average of 1.18x (up to 1.43x) performance
improvement compared to the Ray scheduler.

Index Terms—Workload balance, GPU-sharing, Scheduling

I. INTRODUCTION

The last decade has witnessed the excessive growth of
computation power in Graphics Processing Units (GPUs) to
accelerate a myriad of workloads, including deep learning,
data processing, and scientific computing. Multi-task schedul-
ing mechanisms are adopted to coordinate the tasks intra- and
inter- GPUs, ensuring minimal resource competition and max-
imizing hardware utilization. Targeting at allocating resources
and dispatching tasks, a plethora of solutions have been
proposed, including performance prediction-based schedulers
[1]-[3] and GPU sharing techniques [4].

Deep learning is a representative workload in GPU clusters,
whose computing requirement fluctuates temporally, espe-
cially for distributed training, and long stalls for scattering
and reducing data from multiple devices. Ray is a computing
framework that handles resource allocation and task place-
ment according to a logical resource requirement parameter
set by the user [5], [6]. It assumes training tasks occupy GPUs
exclusively, and allocates the entire GPU to each training
actor. This simple policy lacks the sharing of GPU resources.
To address the issue, techniques to share GPUs between deep
learning applications are proposed [4], [7]. These methods are

#Corresponding author.

based on the characteristics of the applications themselves,
and may not be suitable for sharing GPUs with other tasks.

To jointly schedule training and regular tasks in clusters
with load balance and improve GPU utilization, we pro-
pose Hay, a resource-aware runtime scheduler. We model
GPUs as state machines to indicate their availability and
quantify the busyness of nodes to account for GPUs’ state
and node capacity. Our task mapping heuristics prioritize
device selection based on the busyness level, enabling a load-
balanced compliant placement and facilitating the allocation
of supplementary tasks in the future. In the end, with unbiased
workloads on GPUs, concurrently executable tasks increase
thus improving utilization and performance.

In summary, the contributions of this paper are:

o We highlight the resource wastage scheduling mecha-
nisms of prior arts in scheduling distributed training and
regular tasks on GPU clusters, resulting in the under-
utilization of GPUs.

o We propose a resource-aware runtime scheduler for strik-
ing inter- and intra-node balance, well accounting for
hardware utilization and cluster performance, allowing
co-executing more tasks for higher throughput.

o Evaluations on real-world applications demonstrate that
our design can effectively reduce the run time of both
training tasks and regular workloads, outperforming the
state-of-the-art.

II. BACKGROUND & MOTIVATION
A. Ray

Ray is an open-source computing framework for scaling Al
and Python workloads. It enables machine learning developers
to scale their applications from laptops to production clusters
seamlessly without any code change , reduces friction go-
ing from development to production, and seamlessly scales
applications to ease programming and deployment burdens.
Each node has a raylet as a distributed scheduler, responsible
for scheduling tasks submitted to this node or spilled to
this node by raylets in other nodes. And there is a Global
Control Service (GCS) in the cluster, GCS pulls resource
availability from each raylet periodically and then aggregates
and rebroadcasts them back to each raylet. There is a cluster
task scheduler to choose the best node for running this task

2690-5965/23/$31.00 ©2023 IEEE
DOI 10.1109/ICPADS60453.2023.00410
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

2865

190

180

170

160

Rrun time/s

0 1 4

num of shared GPUs

Fig. 1. Comparison of different numbers of shared GPUs in training task.
Shared GPU means the GPU running more than one task.

EGPUO mGPU1l mGPU2 =GPU3

400%
300%
200%

100%

Hardware utilization

Time
Fig. 2. Accumulated resources usage during training.

and a local task scheduler to try to dispatch and schedule tasks
in this node.

B. Motivation

Workload imbalance in DDP. DistributedDataParallel
(DDP) training uses several GPUs to train the model with
different sampled input data. If part of the GPUs used for
training are much slower than the others, gradient synchro-
nization will be the bottleneck in DDP thus leading to
performance degradation. In this case, partial GPUs are busy
processing tasks, leaving the others to be idle. As shown in
Fig. 1, compared to no GPU sharing, the run time of training
becomes longer when we have a task sharing a GPU with this
training task. However, if we run the same task across all four
GPUgs, the run time of training tasks will not be lengthened.

Resources wastage of Ray Train. Using Ray for DDP
model training allocates the entire GPU for each replica
by default. We use Ray Train to train Resnet50 with four
A100 GPUs, and the resource utilization is presented in
Fig. 2. At certain moments, the utilization of the GPU can
reach 100%, but at its lowest, the utilization is only about
30%. Additionally, due to the usage of multiple GPUs, it is
challenging for these GPUs to simultaneously achieve 100%
utilization.

III. DESIGN

We introduce Hay, a novel task scheduler for GPU tasks,
primarily addressing the issue of load imbalance among
clusters. By considering the load pressure of nodes and each
individual GPU, it schedules tasks to keep balance to avoid
overload of any GPU or node, so that distributed training

2866

TABLE I
VARIABLE DEFINITION.

Notation Definition
Wy Weight of the fragmented GPU resource
We Weight of the entire GPU resource
Grag Remaining fragmented GPU resource in the node
entire Remaining entire GPU resource in the node
Giotal Total GPU resource in the node

Cluster scheduler

Calculate Node Score
Node scheduler /
- Resource
GUP State Switcher |+—>

Resource
granted

R, allocation
Y failed

Fig. 3. Architecture overview of Hay.

tasks are less likely to have performance degradation due to
some GPUs becoming bottleneck. We set different states for
the GPUs to grant varying priorities, thus preserving some
dedicated GPU resources. Table I introduces the notations we
use in this section.

A. Cluster Nodes Workload Balance

To balance the workload among nodes in the cluster,
we need to calculate the best node based on the resource
information of all nodes. In Hay, each node sends its own
resource status to the GCS and retrieves information about
other nodes from the GCS.

Different nodes in the cluster may have varying counts of
GPUs, so it is irrational to calculate the GPU usage of the
node to determine its busyness level. It is worth noting that
the resource requests can be a combination of fractional GPU
requests and entire GPU requests. We should consider the
proportion of remaining fragmented GPUs and entire GPUs
to score the node. Eq. 1 presents the algorithm to calculate
the score of the relative busyness level of the nodes to select
the best node for the requests.

Wf * Gfrag + We * Genti'r‘e
Gtotal

Score =

(M

Since nodes with higher Score tend to have more idle GPU
resources, they possibly have the best GPU for the current
resource request. We follow a heuristic algorithm to select the
optimal node in the cluster task scheduler based on the Score,
picking up the node with the highest Score as the optimal
node. Since every time we schedule the task to a relatively
idle node, we can achieve load balance among nodes.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

Activated Deactivated

Resources insufficiency

Finish all runningtasks

Partial resource

All resource
released

released

Run out resource

Unavailable

Fig. 4. State machine of GPUs. There are three GPU states in Hay, and
these states can transit between each other based on specific conditions.

B. Local GPUs Workload Balance

We aim to balance the workload between GPUs while
reserving entire GPU resources as much as possible in this
scheduling step. To achieve this goal, we classify GPUs into
three states and transform GPU states according to the state
machine in Fig. 4. The activated GPUs are ready for any
resource request, and the deactivated GPU means that this
GPU is idle but we will not directly schedule tasks for this
group of GPUs. Deactivated GPUs are ready for tasks that
require an entire GPU, or when there is insufficient resource
in an activated GPU to be allocated to a task, these GPUs will
be activated whenever ready. Unavailable GPUs are the ones
that have already been allocated to one or more tasks, and
there are no remaining resources. Classifying GPUs in this
way enables us to prioritize the fractional GPU resources and
reserve the entire GPUs, and by scheduling tasks to the GPU
with the most resources we can ensure that the workload is
balanced among all activated GPUs. Therefore, there can be
more GPU resources in the servers to handle tasks that require
the entire GPU, balancing the workload among GPUs.

IV. EVALUATION

In this section, we conduct experiments to demonstrate the
effectiveness of our proposed design Hay. We first illustrate
the experimental platform configurations and the applications.
We compare our design to Ray both on single-node and multi-
node settings.

A. Experimental Setup

We set up a small cluster with two nodes for testing both
intra- and inter- node performance of Hay. Each node in our
experimental platform has 8 NVIDIA A100 40GB GPUs and
2 Intel(R) Xeon(R) Gold 6348 CPUs (28 cores).

Applications Resnet50 and mobilenet_v3_small, classical
models in deep learning, are used as model training tasks
in evaluation. We select applications from NPBench [8] to
generate workloads for our experiments. The baseline is using
Ray with the default setting, allocating the whole GPU to
each training actor. We measure the performance of Ray with
GPU sharing and our proposed design Hay. We profile these
selected applications ahead of time to decide the resource

M Ray (default) ™ Ray (shared) = Hay

1 1.5
g0 1
°
g .
0
s M L s M L

workload size

M zaRydefault) mzaRyshared) m HaR

N9y
(S BN B,)

speedup

o

workload sie

(a) Training task speedup. (b) Workload speedup.

Fig. 5. Speedup of Resnet50 training tasks and workload in single node
experiment. The speedup is normalized to the default setting of Ray.

M Ray (default) ® Ray (shared) = Hay

1 15
1
S
0 0
S M L S M L

workload size

M Ray (default) m Ray (shared) m Hay

¢ I
NSy
(S,

w
speedup

speedup

o

workload size

(a) Training task speedup. (b) Workload speedup.

Fig. 6. Speedup of mobilenet_v3_small training tasks and workload in single
node experiment. The speedup is normalized to the default setting of Ray.

request of each task in Hay and Ray. The GPU request
distribution of the workloads is based on the Alibaba public
cluster traces [9].

B. Performance Analysis

1) Intra-node Test: To demonstrate the scheduling ability
of multiple GPUs in the same node of Hay under various
workload pressures, we generate workloads of size S, M, and
L that contain 40, 80, and 160 tasks to share GPU with the
training task. The speedups, in terms of normalized execution
time, are presented in Fig. 5 and Fig. 6. The result shows
that sharing GPUs between training tasks and the normal
tasks significantly speeds up the normal ones, with a moderate
impact on training tasks. This is because Hay’s load balance
scheduling preserves more available GPUs for small tasks
than Ray. In Fig. 6(a) we observe that training tasks may be
severely interfered with when sharing with heavy workloads
in Ray, the performance drops to 42.2% compared to the
baseline. While Hay not only keeps training performance by
a downgrade of less than 3% but also gains a speedup up
to 1.4x and 1.43x in normal workload when running with
Resnet50 and Mobilenet_v3_small, respectively.

2) Inter-node Test: We also measure the performance of
Hay in the inter-node scenario. As shown in Fig. 7 and

M Ray (default) m Ray (shared) m Hay

1
0.75
0.5
0.25
0

S M L

workload size

M Ray (default) m Ray (shared) m Hay
15

1
0
S M L

workload size

(b) Workload speedup.

speedup
speedup

(a) Training task speedup.

Fig. 7. Speedup of Resnet50 training tasks and workload in multi nodes
experiment. The speedup is normalized to the default setting of Ray.

2867

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

M Ray (default) m Ray (shared)

S M L

workload size

Hay M Ray (default) m Ray (shared)

1.

5
1
< I IE
0
S M

workload size

(b) Workload speedup.

Hay

o
o

N Oy
wn

v

speedup
speedup

o
o

(a) Training task speedup.

Fig. 8. Speedup of mobilenet_v3_small training tasks and workload in multi
nodes experiment. The speedup is normalized to the default setting of Ray.

Fig. 8, Hay also performs remarkably in this scenario. With
less than 2% performance decrease in training task, Hay
achieves up to 1.33x and 1.3x improvement of the workload
when running with Resnet50 and Mobilenet_v3_small. The
results are similar to the single node test illustrated above,
Hay has no improvement compared to Ray when dealing
with a relatively small workload since the GPU resources are
sufficient. However, the results show that Hay can schedule
large workloads appropriately to minimize the interference
with the existing training task and maximize the speedup of
workloads.

V. RELATED WORK

Cluster Scheduling. Improving resource utilization [10] and
minimizing job completion time [11], [12] are the common
objectives of prior designs. Each scheduler is designed with
certain purposes, such as solving the scheduling problem for
long and short tasks [13], or ensuring the fairness of the sched-
uler [14], [15]. Furthermore, maximizing job performance
[16] and reducing resource fragmentation [17] are also factors
that have been well considered. Our work aims to balance the
workload among nodes and GPUs, meanwhile preserving as
many entire GPUs as possible.

GPU Sharing. Time-sharing GPU is the default way to
share a GPU, but it usually comes with a non-negligible
overhead of context switch, so some research works are
proposed to reduce the overhead [7]. And Nvidia officially
provides MPS and MIG for spatial sharing. Some works share
the GPU accounting for the characteristics of tasks [18], [19].
Spatial sharing for deep learning applications is also being
extensively researched [20], [21]. Our proposed design is
based on time-sharing the GPU, we advocate scheduling tasks
based on the resource usage to minimize the interference to
model training tasks.

VI. CONCLUSIONS

In this paper, we identify the problem of under-utilization of
GPU during distributed model training in Ray and discover
the workload imbalance during distributed training leads to
wastage of GPU resources. To address this problem, we
propose Hay, a scheduler to balance workload among GPUs
and reduce competition of shared GPU tasks on training tasks.
Our inter- and intra-node experiment results show that Hay
significantly reduces the interference among co-located tasks,

2868

and outperforms Ray on shared GPU workload by 1.18x (up
to 1.43x) with trivial impact on training tasks.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their construc-
tive comments and suggestions. This research was sup-
ported by the National Natural Science Foundation of China-
#62102465, the Funding by Science and Technology Projects
in Guangzhou-#202201011241, and Open Project of China
Electronic Product Reliability and Environmental Testing Re-
search Institute (CEPREI)-#HK202201334.

REFERENCES

Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in INFOCOM, 2018.

J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Looking
beyond GPUs for DNN scheduling on multi-tenant clusters,” in OSDI,
2022.

H. Zhang, L. Stafman, A. Or, and M. J. Freedman, “Slaq: quality-driven
scheduling for distributed machine learning,” in SoCC, 2017.

W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “AntMan: Dynamic scaling on GPU clusters for deep learning,”
in OSDI, 2020.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. 1. Jordan er al., “Ray: A distributed
framework for emerging Al applications,” in OSDI, 2018.

S. Wang, E. Liang, E. Oakes, B. Hindman, F. S. Luan, A. Cheng, and
I. Stoica, “Ownership: A distributed futures system for fine-grained
tasks,” in NSDI, 2021.

Z. Bai, Z. Zhang, Y. Zhu, and X. Jin, “PipeSwitch: Fast pipelined
context switching for deep learning applications,” in OSDI, 2020.

A. N. Ziogas, T. Ben-Nun, T. Schneider, and T. Hoefler, “NPBench: A
benchmarking suite for high-performance NumPy,” in ICS, 2021.

Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “MLaaS in the wild: Workload analysis and
scheduling in Large-Scale heterogeneous GPU clusters,” in NSDI, 2022.
Y. Zhao, Y. Liu, Y. Peng, Y. Zhu, X. Liu, and X. Jin, “Multi-resource
interleaving for deep learning training,” in SIGCOMM, 2022.

J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon, J. Qian, H. Liu,
and C. Guo, “Tiresias: A GPU cluster manager for distributed deep
learning,” in NSDI, 2019.

Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an efficient
dynamic resource scheduler for deep learning clusters,” in EuroSys,
2018.

P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
Hybrid datacenter scheduling,” in USENIX ATC, 2015.

K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman,
A. Akella, A. Phanishayee, and S. Chawla, “Themis: Fair and efficient
GPU cluster scheduling,” in NSDI, 2020.

S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, and S. Viswanatha,
“Balancing efficiency and fairness in heterogeneous GPU clusters for
deep learning,” in EuroSys, 2020.

D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, and
M. Zaharia, “Heterogeneity-aware cluster scheduling policies for deep
learning workloads,” in OSDI, 2020.

Q. Weng, L. Yang, Y. Yu, W. Wang, X. Tang, G. Yang, and L. Zhang,
“Beware of fragmentation: Scheduling GPU-sharing workloads with
fragmentation gradient descent,” in USENIX ATC, 2023.

Y. Weng, T. Ge, X. Zhang, X. Zhang, and Y. Lu, “RAISE: Efficient
GPU resource management via hybrid scheduling,” in CCGrid, 2022.
X. S. Tan, P. Golikov, N. Vijaykumar, and G. Pekhimenko, “GPUPool:
A holistic approach to fine-grained gpu sharing in the cloud,” in PACT,
2022.

S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Serving
heterogeneous machine learning models on multi-GPU servers with
spatio-temporal sharing,” in USENIX ATC, 2022.

M. Chow, A. Jahanshahi, and D. Wong, “KRISP: Enabling kernel-wise
right-sizing for spatial partitioned gpu inference servers,” in HPCA,
2023.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on October 14,2025 at 03:50:04 UTC from IEEE Xplore. Restrictions apply.

