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Abstract—Nowadays, Graphics Processing Units (GPUs) dom-
inate in a wide spectrum of computing realms and multi-task is
increasingly applied in various complicated applications. To gain
higher performance, multi-task programs require cumbersome
programming efforts to take advantage of inter-kernel concur-
rency at source-code level. Although there exist works auto-
matically scheduling kernels to enable inter-kernel concurrency,
they all inevitably introduce new programming frameworks and
some even bring significant performance downgrade compared
to the expertise-based optimizations. To address this issue, we
propose KeSCo, a compiler-based scheduler to expose kernel
level concurrency in multi-task programs with trivial code mod-
ification. In compilation, KeSCo applies a strategy to schedule
kernels in task queues, accounting for both load balance and
synchronization cost. Also, KeSCo utilizes a customized algorithm
designed for computational flow to remove redundant synchro-
nizations. The design is further extended to support multi-
process scenario, where multiple GPU processes are sharing a
single context. Evaluations on representative benchmarks show
that the proposed approach gains a 1.28× average speedup
for multi-task scenario (1.22× for multi-process). Even with
lessened programming efforts, our proposed design outperforms
two state-of-the-arts GrSched and Taskflow by 1.31× and 1.16×
on average, respectively.

Index Terms—GPU, Compiler, Multi-Task, Kernel Scheduling

I. INTRODUCTION

In the last decade, Graphics Processing Units (GPUs)

have been widely applied in a myriad of domains, owing

to their excessive computation capability and high memory

throughput. Advanced GPUs incorporate ample resources than

what a typical monolithic GPU task or kernel necessitates

and are thus frequently being underutilized, especially when

executing single-task programs, which launch just one kernel

at a time. To alleviate the under-utilization issue, a plethora of

approaches have been proposed, like concurrently executing

sliced kernels [1] and resource virtualization [2].

§Equal contribution.
+Work done when studying at Sun Yat-sen University.
#Corresponding author.

However, as GPU applications getting more complex, multi-

task programs, originally consisting of concurrently executable

kernels, show up in diverse domains. Compared to single-task

programs with constrained inter-kernel concurrency, multi-task

programs can leverage various GPU streams and synchroniza-

tion events to parallelize serial kernel executions to efficiently

shorten run time. Such an optimization requires developers

to correctly analyze dependency between kernels and then

re-arrange kernels in task queues to strike load balance and

minimize synchronization cost. With no doubt, considerable

programming efforts should be paid to obtain bug-free and

highly performant codes, particularly for increasingly compli-

cated programs. To address the issue, a bunch of designs have

been recently presented to automate inter-kernel concurrency

of GPU applications, especially for general high performance

computing (HPC). RAMMER [3] focuses on inter- and intra-

kernel concurrency in Recursive Neural Network (RNN), but

lacks scalability to handle general programs. Taskflow [4]

proposes a new heterogeneous programming framework for

automatic optimization of inter-kernel concurrency. It har-

nesses cudaGraph [5] to reduce overheads of fragmented ker-

nel launches. Nevertheless, such method requires developers

to grasp a new programming model and manually specify

kernel dependencies, inevitably raising coding difficulty. A

GrCUDA-based [6] runtime approach [7] applies a virtual

machine, exempting developers from the need to explicitly

claim kernel dependencies. But compared to expertise-based

optimizations, it introduces serious performance downgrade

due to the overheads of run-time scheduling.

To automatically achieve kernel concurrency in multi-task

programs at source-code level with petty programming effort,

we propose KeSCo, a compiler-based static kernel scheduler

requiring trivial code modification. It automatically identi-

fies data dependencies and then places kernels into different

streams concerning load balance and synchronization cost.

The transformed code is a highly performant executable with

kernels being ready to run concurrently. The design is further

extended to schedule a collective of prioritized multi-task
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processes, which is common in today’s GPU space-sharing

scenario. The scheduler maintains a stream zone for each

sub-program, actively issues kernels of high priority, and

meanwhile demotes leftover kernels via adding barriers across

zones. This promotes the early completion time of highly

prioritized tasks while saturating GPU resources with the low-

priority ones, thus effectively reducing the makespan of the

whole program.

In summary, the contributions of this paper are:

• We highlight the inadequate performance enhancement

and programming weakness of prior arts in automati-

cally achieving inter-kernel concurrency for multi-task

programs.

• We propose a static scheduler for inter-kernel concur-

rency in multi-task programs, well accounting for both

load balance and synchronization cost.

• We design a priority-based scheduling strategy for kernels

across multi-task programs, with lowered programming

burden to enable high kernel concurrency and facilitate

prioritized kernels to speed up executions.

• The evaluations show that our design can effectively

raise kernel-level parallelism to boost GPU performance,

outperforming the state-of-the-arts with obviously less

programming efforts.

II. BACKGROUND AND MOTIVATION

A. Concurrent Kernel Execution (CKE)

Designed for massively parallel computation, modern GPUs

are typically equipped with many streaming multiprocessors
(SMs), each of which has hundreds of computing cores and

can simultaneously execute up to thousands of threads. In

most cases, one single kernel cannot fully utilize all resources,

thus causing a great waste of computation power and low

performance. To alleviate such a problem, CKE parallelizes

inter-kernel execution on available hardware components. It

issues operations in multiple software task queues (called

streams in CUDA [5]), which are mapped onto different

hardware queues and processed concurrently if the demanded

resources, typically SMs, are sufficient.

The multi-task workloads provide a perfect scenario to

implement CKE for acceleration, as they have independent

kernels ready to execute concurrently. Developers need to

properly scrutinize the complex dependency, schedule kernels

in streams, and generate synchronization barriers. Such code

re-organization incurs tremendous manual efforts and is thus

also error-prone. This laborious process can be automated at

different levels of granularity. Many DL compilers like TVM

[8] or XLA [9] leverage dedicated collaboration with domain-

specific language (DSL) embedded in Python for such task-

level parallelization. In HPC where applications are majorly

implemented in C++ with GPU programming model, paral-

lelization is exploited at finer sub-task level. Representative

techniques include slicing kernels into sub-kernels to saturate

GPU resources [10][11], and employing preemption for high-

priority tasks [12][13]. They involve coupled compiler-runtime

Stream 1

Stream 2

Kernel BKernel A

Kernel CSM

SM

SM

SM
...

SM

SM

SM

SM

Copy EngineGPU Stream 3Asynchronous
Data Transfer

Synchronization Barrier

Fig. 1: Execution of concurrent tasks on GPU.

systems for thorough optimizations and have shown great

improvement in performance. Nevertheless, these intra-kernel

approaches necessitate fine-grained code transformation inside

kernels, which becomes infeasible when dealing with hand-

tuned kernels or hardware vendors’ highly optimized closed-

source libraries having no available codes.

B. CKE Programming in CUDA

Many popular GPU programming models offer a series

of concurrency APIs for CKE, here we take CUDA as an

example. A data flow graph (DFG) needs to be constructed

correctly first to help schedule the executions. The DFG is

further divided into multiple levels such that kernels from the

same level have no data dependence. Then developers need to

create multiple CUDA streams, and issue kernels on different

streams to co-execute on GPUs. To ensure the execution

order of data dependent kernels across streams, CUDA events
are inserted after a kernel’s predecessors as trackers of the

completion state, which are awaited by the synchronization

barriers before the kernel.

Figure 1 shows an example of three concurrent tasks sharing

a GPU. Kernels B and C, are mutually independent, both

depend on kernel A. After kernel A finishes, kernels B and C
are issued on different streams and executed simultaneously

on different SMs. At the same time, an asynchronous copy

is proceeding on the copy engine, which is a complementary

hardware resource with respect to SMs. Therefore computation

of the two kernels and data transfer are overlapped, helping

utilize the abundant resources of GPUs.

C. Motivation

1) Programming Efforts: Aiming to automate inter-kernel

CKE for GPU programs, approaches like Taskflow [4] and a

GrCUDA-based [6] scheduler (aliased as GrSched for ease of

reference)[7] have been proposed to craft new programming

frameworks by extending CUDA’s API for stream management

and synchronization. Taskflow demands explicitly specifying

dependencies through its APIs, while GrSched introduces

DSL embedded in Python to support automatic analysis and

scheduling. In Figure 2a, we evaluate the programming efforts

required by implementing CKE at source-code level in three

benchmarks elaborated in Section IV-A. Compared with serial

execution, manual optimization with CUDA’s streams and

events APIs (named Async in figures) costs 6.97× extra tokens

to fully expose the kernel concurrency. Taskflow and GrSched

yet involve 1.79× and 4.19× additional tokens respectively,

to transplant the serial implementation into their programming
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models. In contrast with Async, they provide straightforward

view of dependencies and facilitate maintainability, but yield

thorough refactoring of source code.

2) Scheduling Policy: Another preliminary study finds that

the aforementioned frameworks would bring serious perfor-

mance penalties compared to the expertise optimization (the

Async scheme). Figure 2b illustrates the actual overlapped time

with respect to the theoretical peak. Figure 2c explores the

speedup of each kernel normalized to the serial execution. The

static scheduler Taskflow’s overlap ratio is slightly higher than

Async, but the makespan is 34.1% longer. This performance

degradation is caused by prolonged kernel execution time,

indicating that the scheduler issues excessive kernels and thus

poses resource competition. As a dynamic scheduler, GrSched

insufficiently overlaps the computation, with only 39% to the

theoretical maximum and 81.1% slower than Async. The major

reason is the overhead brought by runtime dependency analy-

sis, blocking CPU from launching GPU kernels concurrently.

We observe from the above cases that performance gain is two-

folded as contributed by both the overlap ratio and the number

of issued kernels. A balance between them is demanded to

bring an optimal scheduling policy.

3) Multi-process Scenario: It is prevalent to serve multiple

programs with different priorities on a single GPU since one

application might not fully utilize all GPU resources [14].

To improve the performance of multi-program on a shared

GPU, Nvidia MPS [15] transparently co-operates multiple

CUDA processes at runtime. This code-free tool eliminates

manual labor but has no guarantee for priority and suffers from

overheads of dynamic scheduling. Other prior arts including

GrSched and Taskflow are designed for scheduling one single

program and lack prioritized scheduling mechanisms to ensure

(a) Programming effort required
to transform the serial application.

(b) Overlap ratio (actual vs. theo-
retical).

(c) Speedup of each kernel’s completion time from the beginning of
the application. The i-th point in each sub-figure indicates the i-th
kernel, the rightmost point (last kernel) indicates the speedup of the
whole application’s execution.

Fig. 2: Analysis on three applications with 12 kernels and

10 dependencies on average. Over 5 of the kernels in each

application can be executed concurrently.

the early completion of high-priority programs, hindering

their extension in the multi-process scenario. Therefore, there

remains the urgency for a source code-level approach capable

of priority-based scheduling without involving much program-

ming effort in these complicated scenarios.

The aforementioned observations suggest that the sched-

ulers wrapped as new programming frameworks incur in-

efficient scheduling strategies and strenuous programming

efforts. Instead, a compiler-based approach naturally grasps

global information about the application and optimizes in-

depth without refactoring the source code. To this end, we

propose KeSCo to automate the scheduling at compile-time

and achieve competent performance compared with manual-

optimized approach.

III. DESIGN

We introduce KeSCo, a compiler-based static scheduler

for concurrent kernel execution in multi-task programs, to

automatically enable inter-kernel concurrency1. It leverages

lightweight code modifications to help construct data flow

graph (DFG) of kernels and then schedules kernels to mul-

tiple streams as well as generates synchronization barriers to

guarantee correct execution order with low cost. In addition

to supporting inter-kernel concurrency in a single program,

we extend KeSCo to support multi-process scheduling while

meeting the requirements of early completion of high-priority

sub-programs2 and saturating hardware resources with low-

priority ones.

A. Overview

Figure 3 shows the overall workflow of our proposed design.

The input is the source code of an application with serial

execution and the output is a high-performance executable

with concurrent kernel execution. The optimizing procedure

consists of three parts: DFG constructor, kernel distributor,

and synchronization generator. As the forefront phase, DFG
constructor analyzes the input and output of each GPU kernel

and builds a data flow graph according to their execution order.

1. DFG
Constructor

2. Kernel
Distributor

3. Synchronization
Generator

A

B
C

D

E

1

2

3

A

B EC

D

A

B EC

D

Identify Data
Dependence

Assign Kernels
to Streams

Create Event
& Barrier

Source

Code

Fig. 3: General workflow of KeSCo to transform serial source

code into the executable with efficient parallelism.

1The proposed design is a kernel-level scheduler. Therefore we refer to
kernel and task interchangeably, unless otherwise specifically stated.

2We indicate sub-program as a distinct multi-task application, com-
pounded in the multi-process application.
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Then the kernel distributor leverages the graph and schedules

kernels into different streams. Last, the synchronization gen-
erator creates barriers for dependent kernels .

B. DFG Constructor

DFG constructor analyzes dependencies among kernels

based on their serial execution order and the relations of Write-

After-Read (WAR), Write-After-Write (WAW) and Read-

After-Write (RAW). As massive dependencies for variables are

ubiquitous in complex HPC programs, it can be expensive to

construct the kernels’ dependency graph from the complicated

data flow. To reduce repeated search operations, we construct

the DFG by finding all predecessors of a kernel. Kernels are

iterated by their reversed execution order. For every kernel,

breadth-first search is adopted to find its direct predecessors

and terminated once all of them are found. Additionally, to

distinguish read-only from writable parameters of kernels,

which are passed as pointers and potentially have identical

memory addresses, hindering compiler-based approach from

analyzing them statically, developers are necessitated to add

a light wrapper to the kernel. The mechanism is detailed in

Section III-F.

C. Kernel Distributor

When the DFG is determined, kernel distributor places

the kernels in GPU streams in the order explained below to

gain computational overlap. First, it levelizes the DFG so that

kernels in the same level have no mutual data dependency.

At each level, the kernels are assigned with a unique index

value. Then kernels are placed in the first level using their

indices modulo to the stream count. For the remaining kernels,

the distributor follows a set of rules in consideration of load

balance and synchronization cost. � The key idea of the rules

is that a kernel issues right after any of its predecessors when

possible, to reduce synchronizations among streams. We call

these predecessors a preferred predecessor set (PP-Set). �

To avoid conflict when multiple kernels’ PP-Set intersects,

we sort the kernels by the size of the PP-Set, schedule the

kernels with smaller PP-Set first, and then update the PP-Set of

unscheduled kernels. � If there still exist conflicts, the kernel

is randomly assigned to a stream containing its predecessor.

Here we exemplify the above steps with regard to the given

DFG in Figure 4 and the corresponding kernel distribution

strategy in Figure 5. Kernels in level 1 are put to the stream

by their indices accordingly. In level 2, kernel F is scheduled

first by rule � as it has the smallest PP-Set, and is positioned

A(1) B(2) C(3)

D(1) E(2)

G(1)

F(3)

H(2) I(3) J(4)

Level 1

Level 3

Level 2

Fig. 4: A DFG organized in three levels to schedule ten kernels

onto three available streams.

after kernel C by rule �. Then kernel E’s updated PP-Set is

smaller than that of kernel D, and is thus arranged after kernel

A. Finally, kernel D is put after kernel B as accounting for rule

� again. In level 3, we repeat the process and schedule them

in the order of kernel H, I, and J, which are all placed after

their preferred predecessor. Lastly kernel G can choose from

stream 1 and 3, where its predecessors are seated, and are

randomly inserted in stream 3, as shown in Figure 4.

D. Synchronization Generator

After scheduling kernels in asynchronous streams, synchro-
nization generator comes into play to ensure the correctness

of the execution order. A naive approach is to create barriers

whenever a data dependence exists. However, a part of the

barriers are redundant and may cause performance overhead.

To tackle this issue, a pruning algorithm is proposed based

on the implicit synchronizations brought by the transitivity of

dependency and serial execution of kernels in the same stream.

When finish, the barriers are pruned to the minimum.

The synchronization generator traverses the kernels in each

stream and works in three steps, suppose it is working on

kernel K. In step �, it creates barriers for each of K’s prede-

cessors which do not share the stream with K. In step �, it

checks K’s predecessors in each stream, and reserves only the

synchronization issued from the last predecessor in that stream.

In step �, it enumerates kernels before K in the same stream,

say T . If a K and T ’s predecessor share the same stream, and

K’s predecessor is executed before T ’s, K is then implicitly

synchronized by T and T ’s predecessor. Therefore K’s barrier

to that predecessor is safe to be removed. Full analysis of

the complete DFG helps eliminate these redundant barriers

correctly. In run-time analysis of GrSched, such elimination is

infeasible due to the lack of a global view of the graph.

The example of Figure 5 shows the barriers generated in

solid lines and the removed barriers in dashed lines. Synchro-
nization generator scans stream 1 and creates kernel E and

I’s barriers by step �. The same is true for kernel D in stream

2 and kernel J in 3. For kernel G, step � detects its implicit

synchronization with kernel A by the execution order of A →
E → J , so the barrier is removed.

E. Kernel Scheduling in Prioritized Multi-process

The proposed design above focuses on enabling inter-kernel

concurrency in a single program, and it is extensible to

schedule independent sub-programs with diverse priorities in

conformity to today’s GPU sharing scenario. We introduce

B(2)

C(3)

D(1)

E(2)

G(1)F(3)

H(2)

I(3)

J(4)

Stream 1

Stream 3

Stream 2
Generated
Barrier

Removed
Barrier

A(1)
Numbers are their
scheduling�order in
the�kernel distributor

Fig. 5: Scheduling strategy of kernel distributor and synchro-
nization generator for the DFG in Fig. 4.
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stream zone manager as an orthogonal module with kernel
distributor and synchronization generator to coordinate among

sub-programs and limit the number of issued kernels in

avoidance of resource competition.

In the design extension, developers first manually wrap

independent applications as distinct functions, and stream
zone manager provides each sub-program a separated set

of streams, in which the kernel distributor and synchroniza-
tion generator schedules the sub-program’s tasks. Policies on

scheduling across stream zones are straightforward: � The

foremost is creating barriers for low-priority tasks to block

them until the high-priority ones are finished; � Then for tasks

of the same priority, the number of issued kernels is limited by

a hyper-parameter3; � If there is only one kernel left to execute

a high-priority task, an additional kernel from a lower-priority

task is issued beforehand. This is because a single kernel can

rarely saturate all GPU resources. The above steps introduce a

significant number of synchronization barriers and are pruned

by synchronization generator. Figure 6 shows an example of

scheduling two sub-programs. Kernels A, B, and C are issued

first as they are of high priorities. By the additional rule �,

kernel 1 is promoted to launch in interleave with kernel C,

and barriers are generated for kernels 2, 3, and 4.

F. Implementation

Figure 7 shows the implementation pipeline of KeSCo,

on basis of LLVM Compiler Infrastructure [16]. Although

targeting at the CUDA platform, our design can be easily

applied to other frameworks that support concurrent task

queues (e.g. HIP [17] and SYCL [18]). The GPU kernel

code is separated from the host (CPU) code and compiled

individually to binary, while host code is compiled to inter-

mediate representation (IR). The binary file of GPU kernels is

embedded into host IR file and kernel functions are called by

cudaPushCallConfiguration. We pinpoint this pattern

to find the serial-issued kernels in host IR and apply our

optimizations to their caller functions.

Identifying writable parameters at the compiler level is a

challenging task, as computational data is often passed as

pointers. These pointers may have identical addresses, mak-

ing it impossible to discern between read-only and writable

memory locations at compile time. As a workaround, devel-

opers necessitate adding a lightweight wrapper to the kernel,

5

C

1

A

2 3 4

B
High

Low

Priority

C

5

2

A B

Original DFG Stream Zones

3 4

1

Fig. 6: Two sub-programs in a multi-process workload are

scheduled based on priority.

3Tuning of this parameter is left to future work. It is set to six in our
experiments as it saturates our device in most cases.

which specifies the number of writable parameters Nout and

rearranges them to the first Nout parameters. The wrapper

additionally takes a parameter specifying the kernel priority, to

work with stream zone manager. This technique enables DFG
constructor to analyze dependencies automatically, without

involving any new programming framework.

Sub-
program 1

Sub-
program N

.
.
. Source

Code

Light-weight
Code Modification

GPU Code
Fatbin

Host
(CPU) IR

DFG Constructor

Stream
Zone

Manager

Kernel
Distributor

Synchronization
Generator

KeSCoLLVM

Fig. 7: The processing framework of KeSCo implementation.

Stream zone manager will be activated if sub-programs with

various priorities are contained.

IV. EXPERIMENTAL EVALUATION & RESULTS

A. Experimental Setup

1) Platforms: We conduct experiments on a server

equipped with Nvidia A100-PCIe-40GB GPUs, an AMD

EPYC 7742 64-Core CPU and 256GB DRAM. The operating

system is Debian 5.10.179 and the version of Nvidia driver is

470.182.03. We compile GPU programs using LLVM 14.0.0

and CUDA 11.4.4, with the compiler option -O3 switched on

to optimize performance.

2) Benchmarks: We use eight representative workloads

listed in Table I. The two in-house micro-benchmark are drawn

from the kernels in Nvidia FasterTransformer[19], the rest

benchmarks are introduced in [7].

TABLE I: Evaluated benchmarks.

Name Notation Domain Max DFG Width

Micro-1 M1 AI 6
Micro-2 M2 AI 12

Vector Square VEC HPC 2
Black & Scholes B&S HPC 10
Image Processing IMG HPC 3
Machine Learning ML AI 2

HITS HITS HPC 2
Deep Learning DL AI 2

3) Evaluated Schemes: We compare KeSCo against the

baseline (serial execution, named Serial below), the one

with expertise concurrency optimization (using CUDA’s APIs,

named Async) and two prior arts including a static scheduler

Taskflow [4] and a dynamic scheduler [7] based on GrCUDA

[6] (denoted as GrSched).

4) Metrics: To quantify programming efforts, we consider

the Line of Code (LoC) and the number of tokens needed in

the manual modification. And, for performance, we average

the execution time of all GPU kernels in 10 repeated runs.

B. Programming Effort

Table II lists the programming efforts required by different

schemes, in terms of the average LoC and token count.

Compared with Serial, KeSCo costs only 2.3% LoC and 6.1%
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tokens in extra to enable CKE and automates both dependency

analysis and concurrency management. The extra code is

sourced from the kernels’ light wrapper for writable parameter

identification, and our compiler-based approach encompasses

the rest of transformation and optimization. In contrast, sig-

nificant code modification is involved in other schemes. Async
necessitates manually managing CUDA’s asynchronous APIs,

while Taskflow lessened this burden and still requires explicit

dependence specification. GrSched has the merit of automation

but is limited to dynamic programming language for runtime

analysis. KeSCo covers both automation and adaptation in

enabling inter-kernel concurrency, and has the benefit of

fulfillment in complex scenarios.

C. Speedup in Multi-task Programs

We conduct the evaluations with input consuming around

5GB of memory for each benchmark. The kernel launch

configurations vary in block sizes (the number of threads per

block) under a fixed number of grid size (the number of

blocks) where Serial achieves the highest performance. For

each benchmark using the 1D thread block, we average results

for the block sizes from 32 to 1024. For those using the 2D

or 3D thread block (e.g. HITS, IMG, and DL), the block
sizes range from 8 or 16 to the maximum acceptable size. We

report the execution time in Figure 8. KeSCo achieves 1.28×
average speedup for all benchmarks, comparable to Async.

On the other hand, GrSched and Taskflow achieve 0.98× and

1.10× speedup on average, respectively. For GrSched, the

most significant performance penalty comes from the high

cost of dynamic scheduling, including dependency analysis as

well as runtime capture and issue kernels. Furthermore, such

overhead prevents the CPU from launching kernels simulta-

neously. When the kernels complete shortly (e.g. the input

size decreases or launched threads increase), the overhead

takes a higher proportion of execution time. This worsens

the insufficient overlaps among kernels and thus lowers the

performance.

The above evaluation mainly takes into account the schedul-

ing among kernels. But in more general scenarios, data transfer

is also a significant factor affecting performance. Thus, we

evaluate different schemes except Taskflow4 on three repre-

TABLE II: Average programming efforts.

Scheme LoC #Tokens D.A.a C.M.b N.P.Fc P.L.d

Serial 86 378 � � � C++
Async 106 483 � � � C++

Taskflow 173 914 � � � C++
GrSched 366 1832 � � � Python
KeSCo 88 401 � � � C++

a Automatic Dependency Analysis
b Automatic Concurrency Management
c No New Programming Framework
d Programming Language

4The evaluation requires virtual memory mechanism of GPU and asyn-
chronous data prefetch for overlapping computation with data transfer, which
is not yet supported in Taskflow

Fig. 8: Average speedup gained by different schemes in eight

benchmarks under multiple launching settings.

Fig. 9: Speedup from asynchronous data prefetch.

sentative benchmarks, each of which involves over twenty op-

erations of data transfer in scheduling. Figure 9 demonstrates

the result. KeSCo achieves 5.01× average speedup, which is

only about 7% lower than Async, and outperforms GrSched
by 31.5%. This performance gap between KeSCo and Async
is due to the insufficient overlap of data transfer and kernels,

which is caused by the hash-based distributing algorithm for

kernels or operations.

D. Hardware Resource Utilization

In this section, we analyze how KeSCo affects hardware

metrics such as FP32/64 instruction throughput, memory band-

width utilization and SM occupancy. We leverage DGCM [20],

a tool for monitoring global hardware-level metrics of GPU

with low overheads, to collect the average value of each metric

with an interval of one millisecond during each execution.

Figure 10 details the improvement of these metrics achieved

by KeSCo. With KeSCo being enabled, the average FP32/64

instruction throughput, memory bandwidth utilization, and SM

occupancy on all benchmarks increases by 1.78×, 1.61×
and 2.76×, respectively. Particularly, the memory bandwidth

throughput of VEC increases by 1.98×, indicating that the

Fig. 10: Hardware metric improvement gained by KeSCo in

different benchmarks, under the setting where KeSCo achieves

the highest speedup.
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acceleration of VEC mostly benefits from this. For M1,

M2, and B&S, KeSCo greatly raises the SM occupancy and

the throughput of FP32/64 instructions, thus utilizing more

computation resources and improving performance.

E. Sensitivity Studies

In this section, we study how KeSCo’s performance is

affected by different kernel inputs and stream counts. We

evaluate all schemes on each benchmark with input sizes

ranging from 1 - 10GB of memory occupancy. Figure 11

illustrates the results. KeSCo achieves an average speedup of

1.28× under all inputs, which is almost identical to Async.

However, GrSched’s performance is unstable under varying

input sizes. This is because GrSched’s kernel overlap depends

on the ratio of dynamic scheduling overhead to the time cost

of kernels, which varies greatly with input size.

For the robustness study on CUDA stream counts used in

KeSCo, we evaluate three benchmarks whose DFG maximum

widths are over five. Figure 12 details the results under the

launch setting where KeSCo gains the highest speedup. For

B&S, KeSCo achieves the highest speedup 2.76× with six

streams and downgrades as the stream increases. We used

Nvidia Nsight Systems to profile and observe that up to

seven kernels execute simultaneously on GPU, indicating the

hardware resource is saturated by seven kernels. Therefore in-

creasing streams aggravates resource competition and reduces

performance. For M1 and M2, the max concurrency of kernels

is also limited to eight for the same reason.

F. Speedup in Multi-process Scenarios

To evaluate how much KeSCo can deliver acceleration

in multi-process scenarios where sub-programs have differ-

ent priorities, we construct two in-house micro-benchmarks

with workloads from Table I. We compare KeSCo with �

the Baseline scheme where sub-programs will be launched

independently on GPU at the same time, and � the scheme

where Nvidia MPS[15] is enabled to transparently schedule

these sub-programs. Figure 13 compares the speedup of each

sub-program and the whole application gained by these three

schemes. On MP-1, KeSCo outperforms MPS by 23.1%

Fig. 11: Average speedup achieved by different schemes under

different input sizes and multiple launch settings.

Fig. 12: Speedup achieved by KeSCo with different number

of CUDA streams in B&S, M1 and M2.

overall and 45.41% for IMG, the sub-program with the highest

priority. For VEC1 and VEC2, sub-programs with lower prior-

ity, KeSCo achieves a speedup of 1.22×, which is only 4.01%
lower than that of MPS. On MP-2, KeSCo achieves a speedup

of 1.13× for the whole workload, while MPS’s performance

drops by 5.21%. This is because MPS launches B&S, the sub-

program with the lowest priority, earlier than KeSCo does,

causing resource conflicts and performance penalties. For ML,

the sub-program with the highest priority, KeSCo achieves a

speedup of 1.14× while MPS causes a 4.95% performance

drop. In summary, MPS has the merit of transparent scheduling

at runtime but it lacks the ability to prioritize tasks from a

global perspective. KeSCo, on the other hand, is a compiler-

based approach that enables this global optimization, with the

help of user hints.

(a) MP-1 consists of one IMG,
two VEC and one HITS. The pri-
ority is IMG > VEC > HITS.

(b) MP-2 consists of one ML, one
DL and one B&S. The priority is
ML > DL > B&S.

Fig. 13: Speedup in two MPS programs.

V. RELATED WORK

A. Concurrent Kernel Execution

CKE has been studied in fine granularity widely. Elastic

kernel [1] slices kernels into multiple small ones and deploys

them on different SM to speed up. Similarly, OpenMP [21]

is leveraged to decompose kernels into multiple tasks in

Junggler [11] and schedule tasks with dependencies via run-

time mechanism. Also, Pagoda [22] concurrently executes

narrow tasks at warp-level by virtualizing GPU resources

and issues kernels when required resources are available.

Targeting at real-world applications, RAMMER [3] proposes a

DNN compiler for joint optimization of inter- and intra-kernel

concurrency. Taskflow[4] wraps GPU programming model

APIs and implements a static scheduler in the framework. A

GrCUDA [6]-based runtime scheduler [7] eases prototyping of

parallel applications. Distinguishing from those prior arts, our

proposed KeSCo aims to statically automate kernel scheduling
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in multi-task programs, achieving much better performance

with reduced programming burden.

B. Task Scheduling

A bunch of task schedulers have been proposed to optimize

multi-task applications. On hardware level, new APIs are

introduced in [23] to heterogeneous system architecture (HSA)

for applications specifying task priority. Chimera [12] extends

SM scheduler to estimate the cost of kernel preemption to

minimize the overhead. Similarly, command buffer and status

table are further embedded in SM scheduler [13] to minimize

the overhead for prioritized tasks. On software level, FELP

[24] leverages a compiler-runtime system to control task

preemption at kernel level. EffiSha [10] schedules kernels at

thread-block level dynamically with an online cost model.

Pegasus [2] proposes a hypervisor that offers a virtualized

accelerator’s interface to schedule heterogeneous tasks coor-

dinately in virtual machines. CASE [25] introduces a novel

compiler-based approach for scheduling uncooperative tasks,

which is not applicable for the dependent task scheduling in

our scenario. While prior arts necessitate dedicated systems

for scheduling, KeSCo seamlessly integrates with compiler

and eases the use of task-level concurrency.

VI. CONCLUSION

The paper proposes KeSCo to automatically enable CKE

in multi-task applications at compile-time with trivial pro-

gramming effort. KeSCo constructs the DFG from source

code, distributes kernels across multiple streams, and generates

synchronization barriers to achieve load balance and low

synchronization cost. Moreover, the design is extended to

multi-process scenarios for prioritized sub-program schedul-

ing. Experimental results demonstrate that KeSCo effectively

boosts performance and eases programming burden.
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