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Abstract—Loops are a fundamental component of programs,
providing an structured and efficient way to execute repetitive
tasks. Given their prevalence and significance, the performance of
loops has a direct impact on the overall execution of a program.
Predicting loop unroll factor holds remarkable importance in the
domain of loop optimization and vectorization parallelism. With
the rapid advancements in this field, leveraging machine learning
(ML) methods for compilation optimization has emerged as a
new research focus. Whereas traditional heuristic algorithms lack
precision and Profile-Guided Optimization (PGO) techniques
incur considerable compilation overhead, ML method serve as a
more balanced approach with respect to accuracy and compila-
tion time. Nonetheless, existing ML approaches are commonly
confined to individual optimizations and fail to consider the
interplay between multiple optimizations. Additionally, there is
inadequate utilization of compilation optimization parameters,
resulting in redundant calculations across different optimization
processes. This paper proposes mLOOP, a method that employs
the XGBoost model to predict loop unroll factors which are
integrated into the metadata for use throughout the compilation
pipeline. To facilitate deployment and testing in practices, mLOOP
is encapsulated into a LLVM optimization pass. By testing on
multiple loop-intensive benchmarks, mLOOP achieves 7% speedup
on X86 platform and 12% on ARM.

Index Terms—Loop unrolling, Compiler optimization, Machine
learning.

I. INTRODUCTION

The demand for performant and efficient program execution
is increasingly growing, driving the rapid evolution of both
programming languages and hardware processors. As the
bridge between language and hardware, compiler transforms
source code into machine code by employing a variety of
optimization techniques to enhance program performance.
With the swift advancements in computer architecture, the re-
liance on compiler optimization has greatly intensified to fully
utilize hardware resources. Exploring compiler optimization
techniques remain a focal point of research, emphasizing the
critical task of identifying potential optimization opportunities
within programs. A key aspect of this process is determining
loop unroll factors. Traditional compilers typically employ
intricate heuristic algorithms to develop cost functions that
evaluate optimization quality based on expertise and fixed
rules, considering factors such as loop code size, iteration
count, and dependencies. Additionally, traditional compilers
construct an abstract architecture model, encapsulating the tar-
get computer architecture’s features, including the instruction
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set, memory model, and cache structure. This model guides
optimization decisions tailored to the target platform’s charac-
teristics and the desired optimization goals, such as selecting
suitable instruction sequences, memory access patterns, and
register allocation strategies.

However, neither the heuristic algorithm nor the abstract
architecture model succeeds to fully unleash the performance
potential of loop unrolling. Determining various parameters at
compile time, such as loop unroll factors, presents significant
challenges. Firstly, the evaluation criteria for the quality of
the generated program differ widely. The performance of a
program compiled with identical code under different pa-
rameters can vary significantly, where the program may run
quickly but have a large program size, or may be compact
but run slowly. In cases with ample memory, the focus is
solely on execution speed, whereas limited memory neces-
sitates partially sacrificing execution performance to ensure
proper program function. Consequently, the evaluation of
program quality is environment-dependent, complicating the
assessment of the generated program. Secondly, accurately
measuring a program’s execution performance is challenging.
During execution, factors such as kernel scheduling, cache
behavior, and system noise can cause significant fluctuations
in runtime, making it difficult to measure performance un-
der consistent conditions. Thirdly, there is often no direct
causal relationship between code performance and compilation
parameters. Compilation parameters indirectly affect runtime
outcomes, complicating the selection and adjustment of cor-
responding parameters. A complete compilation optimization
process may involve tens of thousands of parameters, making
manual adjustment or rule-based design both difficult and
time-consuming.

To tackle the aforementioned challenges, PGO (Profile-
Guided Optimization) [1] technology has been developed to
adjust compilation optimization parameters using a profile file
generated during program execution. The profile file contains
measurements of various indicators reflecting the actual run-
ning efficiency of the program. By fine-tuning compilation
parameters and recompiling based on the profile file, the pro-
gram can achieve better performance. However, implementing
PGO is complex, requiring the program to be compiled and
run once before optimization can occur, thereby significantly
lengthening compilation time.
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Currently, compiler optimizers are structured into pipeline
stages, with each being called as an optimization pass. These
passes act on the intermediate representation (IR) of the
code to optimize. Optimization passes adopt various heuristic
algorithms to make decisions on compilation parameters. For
example, when determining the loop unroll factor or assessing
branch probabilities, the compiler uses these heuristic algo-
rithms to balance program size, runtime, and compilation time.
In LLVM [2], optimization is decoupled into separate passes,
which can be turned on or off based on compilation parameters
and program characteristics. Practitioners can easily add new
passes to the workflow to deploy optimization methods for
specific steps in LLVM.

To balance performance and efficiency, machine learning
(ML) methods are employed to adjust the loop unroll fac-
tor in compilation optimization. By predicting optimization
parameters through offline training models, it is possible to
reduce compilation time while achieving better operational
results. The trained ML model can be encapsulated into
an optimization pass, and further integrated into LLVM for
facilitating easy deployment and application. Following the
idea, this paper proposes mLOOP to explore the use of ML
methods to predict loop unroll factors, which are written into
metadata for use throughout the compilation process.

To collect features and labels required for ML training, we
integrate this functionality into the optimization pass in LLVM.
This optimization pass gathers loop-related features and labels
from each loop and basic blocks within the loop, including
loop unroll factor generated during LLVM optimization and
the estimated number of loop runs. Eighteen loop and basic
block features relevant to loop unrolling performance are
selected as training and prediction features. These include
loop depth, statistics on the number of various instructions
in the loop, and other features. These labels and features are
integrated through interfaces implemented in LLVM. After
deploying this optimization pass, the collected information
from over 16,000 loops and estimates of loop unroll factors
for training ML models is automatically saved to a preset file.

The XGBoost [3] library function is then used to train a
decision tree model for predicting loop unroll factors. These
features serve as intermediate nodes of the decision tree,
with the labels being leaf nodes. After training, the model
is exported and encapsulated in an optimization pass. This
optimization pass, applied to all loops, collects and integrates
loop features, using the decision tree to predict the loop unroll
factor based on these features. The predicted factor is then
added to the loop metadata. In subsequent loop unrolling
optimizations, the predicted factor is used, instead of the
heuristic algorithm’s estimated factor, to determine the number
of unrolling steps.

The contributions of this paper are summarized as follow:

o Aiming to facilitate compiler optimizations with ML,
we adopt XGBoost to predict loop unroll factors, sup-
plementing the conventional heuristic-based and PGO
methods.

for(int i = 0;i<n;i+=2){

1.‘|:|r.1c('i);
for(int i = 0;i<n;i+=1){
func (3 e

¥ }

(a) loop without unrolling (b) loop with unrolling by a un-

roll factor of 2

Fig. 1. The example of loop unrolling

o An LLVM optimization pass is implemented for collect-
ing features and labels, specifically selecting eighteen
features pertinent to loop unrolling. This pass can be
seamlessly deployed within the LLVM framework to
gather training data for machine learning models.

« A substantial dataset of loop unroll factors is compiled,
which has proven effective in enhancing program per-
formance. This dataset provides a valuable resource for
further research in future studies.

II. BACKGROUND AND MOTIVATION
A. Background

Loops are fundamental control flow mechanisms in pro-
gramming, enabling the repeated execution of a code block
until a specified condition is satisfied. This repetitive execution
facilitates efficient processing of large datasets, the consistent
performance of specific actions, and the generation of repeti-
tive patterns within a program. Loop unrolling is a prominent
loop optimization technique that enhances program perfor-
mance by replicating the loop body multiple times within each
iteration (Figure 1). This replication is guided by a loop unroll
factor, which effectively reduces the total number of loop
iterations while modifying the loop control logic. The benefits
of loop unrolling are multifaceted: it minimizes loop control
overhead, mitigates branch prediction failures, promotes mem-
ory locality, and facilitates instruction parallelism. However,
loop unrolling can also negatively impact performance by
increasing code size, potentially reducing instruction cache hit
rates and exacerbating register pressure. Consequently, deter-
mining an optimal loop unroll factor is crucial to maximize
the performance gains of loop unrolling while minimizing the
detrimental effects of code size expansion.

B. Motivation

The loop unroll factors derived from heuristic methods are
often suboptimal. In some scenarios, adjusting the loop unroll
factor can enhance performance, while in others, reducing the
unroll factor can decrease program size without compromising
performance. This distinction arises because, during execution,
only a subset of loops, known as hot loops, is frequently
executed. By assigning an appropriate unroll factor to hot
loops and minimizing the factor for cold loops, one can
achieve both a reduction in program size and an improvement
in performance. Randomly adjusting the loop unrolling factor
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can result in a performance enhancement of 3% to 30% in
certain test cases. Heuristic methods generally rely solely
on static program information, whereas Profile-Guided Op-
timization (PGO) provides dynamic execution data. Utilizing
PGO, the execution frequency of loops can be more accurately
estimated, allowing for the prediction of more suitable unroll
factors. However, PGQO’s effectiveness is contingent on the
program’s input, and its implementation is time-consuming,
requiring the program to be compiled twice and executed once.
Moreover, there is a deficiency in the effective use of PGO
data, rendering dynamic information challenging to leverage.
In contrast, machine learning techniques can swiftly determine
superior loop unroll factors compared to heuristic methods,
offering a more efficient alternative.

III. DESIGN
A. Overview

The whole process of mLOOP is divided into offline phase
and online phase as shown in Figure 2.

Offline Phase: In this phase, the random forest model
named XGBoost is selected for predicting loop unroll factors.
First, the features of all loops in the training set are collected
and the loop unroll factors of each loop are collected as
labels. In this phase, a new optimization pass is added to
the optimizer and enabled through compilation parameters.
First, all programs in the training set are compiled with this
optimization pass enabled. This optimization pass collects the
relevant features of loop unrolling, denoted as X. At the same
time, because the PGO technology used in LLVM does not
generate loop unroll factor technology, the heuristic algorithm
of LLVM is used to calculate the loop unroll factor as a label.
This optimization pass records the loop unroll factor provided
by the LLVM optimizer, denoted as Y. The features used for
subsequent predictions are the same as those collected above.
The information collected above will be saved to a large file on
disk. A Python script will then be used to call the XGBoost
library to train this data. Generate a random forest that can
predict loop unroll factors based on the features of the loop.
And this model will be generated as C code and then integrated
into an optimization pass.

Online Phase: In the online phase, another optimization
pass is introduced. When enabled, this pass automatically
predicts the loop unroll factor for each loop during compilation
and writes it into the loop’s metadata. This prediction is loop-
specific, providing a finer granularity compared to setting a
universal loop unroll factor in the compilation parameters. The
new optimization pass also collects loop features and uses the
model trained in the offline phase to predict the loop expansion
factor.

B. Feature Collection

The accuracy of a model’s predictions is largely determined
by the selected feature set, which necessitates the collection
of extensive data for training. In this study, features and loop
expansion factors for over 16,000 loops across various pro-
grams were gathered for training purposes. Eighteen distinct

TABLE I
SELECTED FEATURES

num_instr num_float_ops
num_phis num_branches
num_calls num_operands
num_preds num_memory_ops
num_succ num_unique_predicates

ends_with_unreachable trip_count
ends_with_return num_uses

ends_with_cond_branch num_blocks_in_lp
ends_with_branch loop_depth

features were selected, including the number of instructions
within each loop, the variety of instruction types (such as
return and exception handling instructions), loop depth, and
the number of basic blocks. These features were stored in
arrays as floating-point numbers. The primary data source
for the training set was the llvm-test-suite, with features
collected by compiling and executing these programs. The
feature collection process was encapsulated as an optimization
pass, enabling easy deployment within LLVM for feature
collection. By executing a script to add the optimization pass
to the LLVM optimizer and specifying the necessary compila-
tion parameters, the optimization pass operates automatically,
storing the collected features in a predefined file.

In addition to the features directly related to the loop, con-
textual features can be incorporated to differentiate identical
library functions called from different files. In such scenarios,
the intrinsic features of the library function remain constant
and cannot distinguish between calls from various files. In-
cluding contextual information effectively addresses this issue.
Additionally, hardware features can be integrated to enhance
the model’s scalability across different architectures. Runtime-
related features, such as the number of loop executions, can
also be included. Incorporating dynamic features allows this
method to be combined with Profile-Guided Optimization
(PGO) technology, potentially yielding better performance.
The complete list of all eighteen features is presented in Table
L.

C. Label Collection

The XGBoost algorithm employed in this study is a su-
pervised learning algorithm, necessitating labeled data for
training, specifically the loop unroll factor as a training label.
Several methods exist to obtain this factor. One approach is
to extract compilation information from the Profile file using
Profile-Guided Optimization (PGO) technology. Alternatively,
different loop unroll factors can be set, and the program’s
runtime under these varying factors can be tested to determine
the optimal unroll factor. For instance, setting loop unroll
factors from 1 to 10 for the same program and measuring
their respective runtimes can help identify the best performing
factor as the label. However, this method is coarse-grained, as
LLVM typically sets a uniform loop expansion factor for the
entire compilation stage, which is suboptimal because only hot
loops require unrolling, while cold loops do not. Unrolling hot
loops can enhance execution speed, whereas unrolling cold
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Fig. 2. Overall workflow of mLOOP.

loops may increase program size and reduce performance.
Consequently, predicting the loop unroll factor for each loop
individually is expected to yield better results than using a
unified factor.

In this study, LLVM’s built-in heuristic algorithm is em-
ployed to predict the loop unroll factor, which serves as
the initial training label. This label is subsequently refined
by exploring values within its vicinity. During the feature
and label collection optimization pass, the heuristic function
predicts the loop unroll factor for each loop. We then adjust
this unroll factor to 0.6x, 0.8x, 1.2x, 1.4x, and 1.8x its original
value, and also round it up and down to the nearest power
of 2. By evaluating the performance of these adjusted unroll
factors, we select the best performing ones as the labels for
model training.

This pseudocode outlines a method for gathering loop
features and unroll factors, executed as a function pass. This
approach is convenient to implement and effectively captures
the contextual information of loops. The process involves
iterating through all loops within the function to collect
predefined features and labels. Subsequently, the acquired data
is stored in a file.

Algorithm 1 Feature and label collection Pass
Input: Function Pointer F
Output: All loop features and labels within the function
: for Loop in F do

Collect loop unroll factors generated by the O3 heuristic

Collecting Loop features

for BasicBlock in Loop do

Collect BasicBlock features

end for

Integrate Loop features and BasicBlock features
end for
return Features ans labels

R AN A R

D. Model Training

In the initial phase, over 16,000 loop features and corre-
sponding loop unroll factors were collected and stored in a
file, with each line representing the features and unroll factor
of a specific loop. The XGBoost library in Python was used
to train a model on this dataset.

A training set with n examples and m features can be
represented as:

D ={<wz,y>| |D|=n,2; e R",y; € R}

The XGBoost model, which is a decision forest, integrates
K activation functions to predict labels based on features. The
prediction method is illustrated by the following formula:

K
Yi = Z frl(zs)
=1

Here, each fjrepresents a decision tree that predicts the loop
unroll factor based on the m-dimensional features, effectively
mapping these features to a one-dimensional label. During
training, the dataset was divided into a 1:9 ratio, with 10%
used for testing and 90% for training. The model achieved
a prediction accuracy of 75% on the test set, and the entire
training process was completed in less than one minute.

E. Code Export

Post-training, the model, initially stored in Python, must be
converted to C/C++ for integration into the LLVM optimiza-
tion pass, which is implemented in C++. To facilitate this, the
model is exported as a C/C++ function, enabling its direct use
in the optimization pass.

XGBoost, comprising multiple decision trees, provides the
model in JSON format. A script can convert these JSON model
parameters into C/C++ code, creating corresponding decision
trees and synthesizing their results. This script, sourced from
the repository https://github.com/nadavrot/pgo_ml, automates
the conversion process. Once converted, the model can be
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added to the LLVM project and compiled, allowing direct
reference and usage in subsequent optimization passes.

E. Prediction Process

The prediction of loop unroll factors is conducted via an
optimization pass, applied to all loops within a function each
time it is called. The LLVM optimizer applies this pass to all
functions in the program. During the optimization pass, each
loop is traversed to collect features. These features, including
those of basic blocks and loop depth, are compiled into a
floating-point array, serving as input to the decision tree model
to predict the loop unroll factor. This factor is then added to
the loop’s metadata.

Since LLVM does not allow direct modification of loop
metadata, new metadata is created to overwrite the existing
one. This involves copying existing metadata, adding or mod-
ifying the loop unroll factor, and using the relevant interface to
apply the new metadata. In subsequent compilation phases, if
no specific compilation parameters are set, LLVM prioritizes
using this loop metadata for loop unrolling calculations.

To ensure the predicted loop metadata is utilized during
optimization, the optimization pass must precede the loop
unrolling and vectorization passes. Additionally, it relies on
information generated by other optimization passes, necessitat-
ing careful manual placement within the LLVM optimization
pass management file. In this study, the optimization pass for
predicting the loop unroll factor was placed adjacent to the
loop unrolling optimization pass.

This pseudocode delineates the procedure for predicting the
loop unroll factor, implemented as a loop optimization pass.
It iterates through each loop within the function, collects the
loop’s features, and inputs the feature vector into the XGBoost
model. The model predicts and returns the loop unroll factor,
which is then assigned as loop metadata for utilization in the
subsequent unrolling phase.

Algorithm 2 Predicting loop unroll factors Pass
Input: Function Pointer F and Trained XGBoost model
Output: Function with loop unroll factor metadata

1: for Loop in F do

2:  Collecting Loop features
for BasicBlock in Loop do

Collect BasicBlock features
end for
Integrate Loop features and BasicBlock features
Call the XGBoost model and use the collected features
to predict the loop unroll factor

8:  Write the predicted loop unroll factor into the metadata
9: end for
10: return Function with loop unroll factor metadata

A A

1V. EVALUATION
A. Methodology

1) System Configurations: The experimental evaluation was
conducted on two distinct computational architectures: the

X86 and the Arm platforms. A detailed enumeration of the
device parameters utilized in the study is delineated in Table
II. The experimental procedures were encapsulated within a
Docker environment to ensure consistency and reproducibil-
ity. The implementation of the experiment necessitated pro-
ficiency in C++ and Python programming languages. For
the Python-based components, the installation of libraries
including NumPy, scikit-learn, and XGBoost was mandatory.
Furthermore, the configuration of the LLVM project was an
essential prerequisite for the experiment.

TABLE 11
HARDWARE AND SOFTWARE ENVIRONMENT.
Architecture | Field | Value
X386 CPU | Intel(R) Xeon(R) Gold 6150 CPU @2.7GHz
(O Debian GNU/Linux 11(bullseye)
Arm CPU Kunpeng-920
oS Ubuntu 22.04.4 LTS

2) Workloads: To comprehensively assess the impact of
the model, the LLVM-TEST-SUITE benchmark suite was em-
ployed, encompassing two benchmarks characterized by their
loop-intensive nature: PolyBench and TSVC. These bench-
marks were chosen to scrutinize the model’s performance
under conditions of high computational demand within loop
structures. Furthermore, to examine the model’s efficacy in
the context of broader large-scale applications, the SPEC2017
benchmark suite was also incorporated into the testing regi-
men. A succinct overview of these benchmarks is presented
in Table III.

TABLE III
BENCHMARK.

Note

This benchmark is used to test the functional
correctness of LLVM. It contains several
small loop-intensive benchmarks.

The SPEC CPU® 2017 benchmark package
contains industry-standardized, CPU inten-
sive suites for measuring and comparing
compute intensive performance, stressing a
system’s processor, memory subsystem and
compiler.

Benchmark [

LLVM-TEST-SUITE

SPEC 2017

3) Metrics: In this study, three primary metrics are utilized
to assess the efficacy of the optimization: code compilation
time, runtime performance of the executable file, and the re-
sultant file size. The emphasis is placed on the runtime and file
size of the executable, as these parameters are indicative of the
program’s operational efficacy within a practical environment.
Concurrently, it is imperative to ensure that the compilation
time remains within an acceptable threshold.

B. Execution Time

Figure 3 illustrates the performance enhancement achieved
by employing machine learning models to predict loop unroll
factors across two distinct architectures: X86 and Arm. On
the X86 platform, the models yielded an average speedup
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of 7% relative to the LLVM O3 optimization level. In con-
trast, the Arm architecture demonstrated a more pronounced
improvement, with an average speedup of 12%. Notably, for
the StatementReordering test case on the X86 architecture, a
peak speedup of 33.6% was recorded. Similarly, on the Arm
architecture, the Searching test case exhibited an exceptional
peak speedup of 58.2%. These findings underscore the po-
tential of machine learning-assisted optimization in enhancing
computational efficiency, particularly in the context of loop
unrolling optimizations.

The Arm architecture demonstrates a higher average
speedup (12%) compared to the x86 architecture (7%), sug-
gesting that the ML models may be more effective on the Arm
platform for loop unrolling optimizations.

C. Code Size

TABLE IV
ON X86, THE EXPANSION OF PROGRAM SIZE

test case baseline | optimization | expansion
500.perlbench_r 2486920 2605704 4%
507.cactuBSSN_r 5458928 6499312 19%
519.1bm_r 30472 30472 0%
520.omnetpp_r 2909768 2983496 3%
526.blender_r 23062920 23562632 2%
IndirectAddressing-fit 68453 46245 -32%
Expansion-fit 70917 48933 -31%
Expansion-dbl 48309 49349 2%
InductionVariable-dbl 47045 47989 2%
ControlFlow-dbl 52837 54085 2%
Packing-flt 67013 44853 -33%
siod 127061 130149 2%
cholesky 3733 4197 12%
LinearDependence-fit 72005 50421 -30%
SIBsim4 46405 52581 13%
StatementReordering-fit 66869 44677 -33%
total 34619655 36255095 5%

The data in Tables IV and V delineate the variations in code
size for the x86 and Arm architectures, respectively, following
optimization. For the x86 platform, the overall code size

Baseline
1.44 B MachinLearning

(b) ARM
Fig. 3. Speedup of machine learning methods relative to LLVM O3

TABLE V
ON ARM, THE EXPANSION OF PROGRAM SIZE

test case baseline | optimization | expansion
507.cactuBSSN_r 5458928 6499312 19%
510.parest_r 13948408 15513080 11%
526.blender_r 23062920 23562632 2%
623.xalancbmk_s 7334960 7736368 5%
Obsequi 32860 34436 5%
pairlocalalign 355388 512244 44%
GlobalDataFlow-flt 39724 38076 -4%
InductionVariable-dbl 51564 37340 -28%
nbench 40268 44132 10%
CrystalMk 4332 4772 10%
siod 135692 141220 4%
CrossingThresholds-dbl 50780 36716 -28%
Packing-dbl 48772 34500 -29%
Packing-flt 36148 34572 -4%
Searching-dbl 48268 33964 -30%
total 50649012 54263364 7%

increased by approximately 4.7%, while the Arm architecture
exhibited a more substantial augmentation of 7.1%.

Table IV provides detailed insights into the code size
changes for various test cases on the x86 architecture. The total
code size expanded from 34,619,655 bytes to 36,255,095 bytes
post-optimization. Notably, most test cases experienced an
increase in size, with 507.cactuBSSN_r showing a significant
rise from 5,458,928 bytes to 6,499,312 bytes. However, a
few test cases, such as IndirectAddressing-fit and Packing-fit,
demonstrated a reduction in code size.

Similarly, Table V illustrates the code size changes for
different test cases on the Arm architecture. The total code
size grew from 50,649,012 bytes to 54,263,364 bytes after
optimization. Significant increases were observed in test cases
such as 510.parest_r and pairlocalalign, with the latter increas-
ing from 355,388 bytes to 512,244 bytes. Conversely, some
test cases, like GlobalDataFlow-flt and InductionVariable-dbl,
experienced a decrease in size.

The comparative analysis reveals that the Arm architecture
experienced a greater overall increase in code size compared
to the x86 architecture. This disparity could be attributed
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to differences in optimization techniques and architectural
characteristics. While both architectures exhibited an overall
increase in code size, the magnitude and distribution of these
changes varied across different test cases.

D. Compilation Time

Regarding compilation time, we consider two primary com-
ponents. The first is the time taken by the machine learning
model to predict the loop unroll factor, and the second is
the increased compilation time resulting from the expanded
code volume after adjusting the loop unroll factor. The time
consumed by the machine learning model is negligible com-
pared to the overall compilation process, as the depth of
each decision tree in the random forest is shallow, resulting
in minimal time consumption. The increase in compilation
time due to code volume expansion is generally acceptable in
most test cases. However, in a few instances, the compilation
time may increase significantly, sometimes by an order of
magnitude, due to the substantial code volume. Therefore, in
these specific test cases, it is necessary to limit the loop unroll
factor.

E. Generate IR for Comparison

This section demonstrates how the loop unroll factor is
stored in metadata after being predicted. As illustrated in
the following code, this is an intermediate representation
generated in an experiment. The identifier comprising an
exclamation mark and a number is the metadata created during
the compilation process. Specifically, llvm.loop.unroll.count is
the metadata used for loop unrolling, added by the optimiza-
tion pass implemented in this study. In the given code, only
Ilvm.loop.unrolltest.count is present, and its value matches
Ilvm.loop.unroll.count. This is because the original metadata
is utilized and subsequently deleted during the loop unrolling
process. For clarity, We added llvm.loop.unrolltest.count meta-
data to preserve relevant information. It can be observed that in
this function, the loop unroll factor predicted by the machine
learning model is 5, and the metadata llvm.loop.unroll.disable
indicates that the loop unrolling optimization has been com-
pleted, implying that future loop unrolling is unnecessary. In
the actual intermediate code representation, the loop-related
basic blocks are copied multiple times.

define i32 @foo() {

}

17 = distinct 1{17, 18, 19, 110}

18 = !{!”1lvm.loop . mustprogress”}

19 = I{!”1lvm.loop.unrolltest.count”, i32 5}

110 = !{!”1llvm.loop.unroll.disable”}

V. RELATED WORK

The application of machine learning to compiler optimiza-
tion has been extensively studied, demonstrating its potential
to surpass human-designed heuristics, as evidenced by the
works of Ashouri et al. [4] and Leather et al. [5].

Supervised learning is the most commonly employed tech-
nique in this domain. It has been successfully applied to

various problems, such as loop unrolling [6], [7], instruction
scheduling [8], program segmentation [9], heterogeneous de-
vice mapping [10], [11], function inlining [12], and diverse
optimization heuristics in GCC [13].

Supervised learning relies on labeled data for training,
which is challenging to obtain from compilers. In specific
areas like code generation for linear algebra primitives, a
fixed compilation pipeline and program for measurement can
be used [14]. However, measurement noise complicates the
evaluation of program performance, particularly for small
metrics such as the runtime of a basic block [15]. To address
this, Steiner et al. [16] used noise in measurements as a
prediction target. Other projects utilize static indicators, such
as static analysis of generated binary code or code size [17],
[18].

Feature design is a critical challenge in supervised learning
for compiler optimization. Identifying which indicators impact
compilation results is difficult, and the quality of a supervised
model is closely tied to its feature set. Previous studies often
use manually selected numerical feature vectors for model
training [19]-[21]. However, manual feature selection is time-
consuming and prone to errors. Leather et al. [22] proposed an
automatic feature selection method, though it requires complex
syntax to describe the feature space. Recent research has
introduced deep learning models inspired by natural language
processing [7], [10], [23] and graph learning [11], [24] to
simplify feature selection by automatically inferring high-level
features from low-level input representations. Despite their
advantages, these techniques reduce interpretability, making it
difficult to understand the relationships between features. Our
approach balances interpretability and efficiency by utilizing
numerous values readily available from LLVM’s static analysis
and machine learning algorithms.

Reinforcement learning is another approach to compiler
optimization. Some research has framed compiler optimization
problems as reinforcement learning environments [18], while
others have applied reinforcement learning to vectorization
decisions in the LLVM vectorizer [25], [26]. The MLGO
project integrates neural networks into LLVM for function in-
lining heuristics [17]. ESP is an earlier work applying machine
learning to branch prediction [27]. These methods share simi-
larities with our work; however, our approach uniquely writes
predicted results into metadata, allowing a single prediction to
influence the entire compilation process.

This study employs XGBoost to predict loop unroll factors,
whereas related work has used the XGBoost algorithm for
predicting branch weights [28].

VI. CONCLUSION AND FUTURE WORK

This paper employs a ML model to predict the loop unroll
factor for each loop at a fine-grained level, achieving a
performance comparable to the O3 level. The ML model is
integrated into the LLVM framework, facilitating deployment
in practices. Furthermore, this study collects various loop un-
roll factors as labels for the model, which effectively enhance
program performance for future research. The feasibility of
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using ML models to predict loop unroll factors is validated,
demonstrating simultaneous improvements in performance and
reductions in program size.

However, there are some limitations in this work. The
feature selection for the ML model is neither sufficient nor
entirely appropriate. Certain test cases cannot be differentiated
with the current features, leading to sub-optimal performance
in some instances. Additionally, the current features lack
context and hardware-related information. Incorporating con-
text information in the future could help distinguish library
function calls in different programs, as the same library func-
tion may be invoked at varying frequencies across different
programs, leading to its classification as a hot function in
one context and a cold function in another. Consequently,
the optimal loop unroll factor for the same function may
differ based on context. Including hardware information in the
features can enhance the model’s scalability and robustness,
ensuring efficient performance across different platforms.

The current model does not account for the program’s
dynamic information, relying solely on static information to
predict the loop unroll factor. Additionally, the quality of the
collected loop unroll factors, which serve as labels, is inade-
quate. The performance of the ML model is contingent on the
quality of its training data, and the collected labels currently
do not fully explore the optimization space of loop unrolling,
resulting in sub-optimal model performance. Presently, the
loop unroll factors obtained through O3 optimization using
heuristic methods are not optimal. Future research should
focus on collecting better unroll factors and improving fea-
ture engineering to fully explore this optimization method’s
potential.
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