
moTuner: A Compiler-based Auto-tuning Approach for
Mixed-precision Operators

Zewei Mo
mozw5@mail2.sysu.edu.cn
Sun Yat-Sen University
Guangzhou, China

Zejia Lin∗
linzj@mail.nwpu.edu.cn

Northwestern
Polytechnical University

Xi’an, China

Xianwei Zhang
zhangxw79@mail.sysu.edu.cn
Sun Yat-Sen University
Guangzhou, China

Yutong Lu
luyutong@mail.sysu.edu.cn
Sun Yat-Sen University
Guangzhou, China

ABSTRACT
Arithmetic operators are now used in a wide spectrum of domains,
including artificial intelligence, data analytics and scientific com-
puting. Meanwhile, specialized hardware components to enable
low-precision computing are increasingly deployed in GPUs and
accelerators. Whereas promising to boost performance, accelerat-
ing the operators on the hardware necessitates manually tuning the
mixed-precision knobs to balance the performance and accuracy,
which can be extremely challenging in real practices.

To address the issue, we present moTuner , an automatic frame-
work for efficiently tuning mixed-precision operators. moTuner
works on compiler-level to automatically enable themixed-precision
computation, without involving anymanual modifications of source
code and/or the operator library, thus significantly alleviating the
programming burden. Owing to be implemented in compilation
phase,moTuner can be more widely applicable with lessened efforts
on the libraries. Further, moTuner adopts optimized search strategy
in tuning to effectively narrow down the configuration space. The
evaluations on GEMM operators and real applications demonstrate
that moTuner achieves performance improvement up to 3.13x and
1.15x respectively, while guaranteeing considerably high accuracy.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computer
systems organization→ Heterogeneous (hybrid) systems.

KEYWORDS
mixed-precision operator, auto-tuning, compiler, performance and
accuracy, GPUs
ACM Reference Format:
Zewei Mo, Zejia Lin, Xianwei Zhang, and Yutong Lu. 2022. moTuner: A
Compiler-based Auto-tuning Approach for Mixed-precision Operators. In
19th ACM International Conference on Computing Frontiers (CF’22), May
17–19, 2022, Torino, Italy. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3528416.3530231

∗Work done while interning at Sun Yat-sen Unversity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF’22, May 17–19, 2022, Torino, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9338-6/22/05. . . $15.00
https://doi.org/10.1145/3528416.3530231

1 INTRODUCTION
The past decade witnesses the ubiquitous development of compute-
intensive machine learning, data processing workloads and sci-
entific computing applications, and the popularity of hardware
computing devices including GPUs and domain-specific accelera-
tors. The continuous demand of compute horsepower drives the
emergence of dedicated operators and low-precision computing to
raise the performance levels on resource-constrained systems. Ac-
cordingly, dense arithmetic operations like convolution and general
matrix multiplication (GEMM) have been greatly invested, lead-
ing to various pre-built libraries, such as cuBLAS [33], rocBLAS
[2] and MKL [19]. As the operators are overwhelmingly adopted,
different types of hardware devices with specialized units have
been introduced to efficiently support the operator computations.
Recent GPUs are adding extra units like Tensor Cores [34] and
Matrix Cores [1], and accelerators including Google TPUs [22] and
Cambricon’s MLUs [6] are used in multiple domains. To further
improve the performance, low-precision computing is being ac-
tively explored from both hardware and software perspectives. On
hardware, relaxed data types like 16-bit floating point (FP16) and
8-bit integer (INT8) are well supported in almost all recent GPUs
and accelerators; on software, quantization and precision refine-
ment [28, 41]were proposed and utilized to support mixed-precision
computations.

Naturally, the software and hardware techniques should be com-
bined to unleash the full potential of mixed-precision computing.
As such, the application programmers are required to scrutinize
the source code to refactor the operator calls, which typically in-
volves multiple parameters to tune the optimal mixed-precision
settings with acceptable errors and higher performance. Besides,
the aforementioned quantization and precision refinement are usu-
ally implemented inside the underlying libraries, thus necessitating
the application programmers to revise the library and/or cooperate
with the library providers. However, the low-level libraries are often
highly-optimized and pre-defined by the hardware vendors, and
can even be closed-source for proprietary reasons. Alternatively,
the quantization and precision refinement steps can be migrated
to application codes instead, thus leaving all changes to the end
programmers, which inevitably increases the programming burden
and further impedes the mixed-precision usages. For either option,
programmers have to tune the knobs to tradeoff the speedup and
output accuracy, which commonly incurs non-trivial manual ef-
forts and expertise. Even worse, the prevalent use of heterogeneous
computing platforms composed of CPUs, GPUs and accelerators fre-
quently demands the portability of the mixed-precision procedures,
rendering recurring engineering efforts.

94

CF’22, May 17–19, 2022, Torino, Italy Z. Mo and Z. Lin, et al.

To reduce the programming burden when taking advantage of
mixed-precision computation on large programs and decouple ap-
plications from unnecessary operator libraries, we devise moTuner
to efficiently tune mixed-precision settings for operators in pro-
grams. It uses an optimized tuning strategy and user-defined error
thresholds of the operator to tune mixed-precision settings for oper-
ators. When tuning, it applies the compiler to automatically analyze
dependencies of operators and collects profiling information to help
narrow down the search space of mixed-precision settings for op-
erators. In the end it generates a program with higher performance
and acceptable error. Also it targets on operator libraries of GPU
and allows self-defined approaches of quantization and precision
refinement to be embedded into compilers, which eases usage effort
of various libraries when programming on heterogeneous systems.

In summary, the contributions of this paper are:
• we highlight the importance of removing the obstacles to
mixed-precision uses, and then propose to consolidate the
application- and library-level changes into the compiler,
which makes the whole procedure transparent to end users.
• our designed compiler-based framework moTuner automati-
cally enables mixed-precision by identifying and wrapping
up the operator calls, and meanwhile adaptively and effec-
tively selects the appropriate parameters to well support the
desired mixed-precision computations.
• experimental evaluations formultiple GEMMs and real world
applications show that the proposed framework is effectively
speeding up the execution, while refraining the accuracy loss
to low levels.

The rest of the paper is organized as follows. Section 2 introduces
the background and motivation. Section 3 elaborates the proposed
designs. Section 4 presents the experimental methodology, and
Section 5 analyzes our experimental results. Section 6 discusses
related work. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce representative operators together
with their mixed-precision computations, and then the basic compi-
lation process. Next, we present the motivation of compiler-based
automatic tuning to support mixed-precision operators.

2.1 Operators and Mixed-precision
As the requirement of machine learning and scientific computing
applications continuously grows, the high computation demands
drive GPUs to become the de facto computing platforms. And, in-
creasing problem complexity and data volume motivate researches
to optimize compute resources from both hardware and software
perspectives, with examples of dedicated arithmetic units and oper-
ator libraries. In recent years, operators are dominating the whole
execution of machine learning applications, and are even frequently
involved in scientific computing workloads. Among the diverse op-
erators, GEMM, 𝐷 = 𝛼𝐴𝐵 + 𝛽𝐶 , is a representative one used in
many neural networks like CNN [24], ResNet [15] and linear alge-
bra applications like HPL [31], NTChem [35], Laghos [11].

The operator in these applications usually runs in a high-precision
floating-point arithmetic (e.g., FP64, FP32). However, as the quan-
tization methods and analysis of error control are getting mature,

various efforts focus on taking advantages of low-precision (e.g.,
FP16, FP21 and INT8) arithmetic to speedup programs [4, 16, 21, 39]
and many operators are implemented in mixed-precision like ReLU
[40], GEMM [28] and winograd [3]. These low-precision repre-
sentations with smaller size occupy less resources of GPU than
high-precision ones, leading to a more limited value range, coarse-
grained precision and higher performance. To further boost the
operator efficiency, different levels of floating-point precision are
now supported in recent GPUs (e.g., MI100 [1] and A100 [34]) to
operate data with reduced sizes. Precision of mixed-precision op-
erators’ input and output can be represented like 𝑃𝑙/𝑃ℎ where the
former is the low precision of input and the latter is the high preci-
sion of output.

To achieve this, developers need to first transform high-precision
data to low-precision, which is called quantization [12]. Then they
utilize hardware and software with the capability of exploiting
low-precision calculation like Tensor Core and VNNI [18], to pro-
duce results. In the end, de-quantization is performed to turn low-
precision data produced back to high-precision. This method has
already been widely employed in AI application due to their insen-
sitivity to precision [29], greatly reducing dearth of resource and
improving performance. But it’s difficult to exploit it in scientific
computing applications because they are strict with the precision
loss.

2.2 Compilation Procedure

*.cpp
Compiler Assem-

bler Linker

Operator
Library

Front
End Passes Code

Gen

*.outPre-
processor

.o.s*.i

.s.bc*.bc*.i

LLVM System

Optimization

Figure 1: General compilation procedure.
Operator usage requires the assistance from compilers, which

bridges the high-level codes to the underlying hardware. Figure 1
shows the compilation procedure of how C++ code using operators
is turned into executable file through LLVM [27]. In the beginning,
source code is handled by pre-processor to process the included
files and macro definitions. Then the pre-processed file is delivered
to the compiler. The procedure of compiler is typically partitioned
into three phases: front end, middle end and back end. Front end is
to check syntax correctness. Then, it turns the pre-processed code
into intermmediate representation (IR) file (i.e., bitcode file). IR is
the data structure and code used internally by compiler to represent
source code, which eases difficulties for applying numerous general
optimizations on it. The middle end uses multiple passes to analyze
or optimize IR. Each of them performs one specific operation on IR.
Next, the back end uses code generator to parse the optimized IR
file and generates assembly based on the target hardware platform.
Later the assembly file is turned into the re-allocated object file by
the following assembler. In the end, linker links the object file with
shared libraries including operator libraries provided by hardware
vendors to produce the executable file. The shared library is pro-
duced by compiling with flag of –shared in advance and linked

95

moTuner: A Compiler-based Auto-tuning Approach for Mixed-precision Operators CF’22, May 17–19, 2022, Torino, Italy

with target file in linker to provide implementations for invoked
APIs of operators. Thus, the executable file is able to unleash the
computing power of hardware by using operator libraries.

2.3 Motivation
2.3.1 Automate Mixed-precision. To bring mixed-precision oper-
ators into play when optimizing programs, developers need to
manually modify some parts in Figure 1. In source code, develop-
ers are required to write the quantization kernel functions, choose
which operators to be in mixed-precision and then replace them
with mixed-precision ones. This can be particularly time consum-
ing when working on large programs with thousands lines of code
like HPL [31], CFD [32]. Further, to better trade off performance
and precision in each operator without sacrificing much generality
and convenience, developers implement their own mixed-precision
refinement approach as dynamic shared objects based on exist-
ing operator libraries. The precision refinement approach utilizes
mixed-precision operator from vendors to calculate a result and
applies other calculations on it to accomplish the precision refine-
ment job. But the shared objects may need to be rebuilt whenever
the dependent operator libraries are updated, which costs a lot of
time and efforts to maintain.

……
{
GEMM(A,B,C,D);
GEMM(D,G,A,F);
GEMM(D,F,G,G);

}

#include “header.h”
……
{
GEMM(A,B,C,D,p1,p2,p3);
GEMM(D,G,A,F,p4,p5,p6);
GEMM(D,F,G,G,p7,p8,p9);

}

Quantitization(…){
// implementation

}
M_GEMM(in,in,in,out,

p1,p2,p3){
// implementation

}

LLVM
System

Mixed-
precision
Program

Shared
Library

FP32/FP32
Program

Operator
Libraries

Source Code

Figure 2: An example use ofmixed-precisionGEMMoperator.

What’s more, using such a framework requires parameter man-
ual tuning to gain the best trade-off between performance and
correctness. Figure 2 illustrates the procedure of applying mixed-
precision operators in an application. Here M_GEMM is a mixed-
precision GEMM framework with precision refinement, providing
some parameters (e.g., three [28] in the red code) for developers
to tune and strike a balance between performance and accuracy.
In order to employ it, developers need to replace the original code
with the one using M_GEMM and set parameters for them. Assuming
that each M_GEMM has𝑀 setting combinations, the tuning space is
𝑂 (𝑀3) in this sample. But it can be as huge as 𝑂 (𝑀𝑁) when the
program has 𝑁 GEMMs. So, to gain a mixed-precision program
with acceptable error and the highest performance, developers have
to pay huge efforts when carefully tuning the setting for each op-
erator. Then developers are required to build their own operator
libraries based on ones provided by vendors and link them with the
compiled file of modified code, which increases the complexity of
usage.

2.3.2 Control Error. Due to more limited range and coarse-grained
precision that low-precision data has than high-precision one, there
exists the emergency of re-designing existing algorithms to har-
ness high performancemixed-precision hardware within acceptable

error in multiple domains. This requires a lot of domain-specific
knowledge and engineering efforts for developers. For instance, in
linear algebra applications running on GPU like cholesky factoriza-
tion [20] and HPL-AI [17], GMRES [38] are applied to accomplish
the precision refinement. Multiple operators provided by GPU ven-
dors captures most computation in them. So unlike what prior
works [7, 13, 14, 25] focus on, most error in these applications are
brought up or propagated by mixed-precision operators instead of
instructions and accumulated in the final results of programs.

0 50 100 150 200 250 300 350 400
Maximum Absolute Error

0.0000

0.0025

0.0050

D
e

n
s
it
y

Strict Threshold

Flexible Threshold

Intolerable Error

Figure 3: Themaximum absolute error distribution of matrix
G under all mixed-precision setting combinations.

For example, matrix G in Figure 2 is the output of the third
mixed-precision M_GEMM which is implemented based on [28]. Fig-
ure 3 shows the maximum absolute error distribution of matrix G
under all combinations of precision refinement settings. Density
represents the occurrence frequency of an error, which equals to
the frequency of settings producing this error. Assuming that a
scientific computing program contains the source code shown in
Figure 2 and takes matrix G as its output. As the maximum tolerable
absolute error of its output is marked by the red line, qualified
mixed-precision settings of these three M_GEMM is few. So it’s hard
to efficiently control the error of such a program by tuning these
parameters. But if the program has a more flexible error threshold
(the green line) for its output like neural network, more qualified
settings are available which eases the burden of controlling the
error. Because the setting tuning for programs containing mixed-
precision operators varies according to different error requirements
for different applications or input, we need an efficient tool to help
controlling error in different scenarios.

3 COMPILER-BASED AUTO-TUNING
We introduce moTuner , a novel auto-tuning approach to well sup-
port mixed-precision operators to balance performance and ac-
curacy. It analyzes dependency among multiple mixed-precision
operators using compiler and then applies an optimized tuning
strategy to efficiently determine the appropriate setting of each op-
erator under a given error threshold. In the end, moTuner produces
a program with mostly optimal performance.

3.1 Design Overview
Figure 4 presents the overall architecture of moTuner . The input
is a linked IR file of all source code files. The output is a program
with improved performance and constrained error.

The flow of moTuner can be divided into three parts: Marker,
Adjuster, and Finalizer. As the forefront component, Marker ex-
tends compiler to tag each mixed-precision operator with an unique
identifier and insert helper functions in IR which is to dump run-
time information in execution. Then Marker turns the processed IR
file into a new program. It will be executed once to dump informa-
tion. Next, Adjuster comes into play to analyze dependency among
executed operators in IR as well as tune mixed-precision setting for

96

CF’22, May 17–19, 2022, Torino, Italy Z. Mo and Z. Lin, et al.

Source
Code
Source
Code

LLVM

Linked
IR file

llvm-
link

Optimized
Excutable

File

Marker

Operator
Library

Dumped
File

GPU
Tensor
Core

Cuda
Core

Matrix
Core

GPU Memory

Pass 1

Adjuster

Passes

Finalizer

Optimized
IR file

Assembler
Linker

Code Generator

Setting
File

Marker

Adjuster

Finalizer

2

1

3

Optimized
Excutable

File

Input

Output

Pass N

···
Source
Code

Input

Figure 4: An overview of moTuner .

each operator. Allowing customizable error thresholds to control
the error of each operator, it finds the mixed-precision setting with
high performance and acceptable error for each operator. In the end,
it generates a file describing recommendedmixed-precision settings
for executed operators. The third part is Finalizer, which directs
the compiler to replace the original operators by mixed-precision
ones with recommended settings.

3.1.1 Marker. In this part, Marker assigns an unique identifier
to every execution of each operator in LLVM IR and generates a
new program. The identifier for each operator includes two parts,
ordered ID of its first execution and the counter of its execution.
Then the new program is executed once to dump identifier and
corresponding output under original precision.

Operator 1
Input: C

Output: B

Operator 2
Input: B

Output: C

Operator 3
Input: C

Output: C

for(int i = 0; i < n; i++)

(a) A loop with 3 operators.

1_1

2_1

3_1

Dumped Identifiers

(b) Identifiers when itera-
tion runs once.

1_1

2_1

3_1

1_2

2_2

3_2

Dumped Identifiers

(c) Identifiers when itera-
tion runs twice.

Figure 5: A loop with three operators and their identifiers in
different iteration times.

Here we give an example to examine the identifier. Assuming
that the loop body in Figure 5(a) is executed twice, Figure 5(c)
shows dumped identifiers of each execution of every operator. Two
dumped outputs of operator 1 will have the following identifiers:
1_1 and 1_2. The first number is the ordered ID and the second
one is the counter. Considering an operator may accept a different
input every time, error produced in every execution can differ a
lot. moTuner uses it to identify the output of each operator’s every
execution and obtain every output error of each execution.

3.1.2 Adjuster. In this phase, the original linked IR file and data
dumped before are taken as input. Instead of trying all combinations
for operators’ settings, we design an optimized tuning strategy us-
ing dumped output and identifiers of each operator under original
precision. It assists moTuner to efficiently narrow down the search
space and find the appropriate mixed-precision settings for opera-
tors. The tuning strategy consists of two main parts. The first one is
the related operators analysis and the second one is the optimized
adjustment. Details of these two will be discussed in Section 3.2. In
the end, Adjuster generates a file describing recommended mixed-
precision settings for all operators. All mixed-precision settings are
guaranteed to satisfy given error threshold and not degrade the
performance.

3.1.3 Finalizer. In this part, Finalizer takes the setting file gen-
erated by Adjuster as input and replaces executed operators by
mixed-precision ones with corresponding mixed-precision settings
in LLVM IR. Then it turns the optimized IR file into an executable
file for developers.

3.2 Tuning Optimizations
3.2.1 Related Operators Analysis. Related operators of one are
those directly or indirectly propagate error to its outputs (including
itself). It means that one’s related operators (except itself) should
be executed before it and have data dependency with its input.
Related operators help to identify which mixed-precision settings
of operators should be upgraded if one operator raises unacceptable
error even in original precision. To obtain one’s related operators in
adjuster, we leverage the identifiers dumped in the Marker phase.
Once an identifier of operator 𝑎 occurs before one of operator 𝑏 in
the dumped list and there exists data dependency between 𝑎 and
𝑏 in static code analysis, 𝑎 is considered as a related operator of 𝑏.
Here we assume that LLVM already constructs data dependency
graph of values for us.

Figure 5(a) shows a loop body consisting of three operators. In
static code analysis, there exists data dependency between any two
of them. Assuming that the body of loop runs only once, we can get
the identifier list in Figure 5(b) after Marker phase. As the directly
related one of operator 3, operator 2 produces error in calculation

97

moTuner: A Compiler-based Auto-tuning Approach for Mixed-precision Operators CF’22, May 17–19, 2022, Torino, Italy

Table 1: Variable definition.

Notation Definition

𝑂 Ordered ID set of run operators
𝑇𝑖 Cost time list of i-th operator under all settings
𝐸𝑖 Error list of i-th operator under all settings
𝐸𝑇 Error list of each tuned operator in the last run
𝑆 Candidate mixed-precision settings of i-th operator
𝑈𝐸 User defined error threshold
𝑁𝐼𝐷 ID of next operator to tune
𝑙𝑣 Level number of mixed-precision settings

and propagates to it through the value 𝐶 . As the indirectly related
one of it, operator 1 first propagates error to operator 2 through
the value 𝐵. Then after the calculation of operator 2, the error is
brought to operator 3 via the value 𝐶 again. This helps moTuner
to determine that operator 1 doesn’t rely on operator 3 even if
data dependency exists between them in static code analysis. But
when the body of loop is executed twice, Figure 5(c) shows the
corresponding dumped identifier list. Identifier of operator 3’s first
run occurs before the one of operator 1’s second run. It means that
error produced by operator 3 in the first run will be propagated to
operator 1 in the second run through 𝐶 , which makes operator 3
related to operator 1.

3.2.2 Optimized Adjustment. We devise the optimized adjustment
strategy to track accumulation of error following its propagation
path which is the execution path of operators, and adjust the mixed-
precision settings as soon as an error larger than the threshold
occurs. This greatly reduces the search space of tuning mixed-
precision settings for operators. Table 1 introduces the notations
we will use later and Algorithm 1 details the optimized tuning
approach.

To achieve this approach, we need to classify mixed-precision
settings into 𝑙𝑣 levels at first. The higher level a setting gets, the
higher accuracy and performance penalty it produces. For example,
mixed-precision settings consisting of INT8/FP32, FP16/FP32 and
FP32/FP32 can be levelized into three levels, where INT8/FP32 is the
lowest level and the FP32/FP32 is the highest one. Then line 5-9 in
the Algorithm 1 find a mixed-precision setting for an operator with
the highest performance and acceptable error. If there doesn’t exist
such a setting, it means that error produced by related operators is
too much and this operator cannot produce a qualified result even
in FP32 precision. As a result, line 12 upgrades settings of related
operators to next higher level. To verify whether its new error is
lower than given threshold, we need extra runs to dump the error
of these operators. Number of extra run equals to the level number
minus one, which guarantees that we are able to generate qualified
settings for related operators.

Here we provide an example. We assume that the body of loop in
Figure 5(a) only runs once and operators 1, 2 have been tuned to be
INT8/FP32 after first three adjusting procedures like Figure 6. Also,
the performance and error of operator 3 with different settings are
dumped. Then in the fourth one, dumped information of operator 3
is taken as input. If moTuner detects that operator 3 cannot satisfy
accuracy requirement under all settings, moTuner will turn opera-
tors 1, 2 and 3 into FP16/FP32 mode. Then the new program will be
executed to validate whether the upgraded setting is qualified. If

Algorithm 1: Optimized tuning algorithm.
Data:𝑂, 𝑙𝑣, 𝑆,𝑈𝐸.
Result: Optimized mixed-precision settings for operators.

1 𝐸 ← { }; 𝑇 ← { }; 𝑁𝐼𝐷 ← 𝑂0;
2 for 𝑖 = 0 → 𝑙𝑒𝑛 (𝑂) + 𝑙𝑣 − 1 do
3 if 𝑖 ≤ 𝑙𝑒𝑛 (𝑂) − 1 then
4 𝑅𝑖 ← 𝐷𝐷𝐴(𝑂𝑖) ;

/* 𝐺𝑒𝑡 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑜 𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑂𝑖 */

5 𝑡𝑚𝑎𝑥 ← 𝑓 𝑙𝑜𝑎𝑡𝑚𝑎𝑥 ; 𝑘𝑏𝑒𝑠𝑡 ← −1;
6 for 𝑘 = 0→ 𝑙𝑒𝑛 (𝑆) − 1 do
7 𝑒𝑟𝑟 ← 𝐸𝑘𝑖 ; 𝑡 ← 𝑇𝑘

𝑖 ;
8 if 𝑒𝑟𝑟 ≤ 𝑈𝐸 ∧ 𝑡 ≤ 𝑡𝑚𝑎𝑥 then
9 𝑡𝑚𝑎𝑥 ← 𝑡 ; 𝑘𝑏𝑒𝑠𝑡 ← 𝑘 ;

10 if 𝑘𝑏𝑒𝑠𝑡 ≠ −1 then
11 𝑠𝑒𝑡_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑆𝑘𝑏𝑒𝑠𝑡 , 𝑖) ;

/* 𝑆𝑒𝑡 𝑂𝑖 𝑤𝑖𝑡ℎ 𝑘𝑏𝑒𝑠𝑡 𝑡ℎ 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 */

12 else
13 𝑟𝑒𝑝𝑎𝑖𝑟_𝑠𝑒𝑡𝑡𝑖𝑛𝑔 (𝑅𝑖 ,𝑂) ;

/* 𝑇𝑢𝑛𝑒 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 𝑡𝑜 𝑙𝑜𝑤𝑒𝑟 𝑒𝑟𝑟𝑜𝑟 */

14 if 𝑂𝑖 == 𝑁𝐼𝐷 then
15 𝑤𝑟𝑎𝑝_𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑂𝑖) ; /* 𝑇𝑟𝑦 𝑎𝑙𝑙 𝑚𝑖𝑥𝑒𝑑 −

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠 𝑓 𝑜𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑂𝑖 */

16 for 𝑗 = 0→ 𝑙𝑒𝑛 (𝐸𝑇) − 1 do
17 𝑅 𝑗 ← 𝐷𝐷𝐴(𝑂 𝑗) ;
18 if 𝐸𝑇𝑗 ≥ 𝑈𝐸 then
19 𝑟𝑒𝑝𝑎𝑖𝑟_𝑠𝑒𝑡𝑡𝑖𝑛𝑔 (𝑅 𝑗 ,𝑂) ;
20 𝑁𝐼𝐷 ← 𝑂𝑖+1;
21 𝐸𝑇, 𝐸𝑖 ,𝑇𝑖 ,← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 () ; /* 𝑟𝑒𝑟𝑢𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 */

Operator 1
INT8/FP32

Operator 2
INT8/FP32

Wrapped
Operator 3

Operator 1
FP16/FP32

Operator 2
FP16/FP32

Operator 3
FP16/FP32

Operator 1
FP32/FP32

Operator 2
FP32/FP32

Operator 3
FP32/FP32

Dump

Performance
Errors

Program Program

Settings

Dump Dump

Program
Fourth
Adjusting
Process

Fifth
Adjusting
Process

Performance
Errors

Settings

Performance
Errors

Settings

Figure 6: Optimized adjustment of three operators in the
worst case.

not, their settings will be upgraded to FP32/FP32. Then the latest
program is executed again to verify. Because the original program
is in FP32/FP32, the latest program always produces a qualified er-
ror, which guarantees the correctness of the program optimized by
moTuner . With this approach, Adjuster has the time complexity
of 𝑂 (𝑁 + 𝑙𝑣 − 1), where 𝑁 is the number of operators.

3.3 Implementation
Our approach is built in HIPCC, an open-source LLVM compiler
with full support of HIP. HIP is a heterogeneous programming
framework compatible with both AMD and Nvidia GPUs, thus all
the code we operate and analyze is implemented in HIP. Now we
discuss main components of our implementation, (1) GEMM and
precision refinement framework, (2) Optimization passes.
• GEMM and precision refinement framework.We target
on FP16/FP32 GEMM in HIPBLAS as the mixed-precision
operator and build precision refinement framework based

98

CF’22, May 17–19, 2022, Torino, Italy Z. Mo and Z. Lin, et al.

on QUANTENSOR [28]. (𝜏1, 𝜏2, 𝜏3) is the parameter in it
to gain tradeoff between performance and accuracy. When
(𝜏1, 𝜏2, 𝜏3) = (0, 0, 0), it runs a GEMM under FP16/FP32 with-
out precision refinements. To take advantage of the opti-
mized adjustment, refinement parameters are levelized into
3 levels. The lowest one is with 𝜏1 + 𝜏2 < 2, the higher one
is with (𝜏1, 𝜏2, 𝜏3) = (1, 1, 0) and the highest one is in FP32
precision. For extra memory space needed by the precision
refinement framework to store low-precision data, we collect
the size of extra memory space needed by each GEMM in
Marker and create the biggest one for usage in Adjuster
and Finalizer.
• Optimization passes.The Marker, Adjuster and Finalizer
are implemented as separated optimization passes in LLVM.
In order to record result, ID and dimensions of each GEMM
in Marker, we use a wrapper function to replace the original
GEMM function. This wrapper function not only performs
the GEMM under FP32 precision with the same input, but
also dumps ID, dimensions and result of original GEMM to
file system. To find all directly and indirectly related oper-
ators for one, we maintain a directly related operators set
for each operators and apply DFS algorithm on detecting
indirectly related operators for it.

4 EXPERIMENTAL METHODOLOGY
4.1 Platform and Workloads
4.1.1 Environments.
We conduct experiments on the computing platformwith configura-
tions being summarized in Table 2. All programs are compiled using
with HIPCC@4.3.1 with option -O3, which is commonly switched
on to achieve high performance.

Table 2: Specifications for the computing platform.
Hardware Software

CPU EPYC 7302 (Freq.:
3.0-3.3 GHz)

Operating
System

CentOS 7.9

GPU
MI100 (FP32 Perf.:
46.1 TFLOPS, FP16
Perf.: 184.6 TFLOPS)

Operator
Library

hipblas@4.3.1
rocsolver@4.3.1

Memory 32 GB Compiler HIPCC@4.3.1

4.1.2 Benchmarks.
We test three benchmarks to demonstrate that moTuner can au-
tomatically and efficiently tune mixed-precision setting of each
GEMM to improve performance while guaranteeing desired accu-
racy. These workloads all use FP32/FP32 GEMM by default and set
FP16/FP32 as the target mixed-precision setting. The first one is the
micro-benchmarks (Micro), contains varying number of GEMMs
(e.g., 3, 6 and 9 1). Figure 7 shows the dependency in the testedmicro-
benchmarks. Also to validate themoTuner ’s robustness for data, we
generate matrices with following data distributions:𝑁𝑜𝑟𝑚𝑎𝑙 (0, 0.5),
𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(−0.5, 0.5) and 𝑅𝑎𝑛𝑑𝑜𝑚(−1, 1).

The other two are cholesky factorization (CF) and HPL-AI [17]
and we implement the tiled version of them. The input setting of
these two applications are denoted using (𝑁, 𝑡𝑠), which decides
1The GPU memory capacity allows at most 9 GEMMs, which are occupying approxi-
mately 85% memory.

1 2 3 1 3 4 5 62

1 3 4 5 62 7 8 9

execution

dependency

data

dependency

Figure 7: Dependency in micro-benchmarks containing 3, 6
and 9 GEMMs.

execution counts of GEMM operator. 𝑁 and 𝑡𝑠 refer to input matrix
dimension and tile size, respectively.

4.2 Metrics
For performance measurement, we consider the execution time
speedup of the whole application when running Micro and CF. As
for the HPL-AI, we consider the speedup of its GEMM part, owing
to the high number of non-operator calls. The execution time is the
average of five repeated runs.

To measure accuracy of an operator, we select the maximum
absolute error (𝐸𝛿) and mean relative error (𝐸𝛾) of its result. Let
𝑋 be the matrix produced by FP32/FP32 GEMM, 𝑋 ′ be the matrix
computed in FP16/FP32 mixed-precision. We define the maximum
absolute error 𝐸𝛿 as the maximum difference between matrix 𝑋
and 𝑋 ′ :

𝐸𝛿 (𝑋,𝑋
′) =

𝑋𝑓 𝑙𝑎𝑡𝑡𝑒𝑛 − 𝑋
′
𝑓 𝑙𝑎𝑡𝑡𝑒𝑛

∞ (1)
And the relative error is in the Frobenius norm 𝐸𝛾 :

𝐸𝛾 (𝑋,𝑋
′) =

𝑋 − 𝑋 ′

𝐹

𝑋 ′

𝐹 (2)

Settings of error threshold are categorized into eight kinds, which
are used to tune operators in the following experiments and listed in
Table 3. These thresholds cover a wide range for usual applications.

Table 3: Categories of different error thresholds.

Error Kind Value Error Threshold Category

𝐸𝛾 0.05 E1
𝐸𝛾 0.005 E2
𝐸𝛾 0.0005 E3
𝐸𝛾 0.00005 E4
𝐸𝛿 100 E5
𝐸𝛿 10 E6
𝐸𝛿 1 E7
𝐸𝛿 0.1 E8

As for the accuracy of Micro, we consider the 1−𝐸𝛾 of operators
with the most data dependencies. In CF, 1 − 𝐸𝛾 of the result matrix
is used to measure accuracy. For HPL-AI, because it only validates
whether the scaled residual of final result is less than 16, we mea-
sure its accuracy by 1−𝐸𝛾 of the scaled residual. For a measurement
of tuning effectiveness, we denote the execution count instead of
search time as the tuning effort because time spent in hand opti-
mization is not objective. And we select the log10 (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡)
as the metric.

5 RESULTS AND ANALYSIS
In this section, we present and analyze the respective experiment
results of the aforementioned workloads. We evaluate moTuner
from three different perspectives: performance and accuracy of
optimized programs, automation effectiveness and sensitivity of
input setting. We studied and compared the following schemes:

99

moTuner: A Compiler-based Auto-tuning Approach for Mixed-precision Operators CF’22, May 17–19, 2022, Torino, Italy

• Baseline. We run the program in FP32/FP32 for once.
• Exhaust. This method exhaustively searches all setting com-
binations for executed operators in the program and select
the one bringing the highest performance and acceptable
error.
• PriorK. With expertise or prior knowledge, the search space
in Exhaust can be effectively narrowed. As such, PriorK is
aware of error and performance of each operator with every
setting in advance. In tests for the Micro, we randomly select
the top 1% settings which produce acceptable error for each
operator. In tests for the real world application, we randomly
choose 𝑀/2 from fastest 50% settings with acceptable er-
ror for each operator, where M indicates the total setting
combinations for all operators. For both, we use the average
performance and accuracy of all chosen settings as the result.
• moTuner . We use moTuner to optimize a program for once.

5.1 Performance and Accuracy
Figure 8 compares the speedup and accuracy of the optimized Mi-
cro GEMM count is 9 (i.e., GEMM-1, ..., GEMM-9) and the data
distribution of input matrix is 𝑁𝑜𝑟𝑚𝑎𝑙 . Figure 8(a) demonstrates
that moTuner gains up to 3.13x speedup and 1.72x speedup on
average, which are mostly the same as the ones of Exhaust and
higher than PriorK. But for E6, performance gained by moTuner is
less than Exhaust because moTuner sets the (𝜏1, 𝜏2, 𝜏3) of GEMM-
5 as (1, 1, 0) while it can still satisfy the error requirement with
(𝜏1, 𝜏2, 𝜏3) = (0, 0, 0). Exhaust detects such a situation and provides
the setting with higher performance to GEMM-5. Figure 8(b) shows
the accuracy of GEMM-3 in Baseline and the tuned programs.When
error category is E1 and E2, moTuner achieves lower accuracy than
PriorK, which is still higher than 99.4%. For the remaining error
categories, moTuner can achieve almost 100% accuracy.

0

0.5

1

1.5

2

2.5

3

3.5

E1 E2 E3 E4 E5 E6 E7 E8

Sp
ee

du
p

Error Threshold Category

Baseline Exhaust PriorK moTuner

(a) Speedup.

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

E1 E2 E3 E4 E5 E6 E7 E8

Ac
cu

ra
cy

Error Threshold Category

Baseline Exhaust PriorK moTuner

(b) Accuracy.

Figure 8: Speedup and accuracy of Micro gained by different
schemes under varying error thresholds.

Figure 9 covers the speedup and accuracy of CF optimized by
different schemes. The input setting of CF is (40960, 8192). Fig-
ure 9(a) shows that moTuner can obtain a mean speedup of 1.153x
speedup in all error categories except E4. When the parameter level
of mixed-precision GEMM with 𝑡𝑠 = 8192 is lower than the one
of (𝜏1, 𝜏2, 𝜏3) = (1, 1, 0), 𝐸𝛾 of its result is above 0.00005. So opti-
mizing with E4 requires it to be upgraded to (1, 1, 0) theoretically.
But because mixed-precision GEMM with (𝜏1, 𝜏2, 𝜏3) = (1, 1, 0) is
slower than FP32/FP32 GEMM due to type-casting cost, moTuner
decides to keep it in FP32 precision for E4 and brings no perfor-
mance degradation. For the accuracy of CF shown in Figure 9(b),

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E1 E2 E3 E4 E5 E6 E7 E8

Sp
ee

du
p

Error Threshold Category

Baseline Exhaust PriorK moTuner

(a) Speedup.

99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

E1 E2 E3 E4 E5 E6 E7 E8

Ac
cu

ra
cy

Error Threshold Category

Baseline Exhaust PriorK moTuner

(b) Accuracy.

Figure 9: Speedup and accuracy of CF tuned by different
schemes under varying error thresholds.

0

1

2

3

E1 E2 E3 E4 E5 E6 E7 E8

Sp
ee

du
p

Error Threshold Category

Baseline Exhaust PriorK moTuner

(a) Speedup.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

E1 E2 E3 E4 E5 E6 E7 E8

Ac
cu

ra
cy

Error Threshold Category

Baseline Exhaust PriorK moTuner

(b) Accuracy.

Figure 10: Speedup of GEMM part in HPL-AI and accuracy
of HPL-AI tuned by different schemes under varying error
thresholds.

moTuner is capable to achieve over 99.99% accuracy under all given
thresholds, whereas PriorK brings some little advantages under
some error thresholds compared to moTuner .

Figure 10 presents the speedup and accuracy of baseline of HPL-
AI’s GEMM part with the ones optimized by different schemes. The
input setting is (24576, 8192). Figure 10(a) shows that while PriorK
can only gain 1.97x speedup on average, moTuner is able to acquire
a 2.92x mean speedup, which is the same as the Exhaust. Figure
10(b) demonstrates that moTuner can achieve over 92% accuracy
in all situations while PriorK achieves 98%. But because HPL-AI
only validates whether the scaled residual is smaller than 16 and
the one from programs tuned by moTuner is 0.003551, it means that
moTuner is able to generate qualified HPL-AI programs with faster
GEMMs.

5.2 Automation Efficiency
In this section, we demonstrate how efficient moTuner can be when
tuning the benchmarks, compared to two manual assisting methods.
The input of these benchmarks keeps the same as the ones used in
Section 5.1. As discussed before, the efforts are estimated using the
execution counts. Figure 11 illustrates the tuning efforts needed by
different schemes. The Exhaust demands the most tuning efforts and
moTuner requires the least. Also, Exhaust and PriorK both require
manual code modification while moTuner provides an end-to-end
automatic optimization.

5.3 Sensitivity Studies
In this section, we present how moTuner performs on programs
with varied inputs. First, we test on Micro with different data dis-
tributions of input matrices and GEMM count. Figure 12 shows

100

CF’22, May 17–19, 2022, Torino, Italy Z. Mo and Z. Lin, et al.

0

2

4

6

8

10

Micro CF HPL-AI

Tu
ni

ng
 E

ffo
rt

Benchmark

Exhaust PriorK moTuner

Figure 11: Average tuning effort needed by three schemes
under all error thresholds.

that moTuner can obtain 2.67x speedup with over 99.9% accuracy in
average for Micro with differing inputs. Figure 13 shows how mo-
Tuner performs on CF and HPL-AI with changing inputs. moTuner
can gain a mean speedup of 1.10x and 1.19x on CF and the GEMM
part of HPL-AI respectively while maintaining over 99% accuracy
on average under E3 and E6.

0

1

2

3

4

E3 E6

Sp
ee

du
p

Error Threshold Category

3N 3U 3R 6N 6U 6R 9U 9R

(a) Speedup.

99.0%

99.5%

100.0%

E3 E6

Ac
cu

ra
cy

Error Threshold Category

3N 3U 3R 6N 6U 6R 9U 9R

(b) Accuracy.

Figure 12: Speedup and accuracy of different micro-
benchmarks gained by moTuner under E3 and E6, the input
setting is denoted by the number of GEMM and data distri-
bution (𝑁 : 𝑁𝑜𝑟𝑚𝑎𝑙 ,𝑈 : 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚, 𝑅 : 𝑅𝑎𝑛𝑑𝑜𝑚).

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

E3 E6

Sp
ee

du
p

Error Threshold Category

CF(32768,4096) CF(32768,8192)
CF(40960,10240) HPL-AI(16384,8192)
HPL-AI(24576,4096) HPL-AI(32768,1024)

(a) Speedup.

90%

92%

94%

96%

98%

100%

E3 E6

Ac
cu

ra
cy

Error Threshold Category

CF(32768,4096) CF(32768,8192)
CF(40960,10240) HPL-AI(16384,8192)
HPL-AI(24576,4096) HPL-AI(32768,1024)

(b) Accuracy.

Figure 13: Speedup and accuracy of real applications gained
by moTuner with different inputs under E3 and E6.

6 RELATEDWORK
Error analysis of floating-point: to evaluate whether a program
can take advantage of mixed-precision of floating-point to gain
performance, a variety of works have been proposed to predict the
error of floating-point arithmetic. They can be divided into two
categories: dynamic analysis and static analysis. Dynamic analysis
requires for running programs to gather necessary information. A
dynamic analysis approach [5] is presented to find potential risk of
degrading accuracy. Then Lam et al. [26] apply dynamic analysis
to detect cancellation error in floating-point calculations. These

dynamic analysis methods only aims at instructions and brings
up significant tuning time. moTuner belongs to this category and
only targets on error of operators instead of error of instruction.
As for static analysis methods, they only analyze the characteris-
tics of code to gather information. Darulova proposes Xfp [10] to
gain sub-optimal solution without performing an exhaustive explo-
ration. Rosa [8, 9] is a source-to-source compiler which provides
a precision mix for a given program on real values. It introduces
a contract-based programming paradigm based on the Scala func-
tional programming language, which is not suitable for most exist-
ing scientific computing applications. AMPT-GA [23] implements
a static analysis aiming at identifying strongly connected variables
in the dependency graph. These works are lack of the sensitivity
for different input in varying degrees while moTuner can generate
the appropriate mixed-precision setting for different input.

Mixed-precision tuning: to lessen programming burden, sev-
eral efforts focused on automatic generation of mixed-precision
programs on CPU and GPU. For CPU programs, Precimonious [36]
proposes the delta debugging to narrow the search space for single,
double and long precision. Then a follow-work devises blame analy-
sis [37] to reduce the search space further. While these two focus on
each variable, HiFP-Tuner [14] targets on groups of variables con-
structed by using the community structure detection, which also
reduces the search space. Similarly, FPTuner [7] applies SMT-solver
to tune groups of operations and predict an error upper bound.
For GPU programs, GPUMixer [25] tunes mixed-precision settings
of floating-point operations. Although GPUMixer is performance-
driven, it cannot utilize mixed-pecision operators and helps pre-
cision refinement frameworks to be applied like moTuner . GPU-
FPtuner [13] takes into account code patterns prone to error propa-
gation, but it only supports 32- and 64-bits floating-point arithmetic
while moTuner supports FP16 and INT8. ADAPT [30] uses algo-
rithmic differentiation to estimate error with reduced search space.
moTuner targets on GPU programs and is orthogonal to these works.

7 CONCLUSION
The paper proposes moTuner , a compiler-based auto-tuning ap-
proach for mixed-precision operators. moTuner automatically han-
dles both the configuration knobs and the quantization/refinement
operations, thus eases the programming burden. Further, an ef-
ficient tuning strategy is applied to strike a balance on the per-
formance improvement and output quality. We test moTuner on
micro-benchmark with multiple GEMMs, cholesky factorization
and HPL-AI and the preliminary results demonstrate that moTuner
can efficiently obtain up to 3.13x, 1.15x and 2.92x respectively. In
the future, we plan to extendmoTuner to support more complicated
operators.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their constructive com-
ments and suggestions. This researchwas supported by the National
Natural Science Foundation of China-#62102465/-#U1811461, the
Program for Guangdong Introducing Innovative and Entrepreneurial
Teams under Grant NO. 2016ZT06D211, the Major Program of
Guangdong Basic andApplied Research-#2019B030302002, the Guang-
dongNatural Science Foundation-#2018B030312002, and CCF-Baidu
Open Fund (CCF-BAIDU OF2021032).

101

moTuner: A Compiler-based Auto-tuning Approach for Mixed-precision Operators CF’22, May 17–19, 2022, Torino, Italy

REFERENCES
[1] AMD. 2021. AMD Instinct™ MI100 Accelerator. Retrieved 2022-01 from https:

//www.amd.com/en/products/server-accelerators/instinct-mi100.
[2] AMD. 2021. AMD rocBLAS Library. Retrieved 2022-01 from https://github.com/

ROCmSoftwarePlatform/rocBLAS.
[3] Barbara Barabasz, Andrew Anderson, et al. 2020. Error Analysis and Improving

the Accuracy of Winograd Convolution for Deep Neural Networks. ACM Trans.
Math. Softw. 46, 4, 37:1–37:33.

[4] Chaim Baskin, Natan Liss, et al. 2021. UNIQ: Uniform Noise Injection for Non-
Uniform Quantization of Neural Networks. ACM Trans. Comput. Syst. 37, 1-4,
4:1–4:15.

[5] Florian Benz, Andreas Hildebrandt, et al. 2012. A dynamic program analysis to
find floating-point accuracy problems. In ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. ACM, 453–462.

[6] Cambricon. 2021. Cambricon MLU Accelerator. Retrieved 2022-01 from https:
//www.cambricon.com/.

[7] Wei-Fan Chiang, Mark Baranowski, et al. 2017. Rigorous floating-point mixed-
precision tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages. ACM, 300–315.

[8] Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, 235–248.

[9] Eva Darulova and Viktor Kuncak. 2017. Towards a Compiler for Reals. ACM
Trans. Program. Lang. Syst. 39, 2, 8:1–8:28.

[10] Eva Darulova, Viktor Kuncak, et al. 2013. Synthesis of fixed-point programs. In
Proceedings of the International Conference on Embedded Software. IEEE, 22:1–
22:10.

[11] Veselin A. Dobrev, Tzanio V. Kolev, et al. 2012. High-Order Curvilinear Finite
Element Methods for Lagrangian Hydrodynamics. SIAM Journal on Scientific
Computing 34, 5, B606–B641.

[12] Amir Gholami, Sehoon Kim, et al. 2021. A Survey of Quantization Methods for
Efficient Neural Network Inference. CoRR abs/2103.13630.

[13] Ruidong Gu and Michela Becchi. 2020. GPU-FPtuner: Mixed-precision Auto-
tuning for Floating-point Applications on GPU. In 27th IEEE International Con-
ference on High Performance Computing. IEEE, 294–304.

[14] Hui Guo and Cindy Rubio-González. 2018. Exploiting community structure
for floating-point precision tuning. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, 333–343.

[15] Kaiming He, Xiangyu Zhang, et al. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, 770–778.

[16] Tsuyoshi Ichimura, Kohei Fujita, et al. 2018. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis.
IEEE / ACM, 49:1–49:11.

[17] ICL. 2021. The High Performance LINPACK for Accelerator Introspection
(HPL-AI) benchmark. Retrieved 2022-01 from https://bitbucket.org/icl/hpl-
ai/src/main/.

[18] Intel. 2019. Introduction to Intel deep learning boost on second
generation Intel Xeon scalable processors. Retrieved 2022-01 from
https://software.intel.com/content/www/us/en/develop/articles/introduction-
to-intel-deep-learning-boost-on-second-generation-intel-xeon-scalable.html.

[19] Intel. 2021. Intel MKL. Retrieved 2022-01 from https://www.intel.com/content/
www/us/en/developer/tools/oneapi/onemkl.html.

[20] Emmanuel Jeannot. 2012. Performance Analysis and Optimization of the Tiled
Cholesky Factorization on NUMA Machines. Proceedings - International Sympo-
sium on Parallel Architectures, Algorithms and Programming, 210–217.

[21] Weile Jia, Han Wang, et al. 2020. Pushing the limit of molecular dynamics with
ab initio accuracy to 100 million atoms with machine learning. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage

and Analysis. IEEE/ACM, 1–14.
[22] Norman P. Jouppi, Cliff Young, et al. 2017. In-Datacenter Performance Analysis

of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture. Association for Computing Machinery,
1–12.

[23] Pradeep V Kotipalli, Ranvijay Singh, et al. 2019. AMPT-GA: Automatic Mixed
Precision Floating Point Tuning for GPU Applications. In Proceedings of the
ACM International Conference on Supercomputing. Association for Computing
Machinery, 160–170.

[24] Alex Krizhevsky, Ilya Sutskever, et al. 2017. ImageNet Classification with Deep
Convolutional Neural Networks. Commun. ACM 60, 6, 84–90.

[25] Ignacio Laguna, Paul C. Wood, et al. 2019. GPUMixer: Performance-Driven
Floating-Point Tuning for GPU Scientific Applications. In High Performance
Computing - 34th International Conference Proceedings, Vol. 11501. Springer, 227–
246.

[26] Michael O. Lam, Jeffrey K. Hollingsworth, et al. 2013. Dynamic Floating-Point
Cancellation Detection. Parallel Comput. 39, 3, 146–155.

[27] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization. IEEE Computer Society, 75–88.

[28] Guangli Li, Jingling Xue, et al. 2021. Unleashing the Low-Precision Computation
Potential of Tensor Cores on GPUs. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization. IEEE, 90–102.

[29] Stefano Markidis, Steven Wei Der Chien, et al. 2018. NVIDIA Tensor Core
Programmability, Performance, Precision. In 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops. IEEE Computer Society, 522–531.

[30] Harshitha Menon, Michael O. Lam, et al. 2018. ADAPT: Algorithmic Differentia-
tion Applied to Floating-Point Precision Tuning. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis.
IEEE Press, 48:1–48:13.

[31] netlib. 2021. HPL benchmark. Retrieved 2022-01 from https://www.netlib.org/
benchmark/hpl/.

[32] Tomás Norton and Da-Wen Sun. 2006. Computational fluid dynamics (CFD) – an
effective and efficient design and analysis tool for the food industry: A review.
Trends in Food Science & Technology 17, 11, 600–620.

[33] NVIDIA. 2008. cuBLAS Library. Retrieved 2022-01 from https://docs.nvidia.com/
cuda/cublas/.

[34] NVIDIA. 2021. NVIDIA A100 Tensor Core GPU. Retrieved 2022-01 from https:
//www.nvidia.com/en-us/data-center/a100.html.

[35] Riken. 2021. Comprehensive software for ab initio quantum chemistry calcu-
lations of large and complicated molecular systems. Retrieved 2022-01 from
https://www.r-ccs.riken.jp/software_center/software/ntchem/overview/.

[36] Cindy Rubio-González, Cuong Nguyen, et al. 2013. Precimonious: Tuning Assis-
tant for Floating-Point Precision. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. Association
for Computing Machinery, 27:1–27:12.

[37] Cindy Rubio-González, Cuong Nguyen, et al. 2016. Floating-Point Precision
Tuning Using Blame Analysis. In Proceedings of the 38th International Conference
on Software Engineering. Association for Computing Machinery, 1074–1085.

[38] Youcef Saad and Martin H. Schultz. 1986. GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci.
Statist. Comput. 7, 3, 856–869.

[39] Zhuoran Song, Bangqi Fu, et al. 2020. DRQ: Dynamic Region-based Quanti-
zation for Deep Neural Network Acceleration. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture. IEEE, 1010–1021.

[40] Huanrui Yang, Lin Duan, et al. 2021. BSQ: Exploring Bit-Level Sparsity for
Mixed-Precision Neural Network Quantization. CoRR abs/2102.10462.

[41] Zhaoyang Zhang, Wenqi Shao, et al. 2021. Differentiable Dynamic Quantiza-
tion with Mixed Precision and Adaptive Resolution. In Proceedings of the 38th
International Conference on Machine Learning, Vol. 139. PMLR, 12546–12556.

102

