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Abstract—Long-Short-Term Memory (LSTM) neural networks
have demonstrated exceptional proficiency in capturing both
short-term and long-term dependencies within input sequences,
rendering them invaluable across diverse applications, including
DNA basecalling, speech recognition, reading comprehension,
and scientific numerical forecasting. Despite their significance,
the closed-source nature of state-of-the-art libraries, particularly
the cuDNN LSTM inference kernel on NVIDIA GPUs, poses
challenges in extending, optimizing, and understanding their
internal workings.

In this paper, we propose openLG, an open source framework
to implement high performance LSTM kernel on basis of
NVIDIA template kernel library CUTLASS. With flexible and
transparent template configurations, developers are able to select
the most suitable parameter combination for various scenarios.
We formalize the LSTM computation as the time dependent
and independent partitions, and then exploit efficient CUTLASS
GEMM kernel for both parts. Evaluations conducted on NVIDIA
GPUs demonstrate that openLG achieves up to 78% speedup
on DeepBench benchmarks and an average speedup of 10% on
realistic applications, effectively surpassing the performance of
cuDNN.

Index Terms—LSTM, CUTLASS, GPU, Kernel Optimization

I. INTRODUCTION

Featuring proficient capture of both short-term dependencies
and proactively exploit long-term dependencies, Long-Short-
Term Memory (LSTM) has exhibited exceptional performance
across diverse sequence learning tasks, including but not
limited to DNA basecalling [1] [2], speech recognition [3]
[4] [5], reading comprehension [6] [7], and scientific domain
numerical forecasting [8] [9] [10]. Besides, LSTM models
account for 21% of the tensor processing unit (TPU) work-
loads in Google data centers [11], emphasizing the pivotal
role of LSTM in computational tasks. Specifically, LSTM
incorporates a recurrent connection, wherein the output from
the preceding timestep serves as an input to the current
timestep. By storing temporal information in a memory format,
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LSTMs facilitate the discernment of protracted dependencies
within input sequences. This mechanism enhances the model’s
capacity to capture and analyze intricate dependencies span-
ning across temporal dimensions.

The LSTM training and inference processes are broadly
accelerated on GPUs, which offer massive parallelism to facil-
itate matrix multiplication operations. However, a fundamental
challenge arises in the application of LSTMs due to depen-
dencies within input sequence, hindering the concurrent com-
putation of distinct time step. LSTMs exhibit a reduced degree
of parallelism compared to other neural networks [12], such
as Convolutional Neural Networks (CNNs). In the domain of
DNA basecalling, exemplified by the state-of-the-art basecaller
Bonito developed by ONT, the process of basecalling for a
3 Gbps (Giga basepairs) human genome necessitates nearly
6 hours when executed on a robust server-grade GPU [13].
Notably, the LSTM inference phase contributes to almost 70%
of the overall runtime. Due to the significance of LSTM in
various domains and its suboptimal performance, it is crucial
to devise optimization methods to enhance its operational
efficiency.

The LSTM inference kernel that currently achieves state-of-
the-art performance on GPUs is located within NVIDIA closed-
source neural network library, cuDNN. In many cases, there
is a desire to extend the LSTM inference kernel in cuDNN, or
one may wish to customize optimizations, such as quantized
inference, building upon the foundation of cuDNN. But this
is not possible due to the lack of theoretical explanations
and absence of source code for the underlying algorithm.
The internal working mechanisms of the kernel, whether it is
implemented in pure CUDA, PTXAS, or any other language,
and whether assembly-level optimizations have been applied,
remaining as undisclosed secrets. Furthermore, the cuDNN
LSTM implementation encompasses multiple versions, and
upon determination of the problem scale, it selects a suitable
kernel through a table lookup method. Nevertheless, it is



important to note that the cuDNN LSTM inference kernel may
not invariably include the optimal kernel for a specific problem
size.

Recently, NVIDIA delivers a template-based kernel library
CUTLASS [14], aiming to bridge the gap between high level
computation description and low level kernel implementation.
It allows users to compose one kernel with several “micro”
kernels, each is respectively responsible for data loading,
thread dispatching or cooperative computing.

In order to alleviate the burden imposed by closed-source
libraries while achieving performance comparable to or sur-
passing that of the cuDNN LSTM across a diverse array of
input scales, we introduce openLG based on CUTLASS. This
innovative approach is designed to adeptly fine-tune template
settings for operators within the LSTM kernel. Employing
an optimized tuning strategy, openLG systematically refines
template configurations for LSTM kernel. During the tuning
process, openLG uses greedy-algorithm based tuning strategy,
thereby effectively constraining the search space for template
settings pertinent to the LSTM kernel. Ultimately, openLG
produces a high-performance LSTM kernel with accompany-
ing source codes, potentially compatible with both NVIDIA
and other vendors.

In summary, the contributions of this paper are:
• We emphasize the importance of removing closed-source

impediments in the context of LSTM applications. The
white-box and transparent LSTM implementation offers
developers more flexibility to address performance con-
cerns and resource constraints.

• We formalize the LSTM computation as time depen-
dent and independent partitions. For further performance
improvement, we integrate LSTM computation layout
re-organization into the transparent NVIDIA CUTLASS
implementation for the efficient computation of both
parts.

• Evaluations across various LSTM inference benchmarks
and real-world applications demonstrate that the proposed
framework achieves the comparable performance against
the manually optimized vendor proprietary libraries such
as cuDNN.

The rest of the paper is organized as follows. Section II in-
troduces the background. Section III elaborates the motivation
and proposed design. Section IV presents the experimental
methodology, and Section V analyzes experimental results.
Section VI discusses related work. Section VII concludes the
paper.

II. BACKGROUND

A. Long Short-Term Memory
LSTM neural networks excel in capturing the local temporal

characteristics of a sequence, whereas attention mechanisms
are more adept at learning long-term dynamics [15]. In spe-
cific tasks, such as DNA basecalling, LSTM demonstrates
superiority over transformers [2]. Therefore, it is crucial to
fully comprehend LSTM structure and boosting computational
efficiency.
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Fig. 1: A LSTM cell, which will be executed over time steps.
Here, xt, ht−1, and ct−1 represent the input for the current
time step, while ht and ct are the outputs for this time step.

As shown in Fig. 1, a LSTM layer consists of a single
LSTM cell, which is computed repeatedly in each time step.
A LSTM cell contains a cell state and four gates: the forget
gate, input gate, output gate, and cell update gate. The LSTM
layer iteratively processes each timestep of the input sequence,
receiving the input matrix (xt) and the hidden matrix (ht−1)
from the previous output at each step. These four gates
collaborate to update the cell state and produce the output.
Specifically, the input gate (it) evaluates the influence of the
current input on the cell state, the forget gate (ft) removes
irrelevant information from the cell state, the cell update gate
(gt) selects relevant input information for potential updates to
the cell state, and the output gate (ot) determines the output’s
content and generates it. Previous studies have categorized
matrix multiplications into two groups. The first group, linked
to the W weight matrices, is solely dependent on the input
sequence. Conversely, the second group, associated with the
R weight matrices, shows recursive dependence. Additionally,
the matrix multiplications with the R weight matrices in
LSTM computations present two types of dependencies: intra-
sequence, requiring gate activations before cell updates or
output generation, and inter-sequence, where the computation
at a timestep depends on the output from the previous timestep
(ht−1). This complexity hampers the potential for efficient par-
allelization. Therefore, utilizing the unique network structure
of LSTM for optimal parallel acceleration is a critical issue.

B. GPU Architecture and Templated Kernels

Modern GPUs are designed with hierarchical execution
units to achieve high compute and memory efficiency. Mean-
while, the CUDA software is co-designed with corresponding
hardware hierarchies. Fig. 2 illustrates the three level ab-
stractions: block, warp and thread. Heterogeneous tasks are
offloaded onto GPUs with a grid of cooperative thread blocks,
each containing several (up to 32) warps. And, 32 consecutive
threads forms one warp, executing synchronously in lock-step
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Fig. 2: CUTLASS design diagram with hierarchical organi-
zation. GPU threads are orchestrated in block, warp and
thread levels, which constitute the tunable parameters in our
templated LSTM kernel implementation.

fashion. Each block is equipped with fast on-chip scratchpad
memory (i.e., shared memory) for efficient intra-block local
data sharing. Similar with CPU, each thread is the minimal unit
of instruction execution, with its own context, including stack,
registers and branch masks. Fig. 2 shows the programming
model in CUTLASS. As we move data from global memory
to shared memory, and then to registers, the storage capacity
diminishes while the speed increases.

To achieve efficient matrix multiplication, matrices in global
memory need to be partitioned into tiles and then iteratively
loaded into shared memory. Subsequently, shared memory
data are tiled again and read into registers, following the
layout constraints required by the cooperative Tensor Core
instructions. In Fig. 2, the block and warp level partitions are
described by two triads: (64, 64, 16) and (32, 32,
16), where each tuple stands for the number of elements that
will be loaded and computed in every iteration alongside the
M,N and K dimensions. The open source implementation
enable developers to produce kernel with variant configu-
rations like tile shapes and data formats. The transparency
and flexibility template setting make the generated kernel
more accommodative with different LSTM problem scales,
hardware generations and resource constraints.

III. DESIGN AND IMPLEMENTATION

A. Overview

The state-of-the-art method for LSTM inference on NVIDIA
GPUs is found in the proprietary cuDNN library. This closed-
source implementation poses two main challenges for users:
1). It limits user customization. For instance, users seeking
faster inference speeds might consider methods like quan-
tization for acceleration. However, deep learning compilers
such as TVM, and frameworks like PyTorch, do not support
quantized LSTM inference on GPUs. The closed nature of
cuDNN further restricts users from modifying it for such
enhancements. 2). It hinders portability. For example, although
PyTorch now supports other AI accelerator as a backend, their
deep learning library sometimes struggle to fully leverage the
hardware’s capabilities due to a later start and less manpower.
Therefore, developing an open-source LSTM inference code

based on template programming, which matches or surpasses
the performance of cuDNN, would greatly facilitate user
extensions and ease migration to other hardware devices. In
this work, we propose a transparent LSTM kernel implemen-
tation with data partition based on the time dependency. For
generating performant kernel, we design a greedy algorithm to
efficiently search suitable parameter configurations. Moreover,
we integrate openLG into the popular deep learning frame-
work to provide the user-friendly interface.

Pytorch Framework Intergration

Greedy-Algorithm based
Auto-tuning

Efficient Template Implementation 
for LSTM

CPU GPU

Fig. 3: Implementation overview of openLG, including open
source template-based LSTM kernel, greedy algorithm for
efficient parameter searching as well as the PyTorch framework
integration.

B. Template Implementation of LSTM

This subsection provides a detailed introduction to the
implementation details of template implementation for LSTM.
In deep learning frameworks like PyTorch, the input x for
LSTM is typically represented as (sequence length, batch size,
feature dimension). The term sequence length refers to the
number of time steps, signifying that the five equations in
(1) are computed at every time step. In GPU programming,
a direct method involves initiating a GPU kernel for each of
the five computational formulas in (1), considering the time
steps. This results in launching a total of 5 × sequence length
GPU kernels. However, this approach is highly inefficient, as it
incurs significant time overhead from the host CPU with each
kernel initiation. Consequently, the optimal strategy involves
amalgamating several smaller matrix multiplications into a
larger one, thereby fully exploiting the parallel computation
capabilities of the GPU. As described in the background,
matrix multiplications in LSTM can be divided into two cate-
gories. The group involving W is time-independent, allowing
for the precalculation and merging of matrix multiplications
from time step t=1 to t=sequence length, similar to the
computation of Wx shown in Fig.4(b), where x1 to xT are
organized collectively. Moreover, in matrix multiplications
involving both R and W , the four parameter matrices can
be consolidated into a single expanded matrix, as shown in
Fig. 4(b), for computing Wx and Rht−1. In this process,
Wf , Wi, Wg , Wo are merged into a single matrix W , and
Rf , Ri, Rg , Ro are unified into one matrix R. This process
constitutes a reorganization of the LSTM computation layout.
Thus, the final pseudocode for the template implementation
for LSTM is presented in Algorithm 1. It primarily includes



a matrix multiplication with Wx and a sequence of smaller
matrix multiplications within the loop using Rht−1. These
matrix multiplications are executed using template program-
ming kernels, particularly the cutlass library on the GPU, as
previously stated. This implementation approach is inspired
by Nvidia [16] and GRNN [17], and generally combine these
concepts to develop the code.

C. Greedy-Algorithm based Tuning

The LSTM template kernel’s final implementation is out-
lined in Algorithm 1. Before deploying the LSTM template
kernel in practical applications, parameter tuning for network
architectures of specific sizes is essential. This tuning involves
adjusting the tile sizes at different storage hierarchy levels
in CUTLASS-GEMM(W,x) and CUTLASS-GEMM(R, ht−1)
during GPU matrix operations. The tile sizes comprise the
block tile, warp tile, and thread tile, as illustrated in Figure
2. A practical tuning method involves exploring the entire
parameter space, with the outer loop iterating through the
parameters of CUTLASS-GEMM(W,x). For each parameter
set selected in this outer loop, a thorough traversal of the
parameter space for CUTLASS-GEMM(R, ht−1) is conducted.
The time complexity of this nested search method is O(n2),
where n is the number of possible template parameters for
the GEMM kernel. Our implementation of LSTM separates
the calculations of Wx and Rh, ensuring these two matrix
operations do not interfere with each other. Consequently,
we have optimized the aforementioned tuning algorithm. We
begin with a single loop to tune the parameters of CUTLASS-
GEMM(W,x), and after determining the optimal parameters,
use another loop to adjust CUTLASS-GEMM(R, ht−1)’s pa-
rameters. This method effectively reduces the algorithm’s time
complexity from O(n2) to O(2n).

D. Integration with PyTorch

openLG primarily consists of two components: the first
is a template implementation for LSTM, and the second is
a greedy-algorithm based tuning system. Once the network
size is determined by the user, it can be input into the tuner.
The tuner then automatically conducts a search and adjustment
process to yield a high-performance LSTM kernel. However,
such a kernel is written in CUDA code, which may not
be user-friendly. We craft a Python code frontend for the
generated GPU kernel, and used Python’s setuptools along
with PyTorch’s cpp extension to bind the CUDA code with
the Python code, enabling users to easily integrate it into the
PyTorch network architecture.

IV. EVALUATION SETUP

This section outlines the experimental environment and the
benchmark selection process. To ensure comprehensive and
accurate results, tests will be conducted on the DeepBench
benchmark, along with two real-world applications: Bonito and
Language Modeling. Inference scenarios require low latency;
hence, DeepBench is provided by Baidu with batchsizes lim-
ited to 1, 2, and 4. However, in our measurements of real-world

applications, we examine a wider range of batch size, from 1
to 512.

A. Hardware Testbed

GPU runtimes are benchmarked using an NVIDIA A100
system, equipped with an AMD EPYC 7302 host processor,
32 GB of RAM, and running Ubuntu 20.04. The NVIDIA
A100 features 432 Tensor Cores specialized for deep learning
operations, complemented by 40 GB of HBM2e memory.
The theoretical peak throughput of the NVIDIA A100 is 312
TFLOPs for Tensor Float 32 (TF32),which we used in our
experiments.

TABLE I: Configurations for the computing platform.

Hardware Software

CPU EPYC 7302 Operating
System Ubuntu 20.04

GPU A100 Operator
Library

PyTorch @1.13.1
cuDNN @8.5.0

Memory 32 GB Compiler nvcc@11.8

B. Benchmark

DeepBench, developed by Baidu, is designed to benchmark
deep learning operations across a range of hardware platforms.
This benchmark, widely recognized for its LSTM performance
tests, has been extensively adopted in prior research [18]
[19]. Therefore, this study will similarly engage in these well-
established benchmark tests.

C. Real-world Applications

The Bonito model, which incorporates five LSTM layers
each with input and hidden dimensions of 384, achieves
state-of-the-art performance at translating electrical signals
from nanotubes into nucleotide sequences. The LSTM’s input
sequence is characterized by [sequence length, batch size,
feature dimension ]. In light of the application’s specific
requirements, the sequence length for the LSTM input is fixed
at 400. The feature dimension is uniformly set at 384. Within
this framework, the batch size is the sole variable parameter
in practical applications. Thus, the input sequence for the five
LSTM layers in Bonito is characterized by dimensions [400,
batch size, 384]. The Bonito code and test data come from
this survey [2].

Language Modeling was evaluated in Lam’s study [20],
employing a model featuring a 1-layer 2048 unit LSTM
encoder and a 1-layer 2048 unit fully connected decoder, a typ-
ical architecture in Language Modeling [21]. The application
code is sourced from a PyTorch example. In this application,
the LSTM’s input sequence is defined by [sequence length,
batch size, feature dimension ]. The sequence length is set
to the default of 35, the feature dimension is 2048, so the
input sequence for LSTM layer in Language Modeling is
characterized by dimensions [35, batch size, 2048].



it = σ(Wi · xt + Ri · ht−1 + bi)
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Fig. 4: (a) LSTM computation in one time step, where the output ot is generated based on the hidden state ht−1 from previous
step and current input sequence xt. (b) Input layout for openLG’s LSTM kernel, where data are partitioned into the time
dependent and independent parts. The time independent computation WX is conducted at once with the given input sequence,
while the hidden states are produced step by step due to the time dependency.

Algorithm 1: LSTM GPU kernel Template
Input: W,R, b, x, ht−1, ct−1

Output: ht, ct
1 v ← CUTLASS-GEMM(W,x)
2 for i=1:t do
3 Rh← CUTLASS-GEMM(R, ht−1)
4 ht, ct ← activation&pointwise kernels(
5 Wx,Rht−1, ht−1, ct−1, b)
6 end

V. RESULTS ANALYSIS

First, we test the performance and resource utilization differ-
ences of the kernel identified by the greedy-algorithm based
tuning, compared to the worst-performing kernel and kernel
with randomly selected parameters. Second, we assess the
performance of the LSTM GPU kernel produced by openLG
in isolation, to confirm that our LSTM GPU kernel achieve
comparable or superior speed to cuDNN, a hand-optimized
private deep learning library. Third, for a thorough evaluation
of openLG’s performance, we utilize two real-world models
equipped with multi-layer LSTMs, demonstrating openLG’s
end-to-end acceleration capabilities.

A. Effectiveness of Template Tuning Method

In this section, we configure a range of CUTLASS param-
eters in the LSTM template kernel and evaluate the LSTM
kernel’s performance under these varied configurations. This
aims to highlight the significance and impact of tuning CUT-
LASS parameters. We conduct tests on DeepBench, iterating
through a series of selectable CUTLASS template parameters.
We identify the kernels with the best and worst performance
and include a kernel corresponding to a randomly chosen
parameter. The results are presented in the bar chart shown
in Fig. 5.
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Fig. 5: Test results of greedy-algorithm based tuning on
DeepBench demonstrate a speed comparison among the best-
performing kernel identified by openLG, a kernel with ran-
domly chosen parameters, and the worst-performing kernel.

With a sequence length of 25 and a hidden size of 512,
for batchsizes of 1, 2, and 4, the best-performing kernel iden-
tified through greedy-algorithm based tuning exhibit speeds
2.41, 2.38, and 2.4 times faster than the worst-performing
kernel, and 1.64, 1.49, and 1.35 times faster than kernel with
randomly selected parameters, respectively. With a sequence
length of 25 and a hidden size of 1024, for batchsizes of
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Fig. 6: Performance comparison of openLG, cuDNN, and
haste [22] on DeepBench.

1, 2, and 4, the best-performing kernel identified through
greedy-algorithm based tuning exhibit speeds 2.94, 2.93, and
5.35 times faster than the worst-performing kernel, and 1.73,
1.19, and 3.4 times faster than kernel with randomly selected
parameters, respectively. With a sequence length of 25 and a
hidden size of 2048, for batchsizes of 1, 2, and 4, the best-
performing kernel identified through greedy-algorithm based
tuning exhibit speeds 1.8, 1.78, and 1.76 times faster than the
worst-performing kernel, and 1.37, 1.3, and 1.22 times faster
than kernel with randomly selected parameters, respectively.
With a sequence length of 50 and a hidden size of 1536, for
batchsizes of 1, 2, and 4, the best-performing kernel identified
through greedy-algorithm based tuning exhibit speeds 2.36,
2.19, and 2.17 times faster than the worst-performing kernel,
and 1.12, 1.34, and 1.49 times faster than kernel with randomly
selected parameters, respectively. Summarizing the final test
results, the best-performing kernel identified through greedy-
algorithm based tuning is, on average, 2.54 times faster than
the worst-performing kernel, and 1.53 times faster than a
kernel with randomly chosen parameters. This underscores the
effectiveness of the tuning method.

B. Benchmark Test

The experimental results of DeepBench are illustrated in
Fig. 6. This figure compares the acceleration ratios, using the
open-source LSTM inference library haste as the baseline,
against the LSTM kernel generated by openLG and those
from cuDNN.

With a sequence length of 25 and a hidden size of 512,
openLG’s kernel demonstrates enhanced performance. Specif-
ically, at batchsizes of 1, 2, and 4, openLG’s kernel outper-
forms haste by factors of 1.98, 1.30, and 1.30. Meanwhile,
cuDNN’s kernel outpaces haste by factors of 1.10, 1.22,
and 1.20 for the same batchsizes. Respectively, openLG’s
kernel exceeds cuDNN’s by factors of 1.78, 1.07, and 1.09.
In summary, under the stipulated sequence and hidden size
parameters, openLG’s kernel, on average, exhibits a 1.53-fold
acceleration over haste, while cuDNN averages a 1.18-fold
acceleration over haste. Additionally, openLG demonstrates
a 1.31-fold edge over cuDNN’s kernel.

With a sequence length of 25 and a hidden size of 1024,
openLG’s kernel demonstrates enhanced performance. Specif-
ically, at batchsizes of 1, 2, and 4, openLG’s kernel outper-
forms haste by factors of 1.30, 1.19, and 1.29. Meanwhile,
cuDNN’s kernel outpaces haste by factors of 1.75, 1.55,
and 1.19 for the same batchsizes. Respectively, openLG’s
kernel exceeds cuDNN’s by factors of 0.74, 1.02, and 1.08.
In summary, under the stipulated sequence and hidden size
parameters, openLG’s kernel, on average, exhibits a 1.26-fold
acceleration over haste, while cuDNN averages a 1.37-fold
acceleration over haste. Additionally, openLG demonstrates
a 0.95-fold edge over cuDNN’s kernel.

With a sequence length of 25 and a hidden size of 2048,
openLG’s kernel demonstrates enhanced performance. Specif-
ically, at batchsizes of 1, 2, and 4, openLG’s kernel outper-
forms haste by factors of 1.05, 1.16, and 1.11. Meanwhile,
cuDNN’s kernel outpaces haste by factors of 1.05, 1.13,
and 1.13 for the same batchsizes. Respectively, openLG’s
kernel exceeds cuDNN’s by factors of 0.99, 1.02, and 0.98.
In summary, under the stipulated sequence and hidden size
parameters, openLG’s kernel, on average, exhibits a 1.10-fold
acceleration over haste, while cuDNN averages a 1.10-fold
acceleration over haste. Additionally, openLG demonstrates
a 1.0-fold edge over cuDNN’s kernel.

With a sequence length of 50 and a hidden size of 1536,
openLG’s kernel demonstrates enhanced performance. Specif-
ically, at batchsizes of 1, 2, and 4, openLG’s kernel outper-
forms haste by factors of 0.96, 1.14, and 1.13. Meanwhile,
cuDNN’s kernel outpaces haste by factors of 1.01, 1.16,
and 1.15 for the same batchsizes. Respectively, openLG’s
kernel exceeds cuDNN’s by factors of 0.95, 0.98, and 0.98.
In summary, under the stipulated sequence and hidden size
parameters, openLG’s kernel, on average, exhibits a 1.07-fold
acceleration over haste, while cuDNN averages a 1.10-fold
acceleration over haste. Additionally, openLG demonstrates
a 0.97-fold edge over cuDNN’s kernel.

Summarizing the results on DeepBench: openLG’s ker-
nel outpaces haste by an average of 1.24 times, while
cuDNN’s kernel is 1.19 times faster than haste. Comparatively,
openLG’s kernel achieves up to 1.3 times the speed of
cuDNN’s kernel, with the lowest at 0.92 times cuDNN’s
speed. On average, openLG’s kernel accelerates 1.04 times
faster than cuDNN’s, indicating that openLG matches or even
surpasses cuDNN in speed according to the DeepBench results.
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Fig. 7: Comparative test results of openLG and cuDNN in Bonito and Language Modeling.

C. Real World Models

The experimental results for real-world applications are
presented in Fig. 7. Given that our DeepBench tests have
already established the inferior performance of haste compared
to both openLG and cuDNN, this section uses cuDNN as
the baseline to primarily compare the performance between
openLG and cuDNN.

Figure 7 shows that in the real-world application Bonito,
the LSTM kernel generated by openLG consistently outper-
forms cuDNN across a series of batches. The performance of
openLG’s kernel ranges from being 2% faster than cuDNN
at its least to 81% faster at its best, with an average improve-
ment of 15%. In another real-world application, Language
Modeling, openLG’s LSTM kernel also surpasses cuDNN
in performance across various batches, as shown in Figure
7. Here, openLG’s kernel demonstrates a speed increase
over cuDNN ranging from 2% at its minimum to 12% at
its maximum, with an average improvement of 5%. Across
both applications, openLG’s kernel exhibits an average speed
improvement of 10% over cuDNN, achieving and occasionally
surpassing cuDNN’s performance level.

VI. RELATED WORK

LSTM optimization. Zhu [23] introduces a novel pruning
algorithm aimed at improving workload balance and reducing
decoding overhead in sparse LSTM neural networks. However,
this method is specifically effective for sparse LSTM networks
and lacks general applicability. Gao [24] introduces cellular
batching, a technique that dynamically assembles batches at
the granularity of an LSTM cell, rather than at the level of the
entire dataflow graph. This method is advantageous for effi-
ciently handling dynamic dataflow graphs and inputs of varied
lengths. This approach can be synergistically combined with
kernel optimization, owing to their orthogonal relationship.
Yin [25] explores the use of hardware properties to enhance
model compactness, accuracy, and execution efficiency. How-
ever, integrating this system into existing machine learning
frameworks poses a challenge. In another study, Zhu [26]
presents a method to accelerate LSTM training by utilizing
sparsity during the backward propagation phase, although this

may compromise accuracy. The method proposed in this paper,
openLG, demonstrates universality and ease of integration
with PyTorch, effectively bridging the gaps identified in prior
research.

Kernel optimization using CUTLASS. Prior research has
focused on accelerating high-performance computing work-
loads using CUTLASS. ByteTransformer [27] employs CUT-
LASS’s epilogue to fuse GEMM operations, effectively re-
ducing memory latency and enhancing the performance of
single-layer BERT transformers. MegaBlocks [28] extends
CUTLASS to support block-sparse matrices, thus facilitat-
ing efficient training of Mixture of Experts (MoEs) models.
Bolt [29] leverages CUTLASS’s epilogue fusion feature to
combine a GEMM/Conv kernel with subsequent operations
into a single operator, thereby enhancing convolutional neural
network performance. openLG expands the application range
of CUTLASS by accelerating LSTM on GPUs, an area not
directly covered by existing research.

VII. CONCLUSION

In this work, we propose openLG, a tunable template
framework to overcome the opaque of vendor-proprietary li-
braries in developing LSTM GPU kernel. openLG formalizes
the LSTM computation as the time dependent and independent
parts, and generates performant kernel for both stages. We
also leverage a greedy algorithm to search and select the most
suitable template parameter combination for LSTM kernel.
Evaluations conducted on both benchmarks and real-world
applications demonstrate that openLG outperforms haste and
cuDNN with open source implementation.
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