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Abstract
Web APIs are the primary communication form for Web services,

with RESTful design being the predominant paradigm. However,

RESTful APIs are typically fixed once defined, causing data under-

or over-fetching as they can’t meet clients’ varying Web service

needs. While semantic enriched API query languages like GraphQL

mitigates this problem, they still face expressiveness limitations for

logical operations such as indirect queries and loop traversals. To

address this, we propose ORFA (One Request For All), the first in lit-

erature that employsWebAssembly (Wasm) as aWeb API query lan-

guage to achieve complete expressiveness of client requests. ORFA’s
key advantage lies in its use of Wasm’s Turing completeness to al-

low clients to compose arbitrary operations within a single request,

thus significantly eliminating redundant data transmission and

boosting communication efficiency. Technically, ORFA provides a
runtime for executing Wasm query programs and incorporates new

module splitting strategies and a caching mechanism customized

for integrating Wasm into Web API services, which can enable

lightweight code transfer and fast request responses. Experimental

results on a realistic testbed and popular Web applications show

that ORFA effectively reduces latency by 18.4% and network traffic

by 24.5% on average, compared to the state-of-the-art GraphQL.

CCS Concepts
• Information systems → Service discovery and interfaces;
RESTful web services; • Software and its engineering→ Run-
time environments; API languages.
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1 Introduction
In modernWeb systems, Web APIs play a crucial role as the primary

method of co-operation and communication between services [1,

2, 3], particularly in microservice architectures [4, 5]. Web service

interfaces are required to support increasingly complex network

services and have evolved from traditional Restful APIs [6] to more

flexible solutions such as GraphQL [7]. As illustrated in Figure 1,

different clients may request various types of information through

theAPI to interact with theWeb server. Despite varying client needs,

RESTful APIs are generally fixed in service, which can easily cause

data over-fetching and under-fetching in practice [8, 9, 10, 11]. Over-

fetching occurs when the server’s response includes more data than

the client requires, leading to unnecessary network transmission

costs, while under-fetching happens when the data returned is

insufficient, forcing the client to make additional requests.

External
Service

Desktop

Mobile

Web API
Service

(GraphQL)

query{ users{
  id, create_time,
  last_login } }

{ "users": [
 { "id": ...,
    "create_time": ...,
    "last_login": ... },
 {...}, {...}, ... ] }

Figure 1: A typical modern Web API service example that
supports various clients with varying needs.

GraphQL is the state-of-the-art query language that can mitigate

these data over-fetching and under-fetching issues at Web ser-

vices, given its enhanced expressiveness. For instance, in a scenario
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where client A only needs create_time and client B requires only the

last_login time of the target user, both clients use a GET /user/{id} re-
quest if using RESTful style APIs. This causes unnecessary network

transmission since redundant information will be returned using

this query. In contrast, with improved expressiveness of GraphQL,

the clients can submit query{user{id, create_time}} and query{user{id,
last_login}} to acquire the exact required information, effectively

saving network resources by eliminating over-fetching. On the

other hand, under-fetching can also occur by using RESTful style,

which causes significant back-and-forth communications across the

network. As shown in Figure 2 (top), GET /user/{id} request is for
acquiring detailed information of user {id} like privilege roles; and
POST /user/{id}/notice for sending notification. Then, to implement

the logic of "sending notifications to admins", the client needs to
send 1 +𝑚 + 𝑛 requests, where 𝑚 is the user count and 𝑛 is the

admin count. In contrast, the same operation can be accomplished

via GraphQL in just two requests, as detailed in Figure 2 (middle).

Apparently, enhanced expressiveness significantly helps shorten

the operation time and reduces the data transmitted.
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query {

  users(filter: {...}) { id name }
}

mutation {

  a: notify(id:"a", msg:"how") { ok }
  b: notify(id:"b", msg:"are") { ok }

  c: notify(id:"c", msg:"you") { ok }
  ...

}

C
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nt
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erfor (int i = 0; i < userNum; ++i) {

    if (filter(users[i]))

        notify(users[i], "...");
}

RESTful

1+m+n
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GraphQL

2
requests

Turing
Complete

1
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Figure 2: An example illustrating data under-fetching using
RESTful (top), problemmitigation by GraphQL (middle), and
the best solution using a Turing Complete language (bottom).

Expressiveness limitations of GraphQL. Despite its improved

expressiveness, GraphQL still has a critical limitation in that it
is not Turing complete, meaning not all operations can be accom-

plished within a single request. In practice, some common logic

patterns such as indirect queries [12] and loop traversals [13] re-

main inexpressible by GraphQL. For instance, due to GraphQL’s

inability to mix querys and mutations, at least two requests are

needed to accomplish the task, shown in Figure 2 (middle). If we

elevate the expressiveness of the query language to a Turing com-

plete level, e.g., allowing clients to send a program as a query, then

it theoretically enables arbitrarily complex operations performed

in a single query, realizing the full potential of “One Request For
All”. Demonstrated by Figure 2 (bottom), with a Turing complete

query language (like C), only one request is needed for this task.

Thus, there still remains significant potential for further enhancing

expressiveness.

However, implementing this Turing complete idea poses practi-

cal challenges. Executing client-provided programs on the server

introduces data and resource security risks, as these programsmight

exploit vulnerabilities or overconsume resources. To address these

risks, the programming language used for queries and its inter-

preter must enforce strong data isolation and resource constraints,

which traditional languages often lack. Fortunately, WebAssembly

(Wasm) [14] meets the strict security requirements. Wasm is a Tur-

ing complete intermediate representation (IR) with built-in perfor-

mance and security mechanisms, originally for running server-sent

programs in client browsers with strong safety guarantees. More-

over, the core of Wasm [15] is neural and general-purpose, making

it suitable for applications beyond the browser.

Building on these insights, this paper explores the novel use of

Wasm as a Turing-complete query language for Web APIs. Tradi-

tionally, Wasm is employed in a server-to-client model, where the

server sends Wasm binaries to the client (often a Web browser)

for secure execution in a sandbox environment. Our approach re-

verses this conventional flow by enabling clients to send queries as

Wasm programs to the server, which poses unique implementation

challenges. 1○ The foremost problem is the programming model,

i.e., how should the Wasm program be written, executed, and de-

bugged in such a new querying scenario? 2○ Although Wasm is

more compact than traditional binary programs like x86 ELF files,

it is still too large for most query use cases. Typical queries are

only a few kilobytes in size, whereas even the simplest hello-world
Wasm program can exceed 100 kilobytes, which can greatly burden

the request initiation. 3○ Unlike GraphQL, Wasm programs spend

much more time on compilation and instantiation before execution,

thus necessitating an effective solution to reuse previously served

programs, particularly for repeated queries.

We give our solutions to the above-mentioned issues in this

paper. Specifically, the contributions of this work are as follows:

(1) We highlight the necessity of enhancing expressiveness for

WebAPI requests and the imperfection of the SOTAGraphQL

in terms of completeness, whichmotivate us to propose ORFA,
a Web-oriented framework employing Wasm as the query

language to achieve Turing completeness and reaches the

goal of "One Request For All".
(2) We introduce ORFA’s programmingmodel and explain how to

program, execute and debug the query programs. To reduce

the size of the query module, we propose a novel module

splitting technique that utilizes Wasm’s inherit import/export
functionality and avoids relocation overhead in existing link-

ing methods. We also design a caching mechanism for ORFA
that significantly reduces the startup latency, program trans-

mission, and resource usage at the servers. Our mechanism

achieves a new application of Wasm to Web API querying

scenarios with effective solutions addressing the program

size and startup problems simultaneously.

(3) Evaluations on representative system and workloads demon-

strate that ORFA remarkably reduces request latency and

network traffic, effectively outperforming the traditional

RESTful APIs and the state-of-the-art GraphQL.
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2 Background and Related Works
RESTful Web API. Modern Web systems rely on Web APIs for

inter-service communication and co-operation [1, 2, 3], especially

in distributed and microservice architecture [4, 5]. Although many

protocols can be used for Web APIs, such as SOAP [16], JSON-

RPC [17], etc., RESTful style that directly utilizes the elements in

the HTTP protocol has become the default choice for Web API

design [18, 19, 3, 5]. REST [6] is not a specific protocol, but rather a

vague set of design rules and guidelines. OpenAPI [20] specification

is an effort to formalize and standardize REST that defines a format

to describe and document APIs in an organized and predictable

manner, serving both for humans and machines.

GraphQL and Query Languages. GraphQL has become a popular

supplement and alternative for traditional RESTful API design. By

2023, as many as 23% software projects have adopted GraphQL [21],

with industrial companies such as GitHub, Shopify, and Yelp imple-

menting it. Practical evidence has demonstrated that GraphQL can

significantly reduce engineering efforts, accelerate development [9],

and decrease communication overheads [8], strongly demonstrating

the necessity and feasibility of enhancing expressiveness. Netflix

previously addressed the inflexibility of traditional Web APIs with

Falcor [22], a JavaScript library rather than an formal query lan-

guage. However, due to GraphQL’s growing popularity, Netflix has

discontinued Falcor. Other techniques, such as OData [23] and HT-

SQL [24], embed SQL queries into HTTP URLs for client request

customization. But they are limited to specific application scenarios

and thus do not generalize well for broader Web API use cases.

Query languages are more commonly associated with database sys-

tems, as seen with graph query languages including SPARQL [25],

Cypher [26], Gremlin [27], and more. These database scenarios

are different from Web services in that databases manage well-

structured, static data, while Web services handle more dynamic

and client-specific interactions. Therefore, Turing completeness is

not the focus and primary goal of database works.

WebAssembly (Wasm) was proposed to address the performance

limitations of JavaScript on the currentWeb platform [14]. The strict

security limitations of browsers ensure thatWasm is executed in iso-

lated sandbox environments with strong safety features. Although

originally designed for the Web, Wasm’s language design avoids

introducing Web-specific components and keeps its core purely

computational. As a result, it has become an ideal, general-purpose

intermediate representation suitable for various systems and has

been widely applied to many outside-browser domains, including

cloud and serverless computing [28, 29], high-performance com-

puting [30, 31], and the Internet of Things [32, 33]. Similarly, Wasm

can be very promising to reshape and empower the query-based

Web systems.

Wasm-based Server-side Remote Execution. The native use of
Wasm is to execute programs sent by Web servers, inside client

browsers. But this paper aims at the reverse, i.e., sending query

programs from the clients to be executed on the server. In fact,

the practice of sending Wasm to servers for remote execution is

not new, with one common usage to offload computation from

clients to servers for both Wasm [34, 35, 32] and JavaScript [36, 37,

38]. Nonetheless, the Web API querying scenario focused by ORFA
differs significantly from these works in terms of the program size,

execution time, and job amount by orders of magnitude. Therefore,

these techniques cannot replace ORFA. Wasm has also been widely

explored for serverless systems as a lightweight alternative for

Linux containers [39, 40, 29], where the Wasm programs act as

remote executions from the perspectives of serverless developers.

The Wasm programs in these systems function as normal Web

services and are pre-uploaded to the serverless platform, whereas

ORFA’s query programs are dynamic and unpredictable. As far as we

know, no existing works have used Wasm as a query language for

Web APIs to enable the complete expressiveness of client requests.

3 ORFA
3.1 Overview
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Web API

Service

Other
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Req ×n

Wasm Engine
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API
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Query
Module
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Data
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 Application
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Client
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Programing

Client
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Source
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Figure 3: ORFA is a Wasm-based framework consisting of
programming supports and server-side runtime. The Wasm
query modules are programmed into client applications and
then sent to remote runtime for execution to issue multiple
local requests in substitution of original remote requests.

Figure 3 illustrates the overall architecture of ORFA, a framework

consisting of programming supports and server-side runtime. The

programming support aims to assist client developers to compose

their consecutive Web API operations into a Wasm query module,

embedded as part of the client application. The runtime is deployed

as a microservice alongside existing Web API microservices, mini-

mizing communication costs between them. At run time, the client

application sends the query module along with the associated query

data to the ORFA runtime for remote execution. The query module

is then combined with the environment module preloaded on the

server and executed within the Wasm engine, with existing query

program instances being reused if the cache hits. During execution,

the query module can perform arbitrary computations and send

requests to system-specified Web API services via ORFA’s HTTP

APIs. The Turing completeness of Wasm ensures that any complex

operational logic can be encapsulated within a single query module.

This approach allows the original n cross-internet remote Web

API requests to be reduced to 1 remote request plus n inexpensive

local requests, thereby reducing overall operational latency and

network traffic. On the other hand, forWeb API services, since ORFA
enables users’ customization for query operations, service devel-

opers now can refine Web API granularity to eliminate redundant

functionalities, thus reducing service code maintenance costs.

The clients communicate with ORFA via the HTTP protocol, with

additional headers supporting ORFA’s functionalities, as summa-

rized in Table 1. The main components of the client’s request are
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Table 1: Additional headers defined by ORFA.

Header Explanation
ORFA-Input The length of input in the message body, sep-

arating input data and Wasm module.

ORFA-Limit The required time and space for execution.

ORFA-Debug Indicating the debugging mode.

ORFA-Cache Specifying the mode and token for caching

mechanisms.

ORFA-Trust ECDSA signature of Wasm module to verify

the integrity of the received program.

the query data and the Wasm query module, shown in Figure 3,

which are encoded in binary and concatenated to form the HTTP

request body, with the ORFA-Input header indicating the bound-

ary in between. If the query succeeds, ORFA puts the result in the

HTTP response body and returns it to the client. The specific con-

tent and encoding of the response body are entirely determined by

the query module. Here are two major differences between ORFA
and GraphQL: First, ORFA enforces the separation of query data

and the query program, whereas GraphQL allows the mixture of

the variable parts and the query code (refer to Figure 2), though

it does recommend the usage of variables to achieve such separa-

tion [41]. The enforcement caters to the usual static compilation

usage of Wasm and plays a key role in supporting ORFA’s caching
mechanism (§3.4). Second, GraphQL defines its response body as

JSON format corresponding to the request’s query structure, while

ORFA allows the query itself fully determines the response body,

allowing autonomous selection of the most efficient and compact

encoding method. This is attributed to the Turing complete expres-

siveness, which enables the computation required for encoding.

To prevent clients from abusing the computational resource, ORFA
uses the ORFA-Limit header to constrain the resource usage during

execution. The resource safety risks associated with enhanced ex-

pressiveness is unavoidable and also exists in non-Turing-complete

GraphQL [42, 43, 44, 45], but the success of GraphQL demonstrates

that these risks can be accepted in practice
1
.

3.2 Programming Web API Queries
Unlike usual Wasm programs, ORFA defines the query’s entry point
as a Wasm function named "orfa", which accepts two i32 parame-

ters representing the starting address and length of the query data

in the request body, respectively. Since Wasm is a general-purpose

intermediate representation supported by many programming lan-

guages, any language capable of generating such a Wasm function

can be used to write ORFA’s query modules. For simplicity and due

to the maturity of the toolchain, we choose C as the source language

in this work.

As shown in Figure 4, the entry point of the ORFA query program
corresponds to a C function with the signature void orfa(void*,
int). Before executing the orfa function, ORFA places the query data

from the request body into the Wasm program’s address space and

passes the starting address and data length as arguments. The query

then executes from the beginning of orfa, where programmers can

1
Details of the solution to the resource safety risks, e.g. resource limiting policies, are

omitted due to space limit.

Query Data

GET / HTTP/1.1
... ORFA Runtime

void

orfa(void* req,

     int reqLen) {

  // ......

  done(res, resLen);
}

HTTP*n

Wasm
Query Module

Web API
Service

HTTP/1.1 200 OK
...

Response Data

Figure 4: Programming an ORFA query. The query data car-
ried in the request body is passed as parameters. The query
should submit the data to response body by calling done().
Arbitrary HTTP requests can be made to the specified Web
API service.

Table 2: Built-in functions in ORFA environment.

Function Note
void done(const void*,
uint32_t)

Submit the response data.

void Handle_del(Handle) Delete an object.

int32_t
Future_ready(Handle)

Check that whether a future

object is ready.

Handle http(Request*)
Send a HTTP reqeust asyn-

chronously, returning a future

object handle.

int32_t Response_get
(Handle, Response*)

Extract data from a future ob-

ject if it’s ready.

write arbitrary code for computation or calling functions from

Table 2 to interact with external services. Finally, at the end of

the query execution, the programmer should collect the necessary

data and encode it into a contiguous address space, then call the

done function to submit the data to the ORFA runtime. The data will

be put into the response body and returned to the client by ORFA,
thereby completing the query.

One thing to note about Table 2’s API design is that the function

used for issuing HTTP requests is asynchronous, thus allowing for

the overlapping of multiple Web API operations. Also, it is impor-

tant to point out that writing a practical query program requires

significantly more supports than what is provided by the Wasm

built-in instructions and Table 2 ’s APIs, such as dynamic memory

allocation, string manipulation, JSON parsing, and more. Without

these supports, writing a query program would be exceptionally dif-

ficult. However, these supports are essentially purely computational

and can be implemented as Wasm functions. ORFA consolidates

these basic supports into a commonWasm environment module for

shared use across all requests. The specific implementation details

will be discussed in §3.3.

The complexity of query code greatly surges along with the

enriched expressiveness, which thus crucially necessitates the sup-

port for debugging to facilitate query programming. In such Web

API querying scenario, connecting a debugger to a remote Wasm

runtime service is not feasible, as the queries are very short-live
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Figure 5: The record and replay debugging of ORFA. The
ORFA Mock tool together with native libraries ensures the
equivalence of query execution environment.

and the server needs to handle massive queries, hence unavail-

able for interactive debugging with programmers. Therefore, we

choose an alternative design: recording and replaying the query

program’s execution. The availability of this approach highly relies

on the deterministic property of ORFA’s programming model: As

the Wasm core is fully sandboxed and purely computational, by

recording all inputs during the execution, the entire running pro-

cess can be reproduced elsewhere. To enable the recording, clients

set the ORFA-Debug header in its requests, and ORFA will respond
the recorded log data instead of the original query result. The log

data can be later used by our ORFA Mock tools at the client side

locally, as shown in Figure 5. The query code links to different en-

vironment libraries in normal execution and debugging simulation,

and ORFA Mock ensures the equivalence of the simulated environ-

ment between real remote environment. This way, the query code

can be debugged locally like a normal program.

3.3 Shrinking Query Module Size
Using a normal Wasm module as the query program may bring

an serious issue that the program size itself greatly outweighs

the truly critical query data, thus potentially nullifying the traffic

reducing benefits of composing multiple requests into one. This

isn’t to say that Wasm format is bloated; in fact, quite the opposite

is true that Wasm programs are significantly smaller than typical

binary programs (such as x86 machine code). However, in our query

scenario, the programs are extremely small, with just a few kilobytes

usually, whereas even the simplest Wasm "Hello, World!" program

can exceed 100 KB. This discrepancy forces us to devise a method

to reduce the size of the query module.

We have identified that this issue arises from the semantic gap

between queries and Wasm. In detail, to support "simple" data

extraction and assembly operations in queries, Wasm programs

require a substantial amount of basic support code like dynamic

string concatenation from standard libraries. But just including

the musl libc from WASI-SDK [46] can cost over 1 MB, without

consideration of other libraries. If we could separate these common

basic codes from the query code and pre-load them onto the servers,

it would eliminate the need to repeatedly transfer them over the

Internet. Therefore, we propose a method to split a complete query

Wasm program into a query module and an environment module.

The environmentmodule contains the common basic code, provided

by the server and pre-loaded into ORFA. The query module includes

query-specific variable code, provided by the client and combined

with the environment module to form a whole Wasm program for

execution.
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Figure 6: The splitting and recombination of the query mod-
ule and environment module. This figure shows the ex-
port/import relation of key elements of query and environ-
ment modules and the partition of memory space for the two
modules.

Figure 6 explains the splitting and recombination of the two mod-

ules. A compiledWasm programmainly consists of functions, which
can be easily split and recombined using the import and exportmech-

anisms. However, making functions from two separate modules

work together requires additional conventions that are not explic-

itly defined in the Wasm specifications. A representative example

is that both modules must agree on the memory layouts, which is

reflected in the addresses used by all memory access instructions

across all functions. Our design involves splitting the global vari-

able segment in the memory space into two regions with one for

the query module and another for the environment. We then cus-

tomize the Wasm linker to allocate different regions for the global

variables of each module, ensuring that they do not overlap. To

correctly access stack data, we export the global __stack_pointer
from the environment module and import it in the query module,

making both modules share a common stack. Finally, during the

query initialization process, the global constructors generated in

both modules, __wasm_call_env_ctors and __wasm_call_ctors,
should be both invoked in order to ensure proper execution of the

query code.

Be noted that our module splitting and recombination method is

neither existent static linking [47] nor dynamic linking [48]. It is

directly based on theWasm’s import and export mechanisms instead

and requires no additional compilation information. Accordingly,

one advantage of this splitting design is that it avoids the traditional

linking overhead of redirecting all memory access instructions, and

allows the environment module to be pre-loaded into ORFA.

3.4 Reducing Query Startup Latency
The execution of a Wasm query program consists of three phases,

i.e., compilation, instantiation and execution. The first two phases

are newly introduced compared to GraphQL. Considering that

query requests are typically short-lived and massive in scale, the

two phases may incur considerable startup overhead and latency.

On the other hand, unlike GraphQL, whose programs are in text

format and easy to be assembled dynamically, Wasm programs are

in binary format and usually compiled statically from hand-written
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source code in high-level languages. As a result, Wasm query mod-

ules tend to remain unchanged during the run time of the client

applications, leading to repeated compilation and instantiation of

same query programs. Based on this observation, we extend ORFA
with a caching mechanism to store the compiled results (referred

to as the ORFA-code mode) or the initialized instances (referred to

as the ORFA-inst mode). The ORFA-inst mode can help eliminate

the startup overhead, achieving performance comparable to native

code, but requires additional server memory and more careful cod-

ing of the query module to make the Wasm instance stateless and

reusable.

To enable caching, the client must set the ORFA-Cache header in
the request, specifying the desired caching mode and the previously

cached token (if any). If the caching succeeds, the server then re-

turns the refreshed cache token, and the client can omit the Wasm

query module part in later requests to further reduce the network

overhead. For cache management, we employ a function-based [49]

strategy, which exploits a background thread to periodically check

the cache. If the number of cache items reaches a predefined thresh-

old, the thread removes the least valuable cache items. The value of

a cache item is calculated simply as the ratio of use counts to the

time since last use.

It is common to see the same query programs sent from different

front-end clients, as a client application usually serves many end-

users. To share caches of query programs between clients, the value

of the ORFA-Trust header is used as a key to retrieve the existing

cache token at the first caching request. The ORFA-Trust value is a
cryptographic signature of the query program, whose private key

is generated by the client developers, and the corresponding public

key is given to server maintainers and preset into the ORFA service.

Using cryptographic signatures instead of plain hashes can also

helps to avoid the risks of caching efficiency downgrading when

malicious attackers flood the server with useless cache requests to

exhaust the cache capacity. Such signature-based caching mecha-

nism is made possible by the data-query separation design in ORFA’s
requests, and is not feasible in GraphQL for those dynamically as-

sembled queries from clients, as it is impossible to sign the query

program in advance.

4 Evaluation
To demonstrate the effectiveness of the proposed ORFA, we evaluate
primarily from the following aspects. 1) Efficiency (§4.2): we apply

ORFA in three widely-used realistic applications, and compare the

latency and traffic metrics with those of GraphQL and the REST
API; 2) Sensitivity (§4.3): we further conduct sensitivity studies to

investigate the impact of network conditions and workflow com-

plexities by adjusting client locations and the task workflow; 3)

Cost (§4.4): to understand ORFA’s service cost and its impact on

other Web API services when sharing server resources, we collect

the peak throughput of GraphQL and ORFA by stress testing with

synthesized and realistic workloads respectively.

4.1 Experimental Methodology
4.1.1 Node Testbed. To model the real scenarios, our experiments

are conducted on two virtual machines of different public cloud ser-

vices: an AWS t2.micro and an Azure Standard B1s. These machines

Table 3: Configurations of the experimental machines.
AWS t2.micro

(Client)
Azure Standard B1s

(Server)
RAM 1G (+ 1G SWAP) 1G (+ 1G SWAP)

CPU Intel Xeon E5-2676

v3@2.40GHz (1 vCPU)

Intel Xeon E5-2673

v4@2.30GHz (1 vCPU)

OS Ubuntu 22.04 Ubuntu 22.04

are designated to operate as the client and server, respectively. As

detailed in Table 3, they roughly have equivalent configurations.

And, for ORFA, we choose the popular outside-browser embedder,

Wasmtime
2
, as the Wasm engine.

Table 4: Composed workflows of real applications.
Appli-
cation Read-only (.r) Read-write (.w)

Memos

Get the second newest

notes of each user.N is the

user number.

Change the visibilities of

all notes from a user. N is

the notes number.

Strapi

Get related entries in table

A for each entry in table B.

N is the number of entries

in table B.

Add relations between en-

tries in table A and a entry

in table B.N is the number

of entries in table A.

Gitea

Get the second newest

commits of all branches in

a repository.N is the num-

ber of branches.

Delete users whose name

starts with a prefix. N
is the number of filtered

users.

4.1.2 Workloads. Three representative and popular applications

on GitHub are chosen as benchmarks:

• Gitea3 (39k stars): a popular open-source Git server written in

Go. Gitea only provides REST APIs specified with OpenAPI.

• Memos4 (21k stars): a self-hosted lightweight online note-taking
service developed in Go. Similarly, it only provides OpenAPI-

specified REST interfaces for third-party integration.

• Strapi5 (58k stars): a leading open-source headless content

management system (CMS) developed purely in JavaScript. Strapi

uses REST APIs as default, and also provides a GraphQL interface

as a plugin.

For each application, we compose two types of workflows, with

one for read-only query and the other for write-operation query

(with data modification). In total, as listed in Table 4, there are six

workflows, which are denoted with suffix .r/.w. For instance, the
read-only workflow of Memos is Memos.r. Each workflow is further

associated with a variable N, representing the complexity of the

workflow. Notably, since Gitea and Memos only provide REST in-

terfaces in OpenAPI format, we use the OpenAPI-to-GraphQL [50]

tool to generate GraphQL wrappers.

4.1.3 Metrics. We focus on three common metrics, latency, net-

work traffic, and throughput, to quantify ORFA’s efficiency. The

latency represents the time taken to complete the entire workflow,

the network traffic is the amount of data transmitted during the

workflow execution, and the throughput is the request number

processed within a fixed time interval. The results are obtained

using JMeter
6
, a popular load testing tool.

2
https://wasmtime.dev/

3
https://github.com/go-gitea/gitea

4
https://github.com/usememos/memos

5
https://github.com/strapi/strapi

6
https://jmeter.apache.org
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4.1.4 Comparison Designs. We compare baseline and our proposed

methods as listed below:

• REST represents that the operations are done by invoking REST

APIs directly. The number of remote requests to complete each

workflow is N.
• GraphQL depicts that the same operations are performed in-

directly by GraphQL queries. Using GraphQL, these workflows

need to first retrieve a JSON list, followed by batching operations

on the elements in the list. Thus, the number of remote requests

is always 2, regardless of the value of N.
• ORFA-base represents that the same operations are performed

indirectly by sending a Wasm query module to ORFA without

caching. Due to the improved expressiveness, the number of

remote requests is always 1.

• ORFA-code is same as ORFA-base except that the compiled re-

sults are cached so that the code of the query module will not be

sent repetitively. In this mode, the compilation is eliminated but

the initialization is still required.

• ORFA-inst is same as ORFA-code except that the final instance
is cached and reused too, so that all overheads of compilation

and initialization are eliminated. ORFA-inst is our default config-

uration in continuously running serving processes.

4.2 Service Latency and Network Traffic
In this section, we place our Azure server in Singapore and the

AWS client in Sydney. This setup leads to a communication latency

of 93ms in between. Figure 7 presents the latency, and network

traffic results of the six workflows, specifically when variable N is

set to a typical value of 4.

4.2.1 Latency. For the latency analysis, we execute each workflow

ten times and choose the median as the final result, as shown in

Figure 7a. ORFA poses lower latency across all work modes when

compared to both REST and GraphQL, with the only exception of

the gitea.r workflow. Particularly, ORFA-inst reduces at most 52%

latency onmemos.r compared to GraphQL, with an average of 18.4%

reduction. In terms of gitea.r, the obviously long bar in Figure 7b

and the observed latency issues are attributed to the parsing of the

uncommonly long JSON data returned by Gitea’s REST interface.

In ORFA, this parsing process is conducted using cJSON within the

Wasm interpreter, which is significantly less efficient compared to

GraphQL’s approach. GraphQL utilizes highly optimized JavaScript

engine code for parsing, leading to better performance in this work-

flow. This additional parsing overhead in ORFA becomes the primary

contributor to latency, overshadowing the benefits gained from re-

duced network communication.

4.2.2 Network Traffic. Since the volume of data transmission is

solely determined by the task and method, it remains consistent and

unaffected by variations in network conditions. Figure 7b presents

the network traffic for each workflow. We can see that ORFA mostly

has the least transmission volume, especially in the caching modes.

On average, 24.5% traffic is reduced in ORFA-base and 72.4% in

ORFA-code/ORFA-inst. This is because the increased expressive-

ness reduces the number of requests and allows the workflow-

specific data encoding. There is only one exception: ORFA-base in

the memos.w workflow. In this case, the data transmitted is not so

much that the extra size of the Wasm query module diminishes the

benefits of reducing one data round trip compared to GraphQL. As a
result, ORFA-base’s transmission is slightly higher than GraphQL’s.
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(a) Latency results. The bars show the metrics measured in Sydney,
while the metrics from Hong Kong and San Jose are depicted as grey
and black lines (to be analyzed in §4.3).
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(b) Network traffic results. This figure shows the total transmission
amount for each workflow.

Figure 7: Experimental results of realistic applications.

Putting together, the latency and traffic results demonstrate that

ORFA can effectively improve latency and network transmission,

outperforming the existing REST and GraphQL.

4.3 Impacts of Network and Workflow
To further validate the efficiency and robustness of ORFA, we con-
tinue investigating the influence of network conditions and work-

flow complexities. Previously, we position the client in Sydney,

with a delay of 93ms to the server, and choose a moderate value

for N, being set as 4. For network conditions, we relocate clients to

another two positions, Hong Kong and San Jose, and then observe

changes in overall latency. For workflow complexities, we sweep

over different values of N to understand their effects on latency

and network traffic.

4.3.1 Network Conditions. In terms of network conditions, clients

in Sydney, Hong Kong, and San Jose respectively have a delay of

93ms, 35ms and 170ms. Since the data transmission amount is un-

affected by network latency, we only analyze latency results. At

first, we notice that the network condition change causes a shift on

latency and the trend largely remains stable, which is illustrated in

Figure 7a (§4.2). We further calculate the ratio between the latency

of ORFA-inst and that of GraphQL, with results being reported in

Figure 8. It can be observed that in almost all cases, ORFA achieves

lower latency than GraphQL regardless of network conditions. Over-
all, ORFA can generally perform better with constrained network

conditions, i.e., higher transmission delays.

4.3.2 Workflow Complexity. Regarding workflow complexity, we

place the client in Sydney and choose 2, 4, 8, 16 for N. Figure 9 sum-

marizes the latency and network traffic ratios between ORFA-inst



WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia Yuhao Gu, Chunyu Chen, Jiangsu Du, Xiaoxi Zhang, & Xianwei Zhang

memos.rmemos.wstrapi.r strapi.w gitea.r gitea.w AVG
0.0

0.5

1.0

la
te

nc
y

(O
RF

A-
in

st
 / 

Gr
ap

hQ
L) Sydney HongKong SanJose

Figure 8: The latency ratio of ORFA-inst to GraphQL when the
client is in different positions (Lower is better).

and GraphQL. Overall, in most cases, ORFA still maintains advan-

tages in all values of N, demonstrating the robustness of our design.

In terms of the network traffic, ORFA consistently achieves lower

network transmission. Besides, for latency and throughput, we ob-

serve that applications react differently to changes in the value of N
and two workflows of the same application react similarly.Memos’s
workflows are not very sensitive to N, as Memos is lightweight on
operations. To the contrary, Strapi is significantly affected. When N
increases, the latency of the related workflows grows rapidly and

the throughput decreases instead. This is because the intermediate

Web API responses become pretty verbose, bringing in higher pars-

ing overhead. Gitea does not show significant differences when N
is large. This is because the server is already overloaded when N
is 8. Both ORFA and GraphQL spend most of their time on Gitea’s
internal operations.
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Figure 9: The latency and network traffic ratio of ORFA-inst
to GraphQL when N varies (Lower is better).

4.4 Service Cost
In this section, we compare the peak throughput of ORFA with that

of GraphQL to evaluate the running overhead, or rather service

costs. Specifically, we tend to figure out two questions: 1. Howmuch

overhead does executing the Wasm program itself brings? 2. How

much impact does ORFA have on the services when co-located on the
same server? For the first question, we defined a synthesized task,

which solely commands the server to return a "hello world" string

as the result, for both GraphQL and ORFA. For the second question,

we deployed ORFA and GraphQL alongside with three applications

(in RESTful) on the same machine and collected their throughput

metrics. Three three applications maintain the same workloads

when co-existing with ORFA and GraphQL. Also, they only contain

read workflows, as the write workflows are not idempotent. The

results for both questions are reported in Table 5.

Table 5: Stress testing results.
(a) Detailed results of stress testing with the synthesized workload.

GraphQL ORFA-base ORFA-code ORFA-inst
TPS 909.09 222.22 384.62 1111.11

Time (ms) 1.1 4.5 2.6 0.9

CPU 88% 100% 100% 20%

(b) Throughput per second (TPS) results of co-existing ORFA
with the three realistic applications.

REST GraphQL
ORFA
-base

ORFA
-code

ORFA
-inst

memos.r 260.2 97.24 77.48 120.12 130.52

strapi.r 42.1 53.34 18.9 23.058 23.352

gitea.r 3.88 2.761 2.379 3.678 4.017

Table 5a shows that ORFA significantly lowers throughput (57% ∼
76%) and increases latency (134% ∼ 157%) compared to GraphQL in

the no-caching (ORFA-base) and code caching (ORFA-code) modes,

which can be attributed to the compilation and initialization cost

of Wasm programs. On the other hand, when the compilation and

initialization are completely eliminated in the instance caching

mode (ORFA-inst), ORFA achieves 22% throughput boost and 18.2%

latency reduction with 68% less CPU usage, demonstrating the high

performance of Wasm’s execution and effectiveness of proposed

caching revisions.

Table 5b shows that ORFA generally achievesmuch lower through-

put than original RESTful APIs, with a median value of 54.9%,

demonstrate the the high cost of using Web API services indirectly

through ORFA. This is reasonable, as the additional costs not only
come from the compilation and initialization of Wasm query pro-

grams, but also from the clients’ offloaded computation for parsing

and assembling HTTP messages. Also, note that GraphQL achieves

even better result than original RESTful API in strapi.r. This falls
onto the embedding of GraphQL into service code, which eliminates

the overhead of a wrapper layer, thereby hinting more potential

performance gain by integrating ORFA and the service.

5 Conclusion
In this paper, we propose ORFA, a framework that employs We-

bAssebmly as a Turing complete query language for Web API ser-

vices, allowing "One Request For All" operations to eliminate all

data round-trips. We present ORFA’s programming support and

runtime design, explain how to program, run, and debug a Wasm

query module. We also introduce two key techniques of module

splitting and caching to reduce query module size and query startup

latency. Experimental results on representative systems and work-

loads demonstrate that ORFA significantly boosts Web API service

efficiency with reduced latency and transmission traffic.
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