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Abstract—Today, DNN inference is widely adopted, with numerous
inference services being spawned from scratch across instances in
scenarios such as spot serving, serverless scaling and edge computing,
where frequent start-stops are required. In this work, we first delve
into the inference workflow and uncover the origins of cold start when
invoking a DNN model. Specifically, DNN execution is blocked by the
kernel loading process to prepare the code object executing on GPU
at the DL primitive library (e.g., cuDNN and MIOpen). To tackle this,
we propose PASK, a kernel loading and reusing middleware to mitigate
the widespread cold start issue. Unlike the reactive kernel scheduling
policy used by existing frameworks, PASK adopts a proactive strategy to
interleave code loading, kernel issuing and GPU computation to achieve
higher hardware utilization. To further reduce the loading overhead,
PASK recycles existing loaded kernels to accomplish the DNN operator,
rather than introducing new kernels for every layer. Meanwhile, PASK
categorically organizes the cached kernels to efficiently find the applicable
kernel for reuse and thus minimize incurred runtime overhead. We
implement and evaluate PASK atop of open source DNN inference engine
and primitive library on off-the-shelf GPUs. Experiments demonstrate
PASK is capable of alleviating the cold start overhead of popular DNN
models with 5.62× speedup on average.

Index Terms—Cold Start, GPU, DNN, Inference

I. INTRODUCTION

The last decade has witnessed the unprecedented prosperity of
deep learning and its widespread application in many aspects like
computer vision [1]–[9], recommendation [10], and natural language
processing [11]. Serving model inference has become the dominating
workload in modern data centers, which accounts for more than 90%
infrastructure costs in AWS [12] and 200 trillion daily invocations in
Meta [13].

This trend also sparks the research efforts devoted into the ML
inference infrastructures like request batching [14]–[17], model se-
lection [18], [19], memory optimizations [20], tensor pre-fetching
[21] and resource sharing [22], [23]. As underlying support, the
accelerators like GPUs are trending to be much more powerful
and the DNN operators are continuously optimized by experts for
efficient computation [24]–[27]. As a result, DNN inference tends to
be more hindered by the non-computation aspects, with a significant
portion being spent on the models’ cold starting process [28]. Fig.
1(a) compares the cold and hot execution times (ratios between
the first and successive iterations) of representative DL models on
both data center and consumer-grade GPUs from different vendors,
where significant cold start slowdowns are commonly observed on
respect platforms (23.7×, 19.5× and 31.3× for MI100, A100 and
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Fig. 1. DNN model cold start (a) overhead and (b) breakdown of typical
models. The dashed lines in (a) represents averaged slowdowns and percentage
numbers in (b) mark the GPU execution portion.

6900XT, respectively). Fig. 1(b) further demonstrates the breakdowns
of the cold start overhead, which is classified into four parts by their
execution ordering phases. Before launching a kernel onto the GPU,
the host runtime (i.e., CUDA or HIP) is responsible for checking
whether the kernel code object (e.g., compiled SASS instructions
binary stream) is present in the managed host memory. If not, the
runtime will load it from either the shared library or compiled
ELF executables, then set memory permissions and look up the
target symbol positions. It can be captured from Fig. 1(b) that the
majority (65.8%) of cold start overhead is attributed to loading absent
kernel code objects (code loading) while the computation (GPU
execution) constitutes only a small proportion (8.4%). Therefore,
the code loading should be considered alongside data pre-fetching
[21], keep alive [29] and pre-warming [30] techniques to mitigate
DNN cold start overhead.

The cold start overhead originated from code loading is inevitable
in scenarios like preemptive serving [31]–[36], serverless scaling [17],
[20], [29], [37] or edge computing [30], [38], [39]. For example, the
inference service has to be migrated across preemptive instances,
or deployed in new instances to cope with request spikes. In edge
or mobile devices, the inference service is forced to be suspended
or swapped out due to limited hardware resources (e.g., memory
capacity), and restarts later. Under these circumstances, code loading
is unavoidable when starting a DNN model as there are no available
loaded kernels in the system.

There are multiple proposed approaches to mitigate the non-
computation overhead of DNN models [25]–[27], [40]. TASO [25],
Rammer [26], Cocktailer [27] and MonoNN [40] apply some
operator-level transformations on the models’ computation graph for
higher execution efficiency. Nevertheless, these methods focus on the
static optimizations to produce a series of fast kernels running on
GPUs, failing to consider the crucial runtime overhead of loading
these kernels. There also exist designs sharing container [29], [41],
runtime [30], [42] or tensor [20] to warm up the cold models, but
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Fig. 2. Instead of waiting for the fresh loading (a), PASK reuses existing
loaded kernels (b) to implement the DNN layers.

the sharing granularity is generally too coarse as DNN models are
monolithic and cannot be efficiently transformed via dependency
analysis for traditional services [43]. As such, extra steps are needed
to transform the shared resources for accommodating with the cold
start model. NNV12 [38] optimizes the DNN cold start process via
selecting different kernels to implement the NN operator to reduce
the tensor layout interchange overhead before execution. Nonetheless,
the above existing methods ignore the kernel code object loading
procedure, which actually constitutes the most significant portion of
the cold start overhead for DNN models (Fig. 1).

In this work, we propose PASK, a kernel loading and reusing
approach to mitigate the cold start latency of DNN inference. We first
analyze the DNN inference serving procedure and attribute the cold
start overhead to the mismatch between static model materialization
and runtime kernel loading: inference framework determines the
finalized kernel sequences from abstract model computation graph
without considering the incurred loading overhead at runtime. To cope
with this, PASK seeks the opportunities to reuse existing potentially
less performant but already loaded kernels to materialize NN operator,
thereby skipping the more substantial kernel loading procedure, as
depicted in Fig. 2.

However, it’s non-trivial to efficiently select the substitute from
all cached kernels as checking whether the kernel is applicable for
current problem can be pretty time-consuming. To this end, we design
a categorical cache which stores the cached kernels based on their
patterns to minimize the applicable checking overhead. We integrate
PASK into the open source inference stack with AMD GPUs 1, and
conduct evaluations on various DNN models which show remarkable
performance improvements.

To summarize, this work makes the following contributions:
• We investigate the origins of DNN model cold start overhead,

and uncover it is primarily due to the mismatch between static
model materialization and runtime kernel loading.

• With the insights, we propose PASK, a kernel loading and
reusing approach leveraging the already loaded kernels to
finalize the NN operator, thus circumventing the substantial
kernel loading process. Equipped with interleaved execution
and categorical cache, PASK achieves higher GPU utilization
meanwhile minimizing the incurred runtime overhead.

• We implement PASK atop of open source inference software
stack, and evaluate using representative DNN models to demon-
strate its ability to mitigate the cold start overhead.

II. BACKGROUND AND MOTIVATION

A. DNN Model Serving with GPU

GPU has become the de-facto accelerator to speed up DNN
execution. A DNN model is composed of multiple layers with each
defining a specific operation like convolution or pooling. To harness
the hardware resources, DNN operators are offloaded onto GPUs for

1This can be implemented on NVIDIA platforms as well if more flexible
interfaces are accessible.

faster execution through various frameworks like TensorRT [44] for
NVIDIA and MIGraphX [45] for AMD GPUs. These frameworks
materialize the DNN layers with the computation graph optimizations
[46]–[48] and tuned kernels [24], [49] for efficient execution.
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Fig. 3. DNN inference serving workflow. The serving framework firstly
lowers the model and applies multiple optimizations on the requested model,
then invokes operators from the primitive library to materialize the model.

Offline preparation. Fig. 3 depicts a typical workflow of DNN
serving with GPU, where the requested model is submitted in the
ONNX format containing multiple canonical operators [50] for the
ease of model description and exchange. After receiving the model,
the serving framework first converts the ONNX structure into lower
descriptions with regard to the backend hardware, including GPU
context creation, host-device synchronization setup, and tensor mem-
ory layout generation. Then the serving framework applies a series
of hardware-independent graph-level optimization passes like dead
code elimination and common subexpression elimination [45], [51]
to reduce unnecessary computations. Finally, the serving framework
exploits the highly-optimized kernels from vendor-provided primitive
libraries (e.g., MIOpen and cuDNN) to accomplish the operators
defined in the computation graph.

For each DNN layer (e.g., convolution), the serving framework
sets the tensor descriptors needed by the primitive library with input
problem (image and filter sizes, number of filters, data types etc.).
Then the library finds the optimal solution 2 for the given problem
from all applicable ones by querying an integrated database [52]
which records the anticipated performance of each solution on current
problem. After this, the lower operations and the determined optimal
solutions for each layer are saved in framework-specific formats (e.g.,
.trt files for TensorRT and .mgx files for MIGraphX) for online
inference request serving. The framework usually maintains a model
registry [53] to store the lowered model and directly loads them when
the request comes to avoid redundant lowering.
Online inference serving. When the inference request arrives, the
framework invokes the corresponding optimized model and runs
the determined solutions sequentially by launching the underlying
kernels onto the GPU. Nevertheless, there are often cases where the
code object of the desired kernel is absent due to the lazy loading
behavior [54] which delays the loading until launch. Therefore, the
primitive library has to load the code objects for the missing kernels
from compiled binary files (e.g., dynamic linked ELF), resulting in
unbearable cold start latency for model inference. Only after the code
objects are loaded into memory will the kernels be issued to the GPU
for computation. Such a reactive launch and lazy loading behavior
leads to substantial latency at model cold start. Note that the loading
delay comes from the mismatch between the offline operator lowering
and the runtime solution loading: the primitive library determines
solutions from the GPU performance perspective, meanwhile intro-
ducing extra loading overhead when launching missing kernels. In

2One solution may contain multiple kernels to transform input/output tensor
layout/precision, conduct primary computation and epilogue reduction.
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principle, the gap can be effectively bridged if one can proactively
interleave the code loading and kernel launch executions, and reuse
already loaded kernels to accomplish the computation rather than
loading missing kernels from scratch each time.

B. Generalized Solution for Wider Applicability

ConvWinogradNaiveFwd ConvWinogradRxSFwd

ConvBinWinogradFwd<5,5>

ConvBinWinogradFwd<7,7>Pattern: Winograd

generality
performance &
specialization

Fig. 4. Generality-performance trade-offs for Winograd solutions. Specialized
solutions are more performant but applicable for specific problems, while
generic solutions can be applied to more problems but are less efficient.

Solution specialization. Fig. 4 demonstrates some exemplified con-
volution solutions embedded in MIOpen. The solution usually follows
certain patterns to conduct the computation. For example, solutions
using Winograd [55] accomplish the convolution via matrix multi-
plication, and apply some transformations on both the input image
and filters to lessen the number of multiply-and-add instructions.
Other commonly used patterns include GEMM, DirectConv and
ImplicitGEMM. Solutions with the same pattern typically follow
similar workflows to accomplish the computation. Besides, there
are further optimization spaces to exploit if certain problem fields
are deterministic before the model starts (i.e., compile time). In
Fig. 4, instead of taking the ConvWinogradNaiveFwd solution
which accepts inputs with any dimension, one can alter to invoke
ConvBinWinogradRxSFwd if the input is deemed to be a 2D
image. By avoiding unnecessary loops and boundary checks, the
latter hence brings in higher GPU performance, but at the expense
of generality. Furthermore, the library opts for leveraging more
specialized solution ConvBinWinogradFwd<5,5> if the filter
size is also a specific value (5 × 5), which helps organize the
shared memory layout and better overlap the memory access and
computation within the kernel. The highly specialized solutions
produce better GPU performance tailored for the specific problem,
but they are not applicable to other problems as there are more
constraints. Currently, the primitive libraries (cuDNN, MIOpen) tend
to harness the specialized solutions from the performance perspective,
and fallback to the more general solutions only if no specialized
solution is located. Inevitably, this leads to more solution loads at the
model cold start, as the library may select an uniquely specialized
solution for each individual layer with varying problem description.
Solution applicability. To ensure successful executions and correct
results of DNN inference, the primitive library should only return
applicable solutions for a given problem. The applicability checking
process is time-consuming as it includes complicated logic such as
workspace size checking, input format match, environment variable
and hardware capability validation. In MIOpen, each solution imple-
ments the IsApplicable interface for the library to check whether
it can be used to accomplish the computation for a given problem
without any constraint violations (e.g., data type mismatch, out-of-
bound memory access). Apparently, the incurred runtime overhead
can be significantly alleviated if the applicable checks can be reduced
to quickly identify a valid substitutive solution.

III. DESIGN

In this section, we present the components and workflow of PASK.
Fig. 5 illustrates the overview of our design, where PASK receives
the lowered model as its input. During model parsing, PASK chooses

to proactively load the solutions once they are parsed and starts the
execution immediately once they are loaded (section III-A). For an
absent solution, PASK checks the applicability of loaded solutions
to seek the opportunities of reusing existing solution to accomplish
the computation, thereby skipping to load the missing one (section
III-B). Upon reusing, PASK integrates a categorical solution cache
(section III-C) to organize existing loaded solutions and provides
an interface to efficiently select an applicable solution for the given
problem. Finally, we elaborate the implementation of PASK atop of
open source inference engine and DL primitive library (section III-D).

Interleaved Execution
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Fig. 5. Design overview. PASK receives the lowered model (a sequence of n
solutions) as input, and then proactively parses, loads, issues the DNN layer to
improve the GPU utilization via interleaved execution. Upon absent solution,
PASK seeks the opportunities to reuse the loaded solutions and organizes
them based on their patterns for efficient applicability checking.

A. Proactively Interleaved Execution

We introduce the interleaved execution to cope with the the
inefficient execution hindered by the reactive launch and lazy loading
pattern mentioned in section II-A. During parsing layers in DNN
computation graph, PASK spawns two extra host threads to handle
code loading and kernel issuing, respectively (Fig. 5). For a layer
i, once it gets parsed (Pi, de-serialize the framework-specific model
file to obtain the determined solution), the loading thread immediately
starts to load the code objects of the desired solution (Li). Once fin-
ish, the loading thread notifies the issuing thread to issue the kernels
of the loaded solution (Ii) and execute them on GPU (Ei). This
proactive design loads the necessary code objects in advance (once
the parse finishes), therefore launches of the corresponding kernels
incur no loading overhead. Besides, PASK starts the kernels at the
earliest feasible time right after the loading. For comparison, current
reactive serving frameworks start to launch the solutions only after all
layers are parsed, and load the absent code objects on demand during
launch. PASK mitigates the inefficiency with proactive interleaved
execution, thereby achieving higher GPU utilization than traditional
reactive inference engines.

As the DNN layer parsing is much faster than the code loading
and execution, there will be a layer m where all the n layers are
parsed and all preceding layers, including m, have finished their
executions on GPUs (Fig. 5). We denote layer m as the milestone
where PASK unconditionally loads the missing solutions into cache
set Sm before m and selectively reuses the cached solutions after
m. Note the minimal duration of a model execution is no less than
the parsing process, hence there are free time slots for PASK to load
before m solutions, which act as cached alternatives for the selective
reuse in subsequent layers.

B. Selective Solution Reuse

After the milestone layer m, PASK quickens the execution of
the remaining layers by avoiding unnecessary solution loads with
selective adoption of cached solution. Algorithm 1 lists the solution
reusing procedure where the EXECUTIONPLAN function describes
the layer-wise reuse decision procedure. When the target solution s∗i
(i > m) in layer i is parsed, PASK checks whether the corresponding
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code object has been already loaded. If so, s∗i will be directly used
to complete the computation defined in layer i without incurring any
loading overhead. Otherwise, PASK firstly attempts to acquire the
applicable alternative solution by querying the cached solution set Sm
(section III-C). Once a valid substitutive solution ŝi exists, PASK will
reuse it to accomplish the computation in layer i rather than loading
the original absent solution s∗i from scratch.

If, unfortunately, no valid solution can be found in the cached set
Sm, PASK has no choice but to load the desired solution s∗i .

Algorithm 1 DNN execution with solution reuse
Input:

n: number of layers in the DNN model
m: the milestone layer (section III-A)
Sm: solution cache set at layer m
pi: problem to be solved in layer i
s∗i : statically optimal solution in layer i

1: function EXECUTIONPLAN(S, L, i)
2: for layer i from m+ 1 to n do
3: if s∗i ∈ Sm then ▷ s∗i already loaded
4: compute layer i with s∗i
5: else
6: ŝi ← GETSUBSOLUTION(S, s∗i , pi)
7: if ŝi ̸= null then ▷ reusable solution found
8: run layer i with substitutive solution ŝi
9: else ▷ no applicable solution

10: wait for s∗i loading
11: add s∗i to Sm
12: function GETSUBSOLUTION(S, s∗, p)
13: list ← S[s∗.pattern]
14: for s ∈ list’s most recently used solution do
15: if s.IsApplicable(p) then
16: lru.update(s)
17: return s
18: return null

C. Categorical Solution Cache

In Algorithm 1, PASK queries the solution cache for a loaded
solution to be reused for implementing the operator. As discussed in
section II-B, it is expensive to lookup the applicability with current
problem for every loaded solution in the cache. PASK thus adopts
a categorical solution cache design to effectively find an applicable
solution from all existing loaded ones.

In PASK, the loaded solutions are categorically organized in
separated lists based on their patterns (section II-B). When a solution
is loaded/invoked, it will be inserted/moved to the head of list.
The GETSUBSOLUTION function in Algorithm 1 details how PASK
handles the query for a substitutive solution given the desired solution
s∗ and problem p. It seeks for ŝ from the list with the same pattern
as s∗ in the the most recently accessed (load or lookup) order. If one
applicable solution is found in the categorical list, it is returned and
moved to the list head (Fig. 5). Otherwise, the cache returns null,
indicating there are no applicable solutions for current problem.

PASK adopts this categorical design to minimize the number of
lookups (i.e., solution applicability checking for a problem) when
searching for ŝ. When a specialized solution for problem p is missing,
it is more likely to find a more general one with the same pattern to
solve p (Fig. 4). If there are no applicable solution in one categorical
list, PASK regards the query failed and returns null directly to skip
more lookups for other categories. We search the solutions in the
recent access order similar to the LRU cache, as the neighboring
layers in DNN models usually possess similar problem descriptions.
Therefore, recently used solutions are more likely to be applicable to
current problem.

D. Implementation

We implement PASK on the basis of the open source inference
engine MIGraphX [45] and DL primitive library MIOpen [56] for

TABLE I
EVALUATED DNN MODELS.

Model # Primitive Layers Type Abbr.
AlexNet [1] 5 Img. Rec. alex
VGG16 [2] 16 Img. Rec. vgg
ResNet34 [3] 14 Img. Rec. res
RegNet_Y_800MF [58] 28 Img. Rec. reg
EfficientNet_B7 [4] 58 Img. Rec. eff
Faster_R-CNN [5] 16 Obj. Det. rcnn
SSD300 [59] 27 Obj. Det. ssd
FCN [6] 18 Sem. Seg. fcn
UNet [60] 37 Sem. Seg. unet
VIT_B_16 [7] 1 ViT vit
Swin_B [8] 1 ViT swin
Swin_V2_B [9] 1 ViT swin2

AMD GPUs. PASK acts as a transparent middleware for end users.
We enhance MIGraphX to support the interleaved execution (sec-

tion III-A). MIGraphX abstracts the computation graph by a list
of instructions, which define the DNN operators and their cor-
responding input/output tensors. For interleaved execution, PASK
spawns 3 host threads responsible for parsing, loading and issuing
kernels, respectively (Fig. 5). We leverage single-producer-single-
consumer (SPSC) channels to coordinate the interactions among host
threads in MIGraphX. Instructions are fed to the loading thread
when finishing the parse and leaves for the interleaved execution
in the FIFO order. For each callee kernel of the solution, PASK
invokes hipModuleLoad and hipModuleGetFunction (Fig.
3) to proactively load the target ELF sections from the binary files
and determine location of the desired symbol by the kernel name.

We further augment MIOpen to support the solution reuse and
loading skip in PASK. When the inference framework invokes
miopenRunSolution, PASK follows Algorithm 1 to reuse the
potentially applicable loaded solution for the computation in current
layer. PASK implements the reuse logic for the common convolution,
pooling and activation primitives in MIOpen.

IV. EXPERIMENT SETUP

Testbed. We evaluate PASK in a sever equipped with AMD EPYC
7773X CPU and AMD Instinct MI100 GPU, which possesses 32 GB
VRAM and 120 Compute Units. The DNN inference server is im-
plemented atop of MIGraphX and MIOpen as the graph optimization
engine and DL primitive library backended by ROCm 6.0.2.
Workloads. We collect representative DNN workloads (Table I) from
multiple fields (e.g., image recognition, object detection, seman-
tic segmentation and vision transformer) implemented the PyTorch
model zoo as served models in inference requests, where the vi-
sion transformer models are also used to emulate the transformer-
based language models. Models are exported as ONNX format
from PyTorch under the default configuration and then fed into
MIGraphX for compute graph optimizations, and finally lowered to
the corresponding GPU operations. The number of MIGraphX layers
for each model is also listed in Table I. We follow the common image
settings used in the ImageNet [57] dataset.
Evaluated schemes. To faithfully validate the effectiveness of PASK,
we evaluate the above models under the following schemes:

• Baseline: the default inference workflow used by MIGraphX
inference framework which loads every absent solutions.

• NNV12: the cold start mitigation design in NNV12 [38] to avoid
input/output tensor layout transform.

• Ideal: hot execution of the DNN model, with all the desired
solutions already resident.

• PaSK: full design of PASK, including interleaved execution and
categorical solution cache.

• PaSK-I: PASK with only interleaved execution module being
enabled, no solution reuse mechanism is enabled.
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Fig. 6. (a) End-to-end cold start speedups for evaluated models under different
schemes; (b) GPU utilization (fraction of time when GPU is active for
computing) during model cold start.

• PaSK-R: PASK with solution reusing only, which exhaustively
checks the applicability of every cached solution.

V. RESULTS AND ANALYSIS

A. Cold Start Mitigation

We first investigate the achieved cold start mitigation effect under
different schemes. Fig. 6(a) compares the end-to-end cold start
speedups under Baseline, NNV12, PaSK and Ideal schemes, where
PaSK achieves 5.62× speedups over Baseline. Compared to Baseline,
NNV12 possesses only moderate speedups (3.04×). NNV12 mitigates
the cold start by avoiding tensor layout transforms (e.g., NCHW
→ NHWC) between layers, limiting the optimize opportunities on
specific layers. Furthermore, we can observe that PaSK performs
better on models with more primitive layers (eff, unet, reg and
ssd), as there are more opportunities for PASK to reuse the existing
substitutive solution to replace the absent one to accomplish the
computation. On the other hand, transformer models (vit, swin
and swin2) perceive less end-to-end cold start latency improvement
compared to other convolution-based models. As transformer models
primarily comprise of GEMM operators from the BLAS library, there
is only one primitive layer provided by MIOpen (Table I). Hence,
there are less reuse chances as PASK could be invoked only when
the primitive routine is called.

TABLE II
COLD START SPEEDUP WITH VARYING INFERENCE BATCH SIZES.

Batch Size 1 4 16 64 128
NNV12 3.04× 2.82× 2.49× 1.91× 1.74×
PaSK 5.62× 5.24× 4.55× 3.91× 3.10×
Ideal 7.75× 7.23× 6.94× 6.78× 6.41×

We further demonstrate the cold start improvements with varying
batch size for each inference request in Table II. With enlarged batch
size, GPU is better utilized and the proportion of duration consumed
on code loading is thereby lower. Besides, hot execution is still far
more efficient compared to cold start, while PaSK still outperforms
NNV12 with a large margin (210%).

B. Utilization and Breakdown

To understand the effectiveness of PASK, we adopt the hardware
utilization (the proportion of time when GPU is active relative to
the entire inference duration) as the metric to explain how PASK
boosts the cold start performance of DNN models on GPU. Fig. 6(b)
illustrates the achieved utilization under the various schemes, where
we can capture that the GPU active time accounts for only a few
portion (8.2%) of model execution for NNV12. As the majority of
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Fig. 7. Model cold start breakdown for PaSK.

time is spent on kernel code loading, the cold start latency is several
times higher than the one in hot start. PaSK avoids this substantial
overhead by reusing the applicable solutions from rather than always
loading the missing one, and effectively elevates the utilization to
25.9% on average. For Ideal, since all solutions are already cached,
there is no loading overhead when launching the desired kernels onto
the GPU thus the accomplished utilization is up-to 68.5% on average.

Figure 7 further depicts the breakdowns of times consumed on
different stages during model execution. We compare the ratios of
times spent on GPU computing, solution loading, PASK overhead
and others (e.g., host-device synchronization, model parse). The
portion of time consumed on solution loading (11.2% on average)
is acceptable compared to the cold start execution without dedicated
management (Fig. 1). For transformer models (vit, swin, swin2),
the solution loading proportion is relatively larger than other models,
as the major operations are GEMMs. Moreover, the extra time
incurred by PASK takes only 1.3% of the entire execution on average,
indicating that PASK can efficiently retrieve the applicable alternative
solution with negligible overhead.

C. Ablation Studies and Cache Statistics
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Fig. 8. Normalized performance of variants compared to PaSK.

In this section, we compare PaSK with its variants PaSK-I and
PaSK-R to validate the effectiveness of solution reusing and categori-
cal cache. For PaSK-I, the cold start latency reduction comes from the
interleaved execution. Regarding PaSK-R, it adopts the naive cache
which exhaustively searches all cached solution to find the optimal
one, suffering from spending too much time in the applicability
checking which is time-costly (section II-B). Fig. 8 illustrates the
achieved proportional performance normalized to PaSK. For models
perform worse in PaSK-I (alex, vgg, unet), we find the GPU
execution durations before the milestone layer are short, thus there
are less opportunities for PaSK-I to overlap the loading and execution
process in these models. And we can only observe nuances of
performance for transformer models, as they contain only one DL
primitive operator (Table I) thereby possess few reuse opportunities.

To further investigate the impact of categorical cache, we collect
the cache statistics during cold start. The cache hit rate describes
the averaged possibility of successfully finding a applicable solution
following the GETSUBSOLUTION routine in Algorithm 1. Fig. 9(a)
shows the hit rate of categorical cache in PASK across models (69.7%
on average) where transformer models are omitted as they contain
only one primitive operator. We can capture that models comprising
of more operators possess higher hit rates, as there are more chances
for PASK to load the desired solution into the categorical cache
following Algorithm 1. For subsequent queries, it is more likely to
find a applicable solution in a cache with more entries.

Fig. 9(b) presents the averaged number of lookups per query (i.e.,
number of solutions whose applicability are checked), where the
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Fig. 9. Cache hit rate and averaged number of solution lookups for each hit.

categorical organization only uses 1.22 lookups per query while the
naive searching requires 1.89 on average. As introduced in section
II-B, checking the solution’s applicability for a given problem is
time-costly. Therefore, the naive solution searching strategy may
result in severe performance downgrade due to enormous applicable
checking overhead. It can be drawn from Fig. 9(b) that models with
more lookups in the naive cache (eff, unet, res, rcnn) suffer
from more pronounced performance downgrade in PaSK-R in Fig. 8.
And the categorical organization in PASK can effectively reduce the
number of required lookups per query, thus further boost the achieved
performance.

VI. DISCUSSIONS

Library supporting. As discussed earlier, the vision transformer
models (vit, swin, swin2) possess less performance boosts from
PASK because the major computation is matrix multiplication in
the attention module [61]. Currently PASK is implemented atop
of MIOpen, which contains the primitive operations used in DNN
models (e.g., convolution, pooling), while the GEMM kernels are
provided by the BLAS library (e.g., hipBLAS). Therefore, PASK can
only identify and reuse a small portion of layers in the transformer
models and offers limited cold start latency reduction for them. Note
that it is trivial to extend PASK to support GEMM operators and
accommodate with transformer models if more engineering efforts
can be devoted to apply the similar modifications to hipBLAS. As
hipBLAS and other vendor libraries (e.g. hipSPARSE [62] for sparse
operators in GPU) following the same find-execution pattern (Fig. 3).
More factors for kernel specialization. Furthermore, PASK could
be combined with other mechanisms by considering more factors.
For instance, recent researches [63], [64] leverage the mix-precision
components integrated in accelerators [65] to speedup the inference
since DNN models usually have better tolerance on significance loss
and numeric error. As the DNN operators are also specialized for
tensor data types (fp16, int8), one may choose to still use high-
precision data types if the corresponding kernels are already loaded
while the low-precision ones are not. This offers the opportunities to
accelerate the inference with high-precision computation by avoiding
the overhead to load the absent kernels tailored for low-precision data
types, even though the latter provide better performance on GPU.
PASK can be generalized and applied to scenarios where the GPU
kernels are specialized for some factors like input/output layout, data
type, tensor tile size.
Loading desired solutions. Although PASK selectively skips the
originally desired solutions to avoid the loading overhead, one can
still load the skipped solutions during the intervals between two
consecutive inference requests. Based on cloud workload traces [66],
there are several seconds on average between the interval of two
requests scheduled into the same inference instance. The interval
duration is sufficient for PASK to proactively load the previously
skipped solutions into the managed cache. Synergistically, they can
act the candidates for reuse, or the desired solution which are already
loaded for subsequent requests.

VII. RELATED WORKS

A. Cold Start Mitigation of DNN Models

Mitigating the cold start of DNN model has become the research
appetite in recent years. Optimus [29] tackles the ML serverless
container cold start problem by proposing the inter-function model
transform approach which reuses operators from models of idle
containers to compose the target model. Tetris [20] improves the
serverless DNN inference latency and system container density via
reusing duplicated tensors across instances. Pagurus [41] designs the
algorithm to calculate the software dependency similarities between
containers and then harness the idle container to build the inter-
mediate image ready for helping to start the container rather than
building from scratch. NNV12 [38] selectively loads the transformed
weights in advance to avoid the tensor layout interchange overhead,
and distributes the load and computation to different hardware units
on edge/mobile devices.

These existing works share the container [29], [37], [41], service
runtime [30], or model weights [20] among models. However, DNN
models monolithic and cannot be transformed separately. Hence,
some extra steps are needed to transform the shared resources to ac-
commodate with the target model (e.g., modify the structure of warm
models [29]). There are also general cold start mitigation approaches
designed for cold microservice or serverless environments [37], [41],
[67]–[70], but they fail to investigate the inference workflow and
propose dedicated optimizations for DNN model invocations.

B. DNN Inference Optimizations

As the new computing paradigms thrive in recent years, cold start
mitigation approaches have been proposed for preemptive spot [31],
[33], [35], [41] computing and serverless computing [37]. For DNN
model inference services under these two circumstances, the cold start
process is inevitable as the serving instance has to be migrated across
instances, or spawned in a new environment to satisfy the resource
demands. PASK can be further integrated into the spot serving and
serverless frameworks to mitigate the cold start issues with dedicated
kernel loading management.

To harness the GPU capability for accelerating DNN computa-
tion, performance experts attempt to optimize operator graphs and
model workflows to alleviate the memory bandwidth bottlenecks.
TASO [25], Rammer [26], Cocktailer [27] and MonoNN [40] are
graph transformation methods applying the intra- and inter-operator
optimizations for the better hardware utilization. However, these
approaches solely consider the kernel efficiency on GPU, and ignore
the overhead of loading the multifarious generated kernels. PASK can
be used to enhance these methods by assisting with some runtime
information (e.g., the loaded kernels) to generate a more efficient
execution plan for cold models.

VIII. CONCLUSION

In this work, we investigate the DNN model inference procedure
and attribute cold start latency to the reactive scheduling strategy and
kernel loading overhead. In order to mitigate the cold start latency, we
propose PASK, a transparent middleware to schedule model kernels
in a proactive strategy, and seek the opportunities to reuse existing
loaded solutions organized categorically. We implement PASK on
basis of the open source inference framework and primitive library
and evaluate PASK with several popular DNN models. Detailed
experiments demonstrate that PASK can effectively alleviate the
cold start overhead for DNN model inference with 5.62× speedups
compared to the default workflow used by the inference frameworks.
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