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ABSTRACT
Scaling DRAM below 20nm has become a major challenge
due to intrinsic limitations in the structure of a bit cell. Fu-
ture DRAM chips are likely to suffer from significant varia-
tions and degraded timings, such as taking much more time
to restore cell data after read and write access.

In this paper, we propose restore truncation (RT), a low-
cost restore strategy to improve performance of DRAM mod-
ules that adopt relaxed restore timing. After an access, RT
restores a bit cell’s voltage only to the level required to per-
sist data to the next scheduled refresh rather than to the de-
fault full voltage. Because restore time is shortened, the
performance of the cell is improved under process varia-
tions. We devise two schemes to balance performance, en-
ergy consumption, and hardware overhead. We simulate our
proposed RT schemes and compare them with the state of
the art. Experimental results show that, on average, RT im-
proves performance by 19.5% and reduces energy consump-
tion by 17%.

1. INTRODUCTION
Modern computer systems have increasing demand for

more memory capacity due to the proliferation of chip mul-
tiprocessors for high performance, graphic and cloud appli-
cations. DRAM scaling, although was the primary driver be-
hind capacity improvement in past decades, has now become
a major obstacle for the semiconductor industry as technol-
ogy node sizes reach 20nm and below [47, 41, 43].

As DRAM is scaled down, the capacitor used in a bit cell
becomes smaller and holds less charge [40, 18]. Similarly,
the access transistor decreases in size with weaker drivabil-
ity. In addition, scaling DRAM in sub-micron regimes suf-
fers from significant process variations [38, 6, 26], i.e., cell
behaviors will be more statistical instead of deterministic
[13]. Cells with less stored charge and induced drain leak-
age [43] causes more leaky cells in one chip which needs
frequent refreshes to prevent data loss. With lower transistor
drivability, it takes more time to charge a DRAM cell [40,
48]. The timing of these operations, referred to as refresh
and restore, respectively, in the literature, are expected to
degrade in order to maintain high chip yield [26, 56].

Due to its importance, DRAM scaling has been a focus
of many recent studies. Nair et al. proposed ArchShield
that is capable of rescuing 100× more weak cells in future
DRAM chips [43]. One application of ArchShield is to re-
duce chip refresh rate for energy saving. For DRAM restore,

Kang et al. identified a significant performance impact of
degraded restore timing [26]. Zhang et al. constructed fast
logic rows by remapping row segments in different chips
on a DIMM [56]. MCR [14] is a recently proposed scheme
that shares similarity with the schemes proposed in this pa-
per. MCR combines several rows to achieve timing benefits,
with a tradeoff of significant capacity reduction. We com-
pare to these schemes in the experiment section. In addition,
schemes have also been proposed to reduce sensing time [15,
49, 55, 14, 46, 34, 9] and refresh overhead [17, 50, 42, 10,
40, 36, 6, 8].

In this paper, we describe schemes to improve performance
of DRAM which has longer restore timing due to further
scaling. Based on the observation that a cell leaks charge
monotonically, it is often unnecessary to fully charge a row
after a read or write operation. Instead, it is safe to terminate
the restore operation once the cells in this row have more
charge than what they have under natural decay, i.e., when
the row is not accessed between two refresh commands sent
to the row. We call this process restore truncation (RT). Us-
ing this observation, we present two RT schemes that make
tradeoffs in performance, energy, and hardware overhead.

The contributions of this paper are:
1. We observe that it is beneficial to truncate restore for

performance improvement. We first propose RT-next
that truncates a restore based on the time distance to
the next refresh. RT-next is conservative for the worst
case scenario and compatible with DRAM modules that
use multi-rate refresh.

2. We propose RT-select to better integrate refresh and
restore. By increasing the refresh rate of recently ac-
cessed rows, RT-select exposes more truncation op-
portunities while minimizing performance and energy
overheads of extra refresh operations.

3. We evaluate RT-next and RT-select and compare
them to the state of the art. The results show that on
average, RT improves performance by 19.5% and re-
duces energy consumption by 17%.

The rest of the paper is organized as follows: Section 2 dis-
cusses DRAM background. Section 3 motivates the RT de-
sign and explains the two RT schemes. Section 4 presents
the models used in this work. Sections 5 to 7 present the
experimental methodology, analyze the results and perform
sensitivity study, respectively. We discuss related work in
Section 8 and conclude the paper in Section 9.
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2. BACKGROUND

2.1 DRAM Basics
DRAM has been widely adopted to construct main mem-

ory for decades. A DRAM cell consists of one capacitor and
one access transistor. The cell represents bit ‘1’ or ‘0’ de-
pending on if the capacitor is fully charged 1 or discharged.

DRAM supports three types of accesses — read, write,
and refresh. An on-chip memory controller (MC) decom-
poses each access into a series of commands sent to DRAM
modules, such as ACT (Activate), RD (Read), WR (Write) and
PRE (Precharge). A DRAM module responds passively to
commands, e.g., ACT destructively latches the specified row
into the row buffer through charge sharing, and then restores
2 the charge in each bit cell of the row; WR overwrites data in
the row buffer and then updates (restores) the values into a
row’s cells. All commands are sent to the device following
predefined timing constraints in the DDRx standard, such as
tRCD, tRAS and tWR [21, 22]. Figure 1 shows the commands
and their typical timing parameter values [22, 5].

tRCD (13.75ns) tRP (13.75ns) 

ACT RD PRE 

tCAS (13.75ns) 

tRAS (35ns) 

tRC (48.75ns) 

(a) Read access

tRCD (13.75ns) tRP (13.75ns) tCWD (7.5ns) tBURST 

ACT WR PRE First data  
onto bus 

tWR (15ns) 

Write 
Recovery 

(b) Write access

Figure 1: Commands involved in DRAM accesses.

2.2 DRAM Restore and Refresh
DRAM Restore. Restore operations are needed to ser-

vice either read or write requests, as shown by the shaded
portions in Figure 1. For reads, a restore reinstates the charge
destroyed by accessing a row. For writes, a restore updates a
row with new data values.

DRAM Refresh. DRAM needs to be refreshed period-
ically to prevent data loss. According to JEDEC [22], 8K
all-bank auto-refresh (REF) commands are sent to all DRAM
devices in a rank within one retention time interval (Tret),
also called as one refresh window (tREFW) [7, 40, 10], typi-
cally 64ms for DDRx. The gap between two REF commands
is termed as refresh interval (tREFI), whose typical value
is 7.8µs, i.e. 64ms/8K. If a DRAM device has more than
8K rows, rows are grouped into 8K refresh bins. One REF
command is used to refresh multiple rows in a bin. An in-
ternal counter in each DRAM device tracks the designated
rows to be refreshed upon receiving REF. The refresh oper-
ation takes tRFC to complete, which proportionally depends
on the number of rows in the bin.
1In this paper, a cell is considered as fully charged if its voltage
reaches 0.975Vdd [16]. Our proposed schemes are applicable if a
cell needs to reach Vdd to be fully charged.
2Restore is performed concurrently wth data read [21].

The refresh rate of one bin is determined by the leakiest
cell in the bin. Liu et al. [36] reported that fewer than 1000
cells require a refresh window shorter than 256ms in a 32GB
DRAM main memory. Given that the majority of rows have
retention time longer than 64ms, it is beneficial to enable
multi-rate refresh, i.e., different bins are refreshed at differ-
ent rates. For discussion purpose, a DRAM cell/row/bin that
is refreshed at 256ms is referred to as a 256ms-cell/row/bin,
respectively.

We adopt the flexible auto-refresh mechanism from [8] to
support multi-rate refresh, i.e., 8K refresh commands are
sent every 64ms — one for each bin. If a bin needs to be
refreshed every 256ms, flexible auto-refresh sends four REF
commands in 256ms to this bin. However, only one is a real
refresh while the other three are dummy ones that only in-
crement the refresh counter. We assume that the memory
controller knows the mapping between bin address and row
address, the same as that in [8], and similar to [31].

3. RESTORE TRUNCATION
In this section, we first motivate why it is useful to par-

tially charge (restore) a cell by truncating restore operations.
We then describe design details of two restore truncation
schemes: RT-next and RT-select.

3.1 Motivation
Scaling DRAM to 20nm and below faces significant man-

ufacturing difficulties: cells become slow and leaky [48, 53]
and exhibit a larger range of behavior due to process vari-
ation (i.e., there is a lengthening of the tail portion of the
distribution of cell timing and leakage) [26, 56, 40].
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Figure 2: Access latency and execution time increase due
to relaxed restore timing. Baseline adopts standard timing
constraints in specifications.

As bit cell size is reduced, the supply voltage Vdd also
reduces, causing cells to be leakier and store less charge
[40]. For instance, DDR3 commonly uses 1.5V Vdd , while
DDR4 at 20nm uses 1.2V [2, 40]. Performance oriented
DRAM enhancements, such as high-aspect ratio cell capac-
itors [26, 40], often worsen the situation. DRAM scaling
also increases noise along bitline and sensing amplifier [40,
45, 33], which leads to longer sensing time. Scaling also
degrades DRAM restore operation due to smaller transistor
size, lower drivability and larger resistance [26, 56, 48, 53].

The growing number of slow and leaky cells has a large
impact on system performance. There are three general strate-
gies to address this challenge:

• The first choice is to keep conventional hard timing
constraints for DRAM, which makes it challenging to



Table 1: Adjusted restore timing values in RT-next (using the model in Section 4)
sub-window Distance to next refresh Target restore tRAS tWR tRCD

64ms-row 128ms-row 256 ms-row voltage (Vdd) (DRAM cycles)
1st [64ms, 48ms) [128ms, 96ms) [256ms, 192ms) 0.975 42 25 15
2nd [48ms, 32ms) [96ms, 64ms) [192ms, 128ms) 0.92 27 18 15
3rd [32ms, 16ms) [64ms, 32ms) [128ms, 64ms) 0.86 21 14 15
4th [16ms, 0ms) [32ms, 0ms) [64ms, 0ms) 0.80 18 11 15

No Truncation 0.975 42 25 15

handle slow and leaky cells. Cells that fall outside of
guardbands could be filtered (not used). With scaling,
however, this approach can incur worse chip yield and
higher manufacturing cost. Because the DRAM in-
dustry operates in an environment of exceedingly tight
profit margins, reducing chip yield for commodity de-
vices is unlikely to be preferred.
• A second choice is to expose weak cells, falling out-

side guardbands, and integrate strong yet complex er-
ror correction schemes, e.g., ArchShield [43]. Due
to the large number of cells that violate conventional
timing constraints such as tRCD, tWR, significant space
and performance overheads are expected.
• A third choice is to relax timing constraints [26, 56].

This approach is compelling because it can maintain
high chip yield at extreme technology sizes. However,
relaxing timing, without careful management, can cause
large performance penalties, as shown in Figure 2 (see
Section 5 for experimental details). On average, we ob-
served 23.8% longer memory access latency and 13.6%
longer execution time.

Because the third choice is compatible with the need for high
chip density and yield, we adopt it in this paper. We relax
restore timing and strive to mitigate associated performance
degradation. Our design principle is also applicable to the
second strategy if exposed errors can be well managed. We
leave this possibility to future work.

Partial restore. Due to intrinsic leakage, the voltage level
of a DRAM cell reduces monotonically after a full restore.
The solid curve in Figure 3 illustrates the voltage decay of
an untouched cell (i.e., not accessed) within one refresh win-
dow. Stored data is safe as long as the voltage remains above
Vmin (0.73Vdd here, discussed in Section 4) before the next
refresh. If a read or write access occurs, the post-access re-
store operation fully charges the cell by default, as shown
in the figure. However, the full charge is often unnecessary
if the access is close in time to the next refresh, which will
fully restore the cell anyway.

Based on this observation, we propose that post-access
restore partially charges a cell’s voltage to the level that the
cell would have if the cell had been untouched in one refresh
window. The restore operation is truncated when this target
voltage level is reached.

The cell charging curve starts with a deep slope and flat-
tens when approaching V f ull [34, 16], as shown in SPICE
modeling and simulation results in Section 4. Hence, reduc-
ing target voltage can drastically shorten restore time. For
example, SPICE modeling indicates that restoring a cell’s
charge to 0.89Vdd rather than 0.975Vdd (fully charged) re-
duces tWR from 25 to 15 DRAM cycles, i.e., a 40% reduc-

Vmin

Vfull

Cell 
Voltage

Timerefresh refreshRd  a Rd  b 

voltage level if the 
cell is not accessed voltage level with 

post-access restore

Figure 3: DRAM cell voltage is fully restored by either re-
fresh commands or memory accesses. (V f ull indicates fully
charged; Vmin is the minimal voltage to avoid data loss).

tion.
We next describe two schemes, RT-next and RT-select,

to enable partial restore. These schemes are applied by the
memory controller.

3.2 RT-next: Refresh-aware Truncation
RT-next truncates a long restore operation according to

the time distance to its next refresh. The sooner the next
refresh is, the less charge the cells in the row need, and the
earlier the restore operation can be terminated.
RT-next works as follows. We partition one refresh win-

dow into multiple sub-windows. While accesses falling in
different sub-windows use different sets of timing parameter
values, those falling in the same sub-window use the same
set of values. In the following, we use four sub-windows to
discuss our proposed schemes — Table 1 lists the adjusted
timing values for the device that we model in this paper. The
smaller the timing values are, the larger truncation oppor-
tunity the truncation has. While distinguishing more sub-
windows provides finer-grained control and the potential to
exploit more truncation benefits, it complicates the control
and provide little further benefits as shown in our experi-
ments.

When servicing a read or write access, RT-next uses the
following formula to calculate the time distance to the next
refresh command and determine the sub-window that the ac-
cess falls in. It then truncates its restore operation using the
adjusted timing parameters, e.g., the right most columns in
Table 1.

Distance = ((8192+Binc−Bina)%8192+1)× 64ms
8192

(1)

where Binc is the last bin that was refreshed; Bina is the
refresh bin to which the row being accessed belongs. In
multi-rate scenario, the calculation is adjusted to include the
further 64ms refresh rounds, which will be discussed later.



The above calculation needs the mapping from row ad-
dress to bin address. While the bin counter is maintained
in the memory controller and incremented sequentially, the
actual row addresses (responding to each bin-refresh com-
mand) are generated internally inside DDRx devices [22,
23]. This mapping may be non-linear because of vendor’s
full flexibility to implement the refresh. Recent studies [8,
31] assume this mapping can be made known to the memory
controller. We make the same assumption in this paper.

Vmin

Vfull

Timerefresh refresh
Rd  a 

approximate restore curve

voltage decay curve

Rd  b Rd  c 

Cell 
Voltage

Figure 4: RT-next safely truncates restore operation.

The memory controller also needs to consider the page
policy (open or close). A restore is truncated by a PRE com-
mand from the memory controller. For a closed-page policy,
every access can potentially benefit from restore truncation.
For an open-page policy, truncating restore of a preceding
access may not beneficial if its following access is a row
buffer hit. We evaluate both policies in the experiments.

To adapt to cell variations within a DRAM row, RT-next
takes a conservative approach, as illustrated in Figure 4. In
the example, reads ’a’, ’b’, and ’c’ are serviced in the
first, the second, and the fourth sub-windows, respectively.

• RT-next assumes the worst case scenario, i.e., the cur-
rently accessed row has weak cells that barely meet
timing constraints and these weak cells are leaky enough
that their voltage levels are reduced to Vmin before the
next refresh. The weak cells are difficult to restore be-
cause fully charging them requires long latency. The
adjusted restore timings in Table 1 ensure that slow and
leaky cells can accumulate charge more than what they
have under natural decay, i.e., they are not accessed in
one refresh window.
• RT-next restores to the target level at the beginning

of each sub-window. In particular, while it is possi-
ble to partially restore an accessed row in the first sub-
window, e.g., read ’a’ in Figure 4, RT-next conserva-
tively fully restores the row, i.e., with no truncation.
• Due to a slightly faster rate of leakage at higher volt-

age (as shown in Section 4), a DRAM cell has an expo-
nential decay curve that is close but always below the
linear line between V f ull and Vmin in Figure 4. This
curve varies from row to row, which implies that dif-
ferent restore timing values are needed. To simplify the
control in memory controller, RT-next conservatively
sets up the voltage restore targets, at the beginning of
each sub-window, as the voltage levels on the linear

line, rather than on the curve. This allows RT-next to
use the same timing parameters for all rows.

Time

Vmin

Vfull

refresh refresh refresh refresh

Cell 
Voltage

restore curve of 
a 64ms-row

restore curve of 
a 256ms-row

Figure 5: Restoring voltage according to linear line simpli-
fies timing control in multi-rate refresh — a 64ms-row and a
256ms-row share the same timing values in each correspond
sub-window.

RT-next in multi-rate refresh. Applying RT-next in a
multi-rate refresh environment works similar to the case that
has only one rate. To calculate the distance between a mem-
ory access and the next refresh to its bin, RT-next uses the
same formula except adding the extra refresh rounds for low
rate, i.e., 128/256ms, bins. Here we assume the underlying
multi-rate refresh scheme has profiled and tagged each bin
with its best refresh rate, e.g., 64ms, 128ms, or 256ms.

As shown in Figure 5, it simplifies the timing control in
memory controller by restoring a cell’s post-access voltage
according to the linear line between V f ull and Vmin (rather
than the exponential decay curve). Given a 64ms-row and a
256ms-row, accesses falling in the same corresponding sub-
window can use the same timing values in Table 1.

3.3 RT-select: Proactive Refresh Rate Upgrade
We next present RT-select, a scheme that upgrades re-

fresh rate for more truncation opportunities. Refresh and re-
store are two correlated operations that determine the charge
in a cell. Less frequently refreshed bins can be exploited to
further shorten the post-access restore time.

Figure 6 illustrates the benefit of refreshing a 256ms-row
(in multi-rate refresh) at 128ms rate. Given that this row is
a 256ms-row, its voltage level decreases to Vmin after 256ms.
As shown in Figure 6(a), the refresh commands sent at +64ms,
+128ms, and +192ms marks are dummy ones. The access
“Rd” appears in the 2nd sub-window; it has a distance within
[192ms, 128ms) to the next refresh command. According to
RT-next, the restore can be truncated after reaching 0.92Vdd
(using the 256ms-row column in Table 1).

Now, suppose the dummy refresh at +128ms is converted
to a real refresh, i.e., the row is “upgraded” to a 128ms-row.
With this earlier refresh, the access ”Rd” is at most 64ms
away from the next refresh. Using the 128ms-row column
in the timing adjustment table, RT-next can truncate the re-
store after it reaches 0.86Vdd , achieving significant timing
reduction for the restore operation (Figure 6(b)).

Refreshing a 256ms-row at 128ms rate exposes more trun-
cation benefits, as shown in Figure 6(c). For access "Rd”,
it is sufficient to restore the voltage to 0.80Vdd rather than
0.86Vdd in above discussion. This is because a 256ms-row,
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(a) the voltage target of a 256ms-row
+256ms+1280ms

real 256ms
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Figure 6: The voltage target can be reduced if a strong row is refreshed at higher rate.

even if being refreshed at 128ms rate, leaks slower than a
real 128ms-row. We can adjust the timing values by follow-
ing the solid thick line in 6(c), rather than the dashed thick
line from a real 128ms-row, as shown in 6(b). In particular,
as summarized in Table 2, a row access, even if it is 128ms
away from the next refresh to the row, just needs to restore
the row to 0.86Vdd , rather than V f ull (=0.975Vdd) for a real
128ms-row.

Table 2: Adjusted restore timing values in RT-select

Upgrade Distance to Next Target restore tRAS tWR tRCD
refresh voltage (Vdd) (DRAM cycles)

256ms->128ms [128ms, 64ms) 0.86 21 14 15
[64ms, 0ms) 0.80 18 11 15

256ms->64ms [64ms, 0ms) 0.80 18 11 15
128ms->64ms [64ms, 32ms) 0.86 21 14 15

[32ms, 0ms) 0.80 18 11 15

RT-select scheme. While upgrading refresh rate reduces
restore time, it generates more real refresh commands, which
not only prolongs memory unavailable period but also con-
sumes more refresh energy. Previous work shows that re-
fresh may consume over 20% of the total memory energy
for a 32Gb DRAM device [7, 36]. Blindly upgrading the
refresh rate of all rows is thus not desirable.
RT-select upgrades the refresh rate of selected bins, those

were touched, for one refresh window. It works as follows.
A 3-bit rate flag is attached to each refresh bin to support
multi-rate refresh. When there is a need to upgrade, e.g.,
from 256ms to 128ms rate, RT-select updates the rate flag
as shown in Section 3.5, which converts the dummy refresh
at +128ms in Figure 6. A real refresh command rolls the rate
back to its original rate, i.e., RT-select only upgrades the
touched bin for one refresh window, which incurs modest
refreshing overhead to the system.

3.4 Discussion
Restore truncation (RT) is an orthogonal design to the state

of the art DRAM enhancements. We have discussed how to
support multi-rate refresh [8, 36]. As another example, NUAT
[46] reduces tRCD/tRAS timings by exploiting the potential
between Vmin and the voltage of a cell under natural decay.
RT restores a cell’s post-access voltage to no less than this
level and thus is fully compatible with NUAT.
RT also works with strong error correction (e.g., ArchShield

[43]) and the recently proposed restore time mitigation scheme
[56]. As shown in experiments, these schemes improve per-

formance close to the one with no timing degradation. RT
can be integrated with these designs.
RT does not take advantage of thermal impact on restore

timing. The timing parameters used in the paper ensure
reliable operation in the chip’s recommended temperature
range. Additional truncation opportunities may be exploited
if thermal behavior is considered.

Recent studies revealed the complication in profiling the
retention time of DRAM modules, which comes from two
phenomena: data pattern dependence (DPD) and variable
retention time (VRT) [35, 40]. DPD can be alleviated by
repeated testing and ECC protection. VRT can be allevi-
ated by enhancing profiling through ECC and guardbanding
techniques [29, 44]. Our study works in conjunction with
existing profiling techniques on these issues.

3.5 Architecture Enhancements
To enable RT-next and RT-select, we enhance the mem-

ory controller, as shown in Figure 7. RT adds a truncation
controller, to adjust the timing for read, write, and refresh
accesses. This control is similar to past schemes that change
timings [15, 49, 46]. The memory controller has a register
that records the next bin to be refreshed, referred to as Binc,
which rolls over every 64ms. It can also infer the mapping
from row address to refresh bin, the same as that in [8, 31].

Table 3: Refresh rate adjustment table
Profiled refresh rate Rate flag Flag after rate upgrade
64ms 000 n/a
128ms 01A 128→64ms: 010
256ms 1BC 256→128ms: 1BC⊕0B0

256→64ms: 100

To support multi-rate refresh, the memory controller keeps
a small table that uses 3 bits to record the refresh rate of each
refresh bin, similar to that in [36, 8]. As shown in Table 3,
a 64ms-/128ms-/256ms- bin is set as ‘000’/‘01A’/‘1BC’, re-
spectively. Here ‘A’ and ‘BC’ are initialized to ones and
decrement every 64ms. While the refresh bin counter incre-
ments every in 7.8µs(=64ms/8K), a real REF command is
sent to refresh the corresponding bin only if its bin flag is
‘000’, ‘010’, or ‘100’. ‘A’ and ‘BC’ are changed back to ‘1’
and ‘11’ afterwards, respectively.

When upgrading the refresh rate of a refresh bin, we up-
date the rate flag according to the last column in Table 3.
For example, when upgrading a 128ms-bin to 64ms rate, we



set the rate flag as ‘010’, which triggers the refresh in the
next 64ms duration and roll back to ‘011’ afterwards. This
effectively upgrades for one round. Upgrading 256ms-row
to 128ms rate sets the flag as ‘1BC⊕0B0’, which always
sets the middle bit to zero to ensure that the refresh distance
is never beyond 128ms, and thus the sub-window can only
be 3rd and 4th referring to Table 1. In general, the dis-
tance calculation in RT-select is adjusted by adding value
in Equation (1) with the further refresh rounds indicated by
the two least significant bits (LSB) of rate flag.

……
DIMMs

address
read/write

timing controller

RT
Controller

refresh controller

Onchip Memory Controller

Multi-rate 
refresh flags

dummy or real 
refresh commands

Figure 7: The RT architecture (the shaded boxes are added
components).

To enable multi-rate refresh, the rate table is accessed
before each refresh to determine if a real or dummy com-
mand should be sent. To enable RT-select, the rate table
is also accessed before each memory access to decide the
refresh distance, and then to complete the upgrade after the
access. The extra energy and latency overheads are minimal,
as shown in Section 6.4.

4. MODELING DETAILS
In this section, we present the details of modeling DRAM

that are the underpinning of our RT schemes, including sens-
ing delay, restore time, and retention time.

4.1 Voltage Drop
The stored charge in a DRAM cell capacitor leaks over

time through its access transistor. The leakage current Ileak
is mainly sub-threshold leakage [12, 24], and it is exponen-
tially relates to Vcell , which indicates that the cell voltage
drops following an exponential curve.

0 16 32 48 64
time(ms)

0.7

1.0

V
ce

ll(
V
d
d
)

0.73

0.975

0.73

0.975

SPICE Decay Approximate Restore

Figure 8: SPICE modeling of cell voltage drop. SPICE De-
cay is the exponential curve from SPICE simulation; Ap-
proximate Restore is a linear line from V f ull to Vmin,
which is exploited to set up restore voltage targets in each
refresh sub-windows.

We further built a SPICE model and reported the cell volt-

age drop within a normal refresh window in Figure 8, which
confirms the exponential decay.

4.2 Retention Time and Refresh
The amount of time that a DRAM cell can safely retain

data is defined as retention time, Tret , which is determined
by the magnitude of the leakage current and the total charge
that is allowed to lose [19, 32, 51]. Following previous
work [6, 32], we define Tret as the time until the capacitor
charge/voltage leaks to the minimum sustainable value (i.e.,
(0.975−0.73)Vdd , which is more conservative than the 60%
maximum lose used in [6, 32]). Tret can be denoted as

Tret =
(Vcell−Vf )× Ccell

Ileak
=

(Vcell−0.73Vdd)× Ccell

Ileak
(2)

where, Ileak is the leakage current, and Vf is the minimum
readable stored voltage, which is 0.73Vdd .
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(a) Current technology

10-2 10-1 100 101 102 103
Retention time (s)

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

Pr
ob

ab
ili
ty
 d
en

si
ty

pdf

cdf

(b) Future technology

Figure 9: Tret trend as DRAM scales down. [30, 36]

We modeled DRAM retention time distribution based on
[30, 36, 43], and reported the the results of current and future
technologies as shown in Figure 9.

Similar to prior works [36, 8, 54], leaky cells are randomly
distributed throughout DRAM. We derive the weak row dis-
tribution by converting the weak cell failure probability into
failure row probability.

Our modeling results show that (i) while cells are becom-
ing more leaky, the number of cells and rows that have less
than 64ms retention time is still very small, which can be
corrected by enhanced error rescue schemes, like ArchShield
[43]. Hence, refreshing all DRAM chip rows per 64ms is
sufficient to prevent data loss. (ii) The retention timing for
cells in current commodity DRAM chips is conservative,
which inspired designs to tighten timing for performance im-
provement [9, 34]. The opportunity is diminishing in future
chips as more cells become leaky.

4.3 Sensing and Restoring Time
DRAM scaling has negative impact on sensing and restore

time. DRAM cell is read out by sensing the voltage differ-
ence on bit line after charge sharing. The difference is given
by the expression[28, 25, 33]:

∆VBL =
(Vcell−VBL)×Ccell

CBL +Ccell
(3)

where ∆VBL is the small voltage increase on bitline, and CBL
(VBL) and Ccell (Vcell) are the capacitance (voltage) of bitline
and cell, respectively. However, offset noise [40, 35] weak-
ens ∆VBL [18], which might lead to read failure. To correctly
read the cell content, the effective signal is required to be



larger than zero:

∆Ve f f ective = ∆VBL−∆Vnoise > 0 (4)

The noise voltage of existing DRAM [46, 34, 52] is con-
servatively set to 25mV as shown in [18]. For further scal-
ing, a smaller Vdd of 1.0V is used referring to [47, 20]. In
this paper, we make a conservative assumption that doubles
the existing offset value of 25mV to 50mV, which indicates
a 0.73Vdd minimum cell voltage following Equations (3) and
(4).

DRAM restore time is degraded due to deceasing tran-
sistor drivability. While tWR has been kept at 15ns across
generations, it is challenging to continue this value for sub-
20nm technologies [26]. We followed [56] to obtain the dis-
tribution of tRAS and tWR, where extremely slow cells/rows
are rescued by existing redundancy techniques.
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Figure 10: SPICE modeling on tRCD and tRAS. jedec fol-
lows the JEDEC specification and scale meets the pro-
jected values. tRCD ends at 0.75Vdd [46, 34], and tRAS
completes at 0.975Vdd .

We built core circuits for a DRAM array, including cell,
sense amplifier, write driver and column mux, etc, and simu-
lated them in SPICE. The circuits have generic topologies
[21] and their transistor parameters were taken (and pro-
jected) from a DRAM modeling tool [52]. The obtained cir-
cuit curve is as shown in Figure 10. From the figure, we can
see that both tRCD and tRAS are increased in future DRAM.

In this paper, we focus on the relationship between restore
and retention. Consequently, unrelated timing values, such
as tRCD, are unchanged 3.

5. EXPERIMENTAL METHODOLOGY

5.1 System Configuration
To evaluate the effectiveness of our proposed designs, we

performed the simulation using the memory system simula-
tor USIMM [11], which simulates DRAM system with de-
tailed timing constraints. USIMM was modified to conduct
a detailed study of refresh and restore operations.

We simulated a quad-core system with settings listed in
Table 4, similar to those in [42, 46]. The DRAM timing con-
straints follow Micron DDR3 SDRAM data sheet [5]. By
default, DRAM devices are refreshed with 8K REF within
64ms, and tRFC is 208 DRAM cycles, which translates into
a tREFI of 7.8 µs (i.e., 6240 DRAM cycles). As [42], the
3Whereas this paper places a particular focus on restoring time
study, the proposed schemes are orthogonal to tRCD reduction de-
signs.

baseline adopts closed page policy, which is preferred in
multicore systems [37].

Table 4: System Configuration

Processor four 3.2Ghz cores; 128 ROB size
Fetch width: 4, Retire width: 2, Pipeline depth: 10
Bus frequency: 800 MHz
Write queue capacity: 64

Memory Write queue high watermark: 40
Controller Write queue low watermark: 20

Address mapping: rw:cl:rk:bk:ch:offset
Page management policy: closed-page with FRFCFS
2channels, 1rank/channel, 8banks/rank,
64K rows/bank, 8KB/row, 64B cache line
tCK=1.25ns, width: x8

DRAM tCAS(CL): 13.75ns, tRCD: 13.75ns, tRC: 48.75ns
tCWD: 6.25ns (5 cycles), tBURST: 5.0ns (4 cycles)
tRAS: 35ns, tRP: 13.75ns, tFAW: 24 cycles,
tRRD: 5 cycles, tRFC: 208nCK, tREFI: 7.8µs

5.2 Workloads
Table 5 lists the workloads for evaluation. They are from

the Memory Scheduling Championship [1], and cover a wide
variety of benchmarks, including five commercial applica-
tions comm1 to comm5, nine benchmarks from PARSEC
suite and two benchmarks each from the SPEC suite and the
Biobench suite. Among them, MT-fluid and MT-canneal are
two multithreaded workloads. As [42], the benchmarks are
executed in rate mode, and the time to finish the last bench-
mark is computed as the execution time.

Table 5: Workloads
COMMERCIAL comm1, comm2, comm3, comm4, comm5
PARSEC Black, face, ferret, fluid, freq, stream,

swapt, MT-canneal, MT-fluid
SPEC leslie, libq
BIOBENCH mummer, tigr

6. RESULTS AND ANALYSIS

6.1 Schemes to Study
To evaluate the effectiveness of RT schemes, we studied

the following schemes:

— Baseline. This scheme adopts the projected relaxed
timing (tRCD=15, tRAS=42, and tWR=25) in future DRAM
chips. The timing is applied to all rows and chips, and
fits the worst-case.

— ConvTm. This scheme assumes the conventional tim-
ings (tRCD=11, tRAS=28, and tWR=12) for future DRAM
chips. This is an ideal scheme as it is unclear how to
efficiently handle the large number of weak cells that
cannot meet these timings.

— NoRefresh. This scheme assumes no refresh activ-
ity in Baseline, which eliminates its impact on per-
formance as well as energy consumption. It marks
the performance upper bound of multi-rate refresh and
other enhancement designs, including RAIDR[36], Re-
freshPausing [42] and ArchShield [43].

— RT-next-f64/-var. This scheme is built on top of
Baseline, and truncates a long DRAM restore oper-
ation based on its distance to the next refresh event.
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Figure 11: Performance comparison of different schemes.
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Figure 12: Access latency comparison of different schemes.

Whereas RT-next-f64 assumes that all rows adopt
64ms refresh rate, RT-next-var explores the reten-
tion time variation to truncate refresh operations.

— RT-all-up128/-up64. This scheme is to trade re-
fresh for restore truncation benefits by converting dummy
refresh commands to real ones. It upgrades the re-
fresh bins that have lower than 128/64ms rate to use
128/64ms rate.

— RT-sel-up128/-up64. This scheme is similar to RT-
all-. The difference is that it does upgrade only for
the touched bins.

Next, we compared the schemes on system performance,
memory access latency and energy, and then studied their
sensitivities to different configurations. To study different
aspects of RT, we analyze different set of schemes in each
part.

6.2 Impact on Performance
Figure 11 compares the execution time of different schemes.

The results are normalized to Baseline. In the figure, Gmean
is the geometric mean of the results of all workloads.

On average, RT-next-f64 achieves 10% improvement
over Baseline by truncating restore time. RT-next-var
identifies more truncation opportunities in multi-rate refresh
DRAM modules and achieves better, i.e., 15%, improve-
ment. While RT-all-up128 truncates more restore time
through refresh rate upgrade, it introduces extra refresh over-
head and thus is slightly worse than RT-next-var. RT-
sel-up128 achieves 2.4% improvement over RT-next-var
by balancing refresh operations and restore benefits. The
performance gap between upgrading all rows and selective
upgrading is even larger when we aggressively upgrade re-
fresh rate to 64ms. RT-sel-up64 achieves the best perfor-
mance — it is 19.5% speedup over Baseline, or 4.5% bet-
ter than RT-next-var. The performance trend across the

schemes demonstrates that our restoring schemes achieves a
good balance between refresh and restore.

Generally, memory access intensive workloads such as
com1, libq and mumm benefit most from the reduced restore
timing. Particularly, MT-f obtains the largest performance
improvement because of the parallel access patterns and rel-
atively tight gaps between accesses, which greatly enlarges
the effect of shortened RAS and WR.

6.3 Impact on Access Latency
Figure 12 compares the memory access latencies using

different schemes. The average access latency of Base-
line is 283 DRAM cycles. Restore time reduction effec-
tively reduces the latency for all workloads. RT-all-up64
is worse than RT-all-up128 due to more real refresh op-
erations slowing down normal memory accesses. RT-sel-
up64 reduces the average latency to 210 DRAM cycles, in-
dicating a 25.8% reduction over Baseline.

6.4 Energy Consumption
Figure 13 compares the energy consumption of different

schemes. We reported the energy consumption breakdown
— background (bg), activate/precharge (act/pre), read/write
(rd/wr) and refresh (ref). We summarized the results ac-
cording to benchmark suites, where results are averaged over
workloads within each suite. We used the Micron power
equations [39], and the parameters from vendor data sheets
[5] with scaling.

To enable truncation in multi-rate refresh DRAM mod-
ules, we need to query the refresh rate for each access. The
refresh rates for 8K bins are organized as 3KB direct mapped
cache with 8B line size. We used CACTI5.3 [3] to model
the cache with 32nm technology — it requires 0.22ns access
time, occupies 0.02mm2 area, consumes 1.47mW standby
leakage power, and spends 3.33pJ energy per access. The
extra energy is trivial (less than 0.5%) and is reported to-
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Figure 13: Comparison of memory system energy.

From the figure, we observed that the device refresh en-
ergy for 4Gb chips is small. Due to increased refresh op-
erations, RT-all-up128/-up64 consume more refresh en-
ergy than RT-sel-up128/-up64, respectively. RT-sel-
up64 saves 17% energy compared to Baseline, and con-
sumes slightly lower energy than NoRefresh due to decreased
execution time. And, as expected, RT-sel- refresh schemes
is more energy efficient than RT-all- refresh peers.

6.5 Comparison against the State-of-the-art
Figure 14 compares RT with three related schemes in the

literature.

• Archshield+ implements a scheme that treats all the
cells with long restore latency as failures and adopts
Archshield [43] to rescue them.
• MCR is the recently proposed scheme that trade DRAM

capacity for better timing parameters [14]. 2x MCR and
4x MCR are the two options that reduce DRAM capac-
ity to 50% and 25% of the original, respectively.
• ChunkRemap implements the scheme that differenti-

ates chunk level restore difference and constructs fast
logic chunks through chunk remapping [56].
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Figure 14: Comparison against the state-of-the-art.

The figure shows that Archshield+ and ChunkRemap are
approaching ConvTmwhile RT-sel-up64 is 5.2% better than
ConvTm, exploiting more benefits from reduced restore time.
MCR shares similarity with RT-select, i.e., we share the

observation that a line that is refreshed more frequently can
be restored to a storage level lower than V f ull . MCR exploits
this with significant DRAM capacity reduction while RT-
select takes a light weight design that upgrades used bins
only for one refresh window, and leaves all the other bins
being refreshed at original rates.

From the figure, 4x MCR outperforms RT-sel-up64 by a
modest percentage. This is because MCR improves the base-
line by reducing not only restore time but also sensing time
while RT-sel-up64 focuses only restore time. RT-sel-
up64 works better than 2x MCR because it upgrades the re-
fresh rate of a bin for one refresh window at a time, which
significantly reduces refresh overhead (as shown with the
difference from RT-all-up64).

Table 6: Comparing EDP between RT and MCR (lower is
better).

Cases ConvTm RT-sel-up64 2x MCR 4x MCR-4
Same Chip 1.0× 0.715× 0.753× 0.713×

Same Capacity 1.0× 0.715× 0.918× 1.068×

Given that MCR improves performance at a significant ca-
pacity reduction. We next comparing the energy-delay-product
(EDP) — “Same Chip” is optimistic assumption as 4x MCR
has only 25% available capacity, which is likely to have
more page faults in practice. “Same capacity” enlarges the
raw chip in MCR by two/four times, which introduces more
background power. RT-sel-up64 shows good potential as
its EDP closely matches that of MCR under “Same chip” set-
ting, and is much better under “Same capacity” setting.

6.6 Comparison against the Ideal
Table 7: Bound schemes to study.

Schemes tRAS tWR tRCD Refresh rate
Baseline 42 25 15 64ms
NoRefresh 42 25 15 -
ConvTm 28 12 11 64ms

BestInterval 18 11 15 64ms
BestIntNoRef 18 11 15 -

To further evaluate the effectiveness of RT, Figure 15 com-
pares the proposed RT schemes against several ideal schemes.
These schemes are ideal because they are infeasible in prac-
tice — Table 7 summarizes their timing values. NoRefresh
eliminates all refresh operations in Baseline to set the per-
formance upper bound of refresh enhancement schemes; Con-
vTm adopts conventional timings. BestInterval uses the
the best timings (tRAS=21, tWR=11 and tRCD=15) reported
in Table 1; BestIntNoRef further eliminates refresh opera-
tions in BestInterval.
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Figure 15: Comparison of RT-sel-up64 to candidate ideal
schemes.

From the figure, NoRefresh and ConvTm are 6.3% and
13.6% better than Baseline, respectively, showing the large
performance impacts from refresh activities and degraded
timing. RT-sel-up64 is 12.4% better than NoRefresh, in-
dicating that improving restore timing is more valuable than



reducing refresh operations. RT-sel-up64 beats both Con-
vTm and BestInterval. This is promising because, even
though matching the conventional timing becomes challeng-
ing in future DRAM, more benefits can be gained by expos-
ing and exploiting restore time differences. For most bench-
marks, the gap to BestIntNoRef is less than 3%.

7. SENSITIVITY STUDIES
Next, we evaluated the performance sensitivity by varying

configurations including chip density, refresh granularity, re-
fresh sub-window division and page management policy.

7.1 Chip Density
Given that one refresh command is sent to refresh all rows

in one refresh bin, the larger the chip capacity, the more rows
the command needs to refresh, and further the larger tRFC
is. [4, 40, 42] show that tRFC may grow from 260ns for 4Gb
chips to 640ns for 32Gb chips.
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Figure 16: Impact of chip size on performance.

Figure 16 compares the results under different chip den-
sities. The results show that refresh penalties go up as chip
size increases. RT-sel-up64, while outperforming NoRe-
fresh and ConvTm at 4Gb chip, shows decreasing bene-
fits in larger chip sizes, and is beaten by NoRefresh and is
only slightly better than the ideal ConvTm at 32Gb chip size.
In addition, we observed that RT-all-up128 and RT-sel-
up128 are the same as RT-next-var at 16Gb and 32Gb.
The reason is that as bin size increases, from 64 to 256 and
then to 512 rows, it is hard to find a bin that can be re-
freshed at 256ms or lower rate. This leaves no difference
for RT-all-up128 and RT-sel-up128. While the improve-
ment of RT-sel-up64 diminishes as chip size increases, it
still achieves the best result among schemes except the ideal
NoRefresh. And hence, RT-sel-up64 still serves as an ef-
fective scheme to mitigate restoring issues in the long future.

7.2 Refresh Granularity
DDR4 standard starts to support fine-grained refresh (FGR)

modes [23, 40, 8], that is, by lowering refresh interval (tREFI)
by a factor of 2× or 4× to reduce tRFC, it can send 2x (i.e.,
16K) or 4x (i.e., 32K) refresh commands, instead of the 8K
commands in the normal setting.

Figure 17 compares the performance of schemes using
different FGR modes (X-axis). 1x/2x/4x schemes main-
tain 8K/16K/32K refresh bins, respectively. In Row scheme,
the number of bins equals the number of rows in one bank.

Whereas RT-all- schemes observe degraded performance,
all other schemes achieve better results. This is because less
number of rows per REF in FGR modes help to expose more
non-leaky bins, which can be further utilized to shorten the
restoring timings; to the contrary, blindly refresh rate up-
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Figure 17: Sensitivity of refresh granularity on 32Gb chip
(using multi-rate refresh).

grading in RT-all- introduces more refresh operations, and
thus lead to performance degradation. And, as the figure
shows, the performance gap between RT-sel- and RT-all-
schemes becomes larger at finer mode. Particularly, RT-
sel-up64 achieves 32.9% performance improvement over
Baseline at row granularity.

7.3 Sub-window Division
42/25 27/18 18/11 21/14 

42/25 21/14 

42/25 27/18 

4-equal 

2-equal 

2-unequal 

Figure 18: Using different sub-windows. Timings values are
denoted as tRAS/tWR in each grid.

RT adopts sub-window based timing adjustment. It be-
comes more complicated for the memory controller to sched-
ule memory requests if the number of sub-window is large.
We next study the impact of the number of sub-windows on
performance.

Due to the exponential (close to linear) voltage drop curve
and the long-tail charge restore curve, the timing difference
of the sub-window in the second half of refresh window
becomes small. And Figure 15 has shown that our 4-sub-
windows division is very close to the best case BestIn-
terval. As such, it is often not necessary to differentiate
more windows. Figure 18 shows the settings with two or
four equal/non-equal sub-windows. The adjusted tRAS/tWR
timing parameters are also listed in each sub-window.
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Figure 19: Comparing different numbers of sub-windows.

Figure 19 compares the performance improvements with
different sub-window settings. There is a large gap between
2- and 4-sub-window designs for most schemes. And, in
general, adopting four sub-window, i.e., 4-equal, achieves
better performance. RT-sel-up64 is less sensitive to a small
number of sub-window because RT-select charge the volt-
age of an upgraded row to a level much lower than V f ull ,



which exploits most performance benefits.

7.4 Page Management Policy
By default, RT schemes adopt closed-page policy. We next

evaluated its integration with open page-policy. We followed
the recent adjustment on open-page policy [27, 8].
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Figure 20: Performance comparison of 4Gb chip under
open- and closed-page policies.

Figure 20 compares the results using different policies
at 4Gb chip size. In open-page policy, the access hits in
row buffer are not constrained by tRAS/tWR. Comparing to
closed-page, not every access in open-page can benefit from
restore truncation. Therefore, lower performance (13.3%
open-page v.s. 19.5% closed-page for RT-sel-up64) im-
provement is expected, as shown in the figure. Similar re-
sults were observed on 8/16/32Gb chips.

8. RELATED WORK
Reducing refresh activities. As DRAM device capac-

ity increases, refresh is expected to introduce larger perfor-
mance and energy overheads [36, 42, 7]. To address the
issue, a bunch of schemes have been proposed from dif-
ferent directions, with representative ones like Smart Re-
fresh [17], Elastic Refresh [50], and Refresh Paus-
ing [42], etc.

While weak cells require frequent refreshes, the major-
ity of the cells on a DRAM chip can hold the data for a
much longer time, which makes it viable to adopt multi-
rate refreshes [30, 32, 6, 36, 54, 8]. Particularly, Liu et al.
[36] proposed RAIDR to group DRAM rows into several par-
titions and enable different refresh rates for different par-
titions. Wang et al. [54] and Bhati et al [8] optimized
RAIDR to make it compatible with modern DRAM standards.
ArchShield was designed to tolerate high error rate in fu-
ture DRAMs. It can be utilized to cover leaky cells and re-
duce refresh rate.

The proposed RT schemes in this work targets at the corre-
lation of restore and refresh, and it can be integrated with the
existing refresh innovations to find a better tradeoff between
overall performance improvement and refresh penalty. We
adopt REFLEX [8] to implement multi-rate refresh. And, the
experimental results show that our proposed RT schemes are
capable to win over NoRefresh, whose performance repre-
sents the upper bound of all refresh reduction designs.

Timing reduction. Reducing timing constraint values can
significantly improve memory performance. TL-DRAM [15]
creates row segments with low ACT and PRE latencies. CHARM
[49] reduces sensing time by attaching fewer cells to each
bitline. MCR [14] is a recent work that reduces both sensing

time and restore time. We compare RT with MCR in Section
6.5. While above schemes are designed mainly for existing
commodity DRAM, RT targets at the restoring issues in deep
sub-micron DRAMs, which strive to keep high yield. More-
over, the RT schemes proposed in this paper do not need to
modify the memory internal structures.

To achieve high yield and reliability, timing constraint val-
ues are set with excessive margins, which reflect the worst-
case. Most DRAM chips can perform with smaller timing
constraint values. Chandrasekar et al. [9] proposed to iden-
tify the excess in process-margins for DRAM devices at run-
time. AL-DRAM [34] analyzes the timing reduction opportu-
nities and exploits the large margin of DRAM timing pa-
rameters to improve performance. NUAT [46] exploits the
electric charge variation caused by leakage to design a non-
uniform access time memory controller. RT is orthogonal to
AL-DRAM and NUAT, as discussed in Section 3.4. The pro-
posed RT schemes do not depend on the excessive margins
of timing parameters and thus have good compatibility.

DRAM scaling. DRAM scaling becomes a major chal-
lenge due to increased manufacturing complexity/cost, re-
duced cell reliability, and potentially increased cell leakage
[41]. DRAM scaling leads to issues on refresh, write re-
covery time (tWR) [26] and variable retention time (VRT).
The VRT phenomenon was studied in [29, 44]. Restore time
degradation was recently studied in [26, 56]. Comparing
to ChunkRemap design [56], restore truncation is an orthog-
onal design that has lower implementation complexity and
storage overhead, while achieving much better performance
improvement over the baseline.

9. CONCLUSION
In this paper, we studied the restoring issues in further

scaling DRAM, identified partial restore opportunity and pro-
posed two restore truncation (RT) schemes to exploit the op-
portunities with different tradeoffs. Our experimental re-
sults showed that, on average, RT improves performance by
19.5% and reduces energy consumption by 17%.
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