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ABSTRACT
While designed for massive parallelism, GPUs are frequently suf-
fering from low thread occupancy and limited data throughput,
which are typically attributed to constrained on-chip resources,
such as shared memory and register file. To alleviate the pressure,
last-level cache (LLC) is being substantially enlarged to support
continuously growing computation and to shrink the off-chip data
traffic. Nevertheless, applications can be challenging to fully uti-
lize the excessive LLC spaces. Towards the issue, we propose to
manage partial LLC in an software way instead to expand precious
shared memory (SMEM), named as SMILE, helping to alleviate the
low thread occupancy. SMILE splits the monolithic LLC into nor-
mal data cache and new software region, with the latter being to
extend the limited SMEM. For adapting to diverse application char-
acteristics, SMILE enables multiple splitting grades and determines
the appropriate partition via online profiling. Experimental results
show that SMILE achieves average performance improvements of
14.7% and 8.4% respectively, compared to the default baseline and
prior state-of-the-art.
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1 INTRODUCTION
Designed for parallel processing, graphics processing units (GPUs)
are adopted in a wide range of realms, including artificial intelli-
gence, embedded systems and scientific computing. Driven by the
ever growing computing demands, GPUs have evolved to feature in-
tensive thread-level parallelism (TLP) and ample memory resources.
Particularly, recent years witnessed the continuously increasing
computation capabilities, and the growing memory capacity and
bandwidth. For instance, Nvidia GPUs report an 8x surge on com-
pute units (i.e., streaming multiprocessor, or SM) count, and mean-
while ceaselessly expand L1 data cache (L1D) and shared memory
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(SMEM) spaces, e.g., L1D/SMEM capacity has inflated from 64KB
on Kepler to 256KB on Hopper.

Whereas with rising aggregated resources (e.g., larger L1), GPU
compute units are suffering from degraded resource quota, which
inevitably causes insufficient threads to be concurrently executed.
From Kepler to Hopper, computing capability (TFLOPS) grows by
13.3x, while L1 size just poses a moderate 4x increase, conveying
the exacerbated on-chip resource contention. To alleviate resource
bottlenecks, a plethora of researches have been conducted to extend
cache space [1–3], and optimize register file management [4, 5].
Besides, task mapping and scheduling [6, 7] are employed to re-
duce resource idling and speed up executions. To maximize TLP,
techniques like software pipelining [8] have also been proposed to
further expose inherent parallelism.

In addition to the private memory resources (e.g., registers and
L1 cache) and execution units, SMs are sharing the last-level cache
(LLC) across the entire GPU. Despite being considered to be critical
to lessen the off-chip memory burden, conventional GPU LLC is of
very limited size, which is thus highly competed among enormous
threads [9]. To effectively utilize LLC, a couple of schemes have been
presented to enhance the data use to accelerate memory accesses
[10], and to enlarge LLC capacities using off-chip memory with
representative designs of OSM [1] and Morpheus [11]. Nonetheless,
those designs are all based on the precondition that LLC is very
scarce, which is mostly controverted by the recent GPU releases.
For example, Nvidia aggressively expands L2 1 cache from no more
than 6MB to over 40MB since Ampere. Meanwhile, AMD GPUs
have also seen significant advancements in cache architecture to
have more levels with much larger capacities. Overall, L2 cache of
Nvidia GPUs experiences a rapid growth of 33.4x from Kepler to
Hopper, far outperforming the SM count raise of 8.8x. With prolific
capacities, LLC is now confronting the challenges to reach high
utilization and thus being actively studied for better management
[9, 11–13].

Putting together the insufficient L1 and abundant LLC, we are
motivated to propose SMILE to separate partial LLC as L1D/SMEM
extension to host more concurrent threads, i.e., to improve TLP.
Overall, SMILE preserves a portion of LLC as extended SMEM to
allowmore cooperative thread arrays (CTAs, a.k.a, thread blocks) to
be simultaneously launched onto GPU. To achieve this, SMILE first
groups SMs into multiple subsets, with each holding a varying num-
ber of CTAs to sample the performance changes. For simplification,
the additionally launched CTAs are discretely proportional to the
native count, and the ratios are generally altering from 10% to 100%.
Then SMILE enters the sampling phase to collect the number of
completed CTAs for each group as performance indication. When

1Both Nvidia and AMD GPUs name the last level cache as L2. Therefore, we use LLC
and L2 interchangeably through the paper, unless otherwise specifically state.
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sampling done, SMILE selects the optimal ratio to partition LLC to
permit the desired number of CTAs. For implementation, SMILE
involves minor changes on LLC and request addressing, incurring
moderate overheads, which are faithfully modeled and evaluated
in architectural simulations.

The contributions of this paper are:
• We highlight the observations that GPU TLP can be bounded
by the deficient SMEM, and are motivated to divide the in-
creasingly large LLC for SMEM expansion. To the best of our
knowledge, SMILE is the first to exploit LLC space to uplift
TLP, instead of routinely improving data reuses.
• Through light-weight runtime profiling, SMILE is capable to
decide the reasonable partition ratio, and effectively enables
extra CTAs to be launched. SMILE can be implemented by
slightly augmenting the LLC tags and addressing logics.
• The evaluations on representative applications demonstrate
that SMILE remarkably raises the TLP and accelerates the
executions, effectively outperforming the state-of-the-arts.

2 BACKGROUND AND MOTIVATION
2.1 GPU System
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Figure 1: GPU high-level organization.

Figure 1 illustrates the high-level architecture of a general-purpose
GPU2, based on recent NVIDIA products. A GPU is composed of
multiple compute units, i.e., streaming multiprocessors (SMs). In
terms of the memory hierarchy, an SM contains private register
files and L1 cache, which is actually a combined L1D and SMEM.
Whereas the data cache part is transparently managed by hardware,
SMEM is instead software controlled, enabling flexible and dedi-
cated data management to maximize code performance. In practice,
the L1D/SMEM split can be dynamically configured to meet vary-
ing preferences. The private caches are further backed by a shared
L2 cache (or LLC, Last Level Cache) connecting to global memory,
which is of HBM or GDDR.

To use GPUs, programmers need to define the parallel portions of
applications as kernels, which are then dispatched onto SMs in CTA
(i.e., thread block) granularity through device runtime and driver.
Before launching a CTA, all the dependent SM hardware resources,
including register files, shared memory space, will be scrutinized
to ensure that the CTAs can work in parallel. Particularly, threads
within a CTA execute in SIMT mode as warps, and they can use
SMEM to efficiently communicate and synchronize with each other.
The hardware resource utilization is largely determined by the ratio
of active threads per SM to the theoretical maximum number of
active threads, which is typically 2048 on existing GPUs.

2.2 LLC to Boost TLP
Although featuring massive multi-threading, GPUs are frequently
showing low TLP, which is typically attributed to shortage of re-
sources like SMEM. To quantify the TLP effects, we run simulations

2The paper elaborates using Nvidia GPU architectures and terms, which are generally
applicable to other vendors as well.

Table 1: SM occupancy (Occu.) and SMEM usage of applica-
tions from [8, 14, 15].

App. Occu.(%) SMEM(KB) App. Occu.(%) SMEM(KB)
SPG 2.08 78 TOP 6.24 32
FG 2.08 69 LIB 9.77 20
FC 2.08 69 2DE 24.81 33.1
GBR 6.18 32 NQU 33.30 48
CFP 6.24 32 HBS 46.31 12

over a series of benchmarks (details of simulations and applica-
tions can be found in Section 4), with results being shown in Table
1. Occupancy and SMEM are respectively reporting the ratio of
concurrently running threads to the theoretical peak and shared
memory usage. Clearly, we can see that almost all studied bench-
marks are exhibiting low occupancy (2% - 46%), which is inversely
proportional to the SMEM metric, agreeing with fact that higher
SMEM usage causes less CTAs to be launched and thus lower TLP.
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Figure 2: Performance and occupancy change when doubling
SMEM capacity.

Following the occupancy studies, we next investigate the perfor-
mance effect with larger SMEM spaces. We reconfigure the simu-
lated GPU with twice SMEM capacity, and collect the IPC statistics
to report performance improvement, as being summarized in Figure
2. The figure shows that, most benchmarks benefit from the SMEM
doubling, with an average speedup of 1.48× (up to 2.81×). SMEM-
hungry ones like FG and FC achieve substantial improvements. Ac-
cordingly, SMEM can be very critical, and enlarging SMEM can be
promising to improve GPU TLP and performance.

Table 2: L2 cache usages of applications [8, 14, 15] w.r.t. band-
width (bw util.), percentage of touched lines (space util.) and
working set.

metric bw util. space util. working set(MB)
Average 8.3% 71.8% 4.3

Whereas enlarging SMEM is appealing, we are now facing the
issue of from where to find space as extra SMEM, especially con-
sidering that simply duplicating on-chip L1 can be very expensive
and challenging. Fortunately, as aforementioned, recent GPUs now
possess huge L2, which is occasionally underutilized. Results in
Table 2 list the average statistics about L2 usage, which largely
implies the idling of L2. Therefore, it is essential to reduce L2 idling
for better data use and performance.

Based on the above observations that SMEM is helpful to solve
GPU low occupancy, and L2 on recent GPUs can be underutilized,
it is thus natural to integrate both to improve TLP and reduce L2
idling simultaneously. To this end, separating partial L2 becomes a
promising solution to expand SMEM.

3 DESIGN
In this section, we present SMILE, a TLP improvement technique to
enable more concurrently running CTAs by partitioning the shared
LLCs as private SMEM extensions.



3.1 Overall Architecture
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Figure 3: SMILE overall architecture.

Figure 3 presents the overall architecture of SMILE, where the
L2 portion separated as extended SMEM is labelled as L2S. When
being equipped with L2S, extra CTAs (eCTAs) could be smoothly
launched onto the SMs, given that the SMEM constraint is effec-
tively alleviated. SMEM memory accesses from these eCTAs should
be forwarded to L2S, physically located in the global L2 cache. To
accommodate this, there should be one extra bit for each CTA ① in-
dicating whether this CTA is issued to L2S (i.e., eCTA) or not. If the
eCTA bit is set, then the LD/ST units will be informed ② to redirect
all SMEM accesses from such a CTA to the dedicated portion of L2S
(datapath ④). Otherwise, the on-chip SMEM accessing datapath ③

is reused for those normal CTAs, just as the default baseline. Note
that datapath for normal global memory accesses could also be
reused for the eCTA datapath ④, incurring no physical hardware
changes.

Since the data logically allocated in SMEM should be available
and consistent across the lifetime of a CTA, the data resides on the
L2S should not be evicted by the cache policy. Therefore, exemption
rules are added into the cache policy to avoid cache lines configured
as L2S being victims when eviction happens. When configuring
L2S in L2 cache, we also record the physically starting address for
each eCTA ①. The starting address together with the SMEM offset
(original SMEM access address) are used to translate address for
each SMEM access from eCTAs.

3.2 Partition Strategy
Although the expanded SMEM capacity allows more CTAs to be
issued and executed simultaneously, the pseudo SMEM accesses
targeting at L2 cache tend to be slower than the normal SMEMon L1.
Thus regarding L2S as a free lunch may downgrade performance
if the extra issued CTAs are much more than the normal ones.
Moreover, employing part of L2 cache as L2S inevitably leaves
less cache capacity for normal memory accesses, and there will be
more off-chip memory accesses produced by extra issued CTAs,
burdening the pressure on GPU memory system. In order to reach a
balance between the hardware resource utilization and the overall
application performance, we propose a runtime profiling-guided
(RPG) mechanism to determine the optimal CTA configuration for
SMILE.

The default SM dispatching policy assigns CTAs to SMs in a
round-robin fashion, resulting in a situation where SMs tend to have
approximately equal number of active CTAs. The proposed RPG
mechanism exploits a non-equal CTA distribution to figure out the
optimal runtime configuration. For ease of profiling, we split SMs
into multiple groups, and direct scheduler to assign varying number
of CTAs to each. Without loss of generality, we basically consider
five such groups with different CTA quotas as follow: baseline
(no eCTA), 𝐶1 (+10% eCTA), 𝐶2 (+25% eCTA), 𝐶3 (+50% eCTA), 𝐶4

(+100% eCTA). During profiling phase, the GPU dispatcher assigns
CTAs (including normal CTAs and eCTAs) to SMs in each group
with varying limits. For instance, no more CTAs are assigned to SMs
in the baseline group since there are inadequate SMEM resources,
while 10% more CTAs (eCTAs) could be dispatched to SMs in group
𝐶1 whenever other types of on-chip resources are sufficient.

RPG adopts a callback sampling procedure (Algorithm 1) which
is called after any CTA is committed to determine the optimal
configuration𝐶𝑜 that balances performance and resource utilization.
After that, all SMs need to acclimatize themselves to the CTA quota
of configuration 𝐶𝑜 , which we call alignment phase.

Algorithm 1: Procedure of RPG profiling phase
Input: 𝑁 : throttled number of CTAs during profiling,

𝑇 [𝑛]: the number of finished CTAs from each group,
𝑆 [𝑛]: the number of rounds each group wins

Output: 𝐶𝑜 : the optimal runtime configuration
1: if

∑4
𝑖=0𝑇 [𝑖] < 𝑁 then

2: return
3: end if
4: 𝑡 ← argmax(𝑇 [𝑖]), 𝑖 = 0 . . . 4
5: 𝑆 [𝑡] ← 𝑆 [𝑡] + 1
6: if

∑4
𝑖=0𝑇 [𝑖] ≥ 2 ∗ 𝑁 then

7: Stop profiling
8: return 𝐶𝑜 as the optimal runtime configuration where

𝑜 = argmax(𝑆 [𝑖]), 𝑖 = 0 . . . 4
9: end if

Profiling phase.Weuse two arrays𝑇 [𝑛] and 𝑆 [𝑛] (𝑛 denotes the
supported count of configurations, and is 5 for the aforementioned
CTA quotas), where the former array is to record the number of
finished CTAs for SMs from each group since the program begins
and the latter one is to record the number of rounds group 𝑖 is the
one with most finished CTAs when Algorithm 1 runs. At the early
stage of a GPU program, the number of committed CTAs from each
group may change rapidly, so we skip the first few rounds of the
algorithm to omit the inaccurate statistics until the total number
of committed CTAs from all groups exceeds 𝑁 (line 1 - 3). In each
round, Algorithm 1 will select group 𝑡 with the maximal overall
number of committed CTAs, and increases the corresponding 𝑆 [𝑡]
to mark group 𝑡 as the champion of current round (line 4 - 5).
After another 𝑁 CTAs are completed (excluding immediate exits
at program early stage), Algorithm 1 will return configuration 𝑜

corresponding to group 𝑜 that wins the most rounds (line 7 - 9).
Once the optimal configuration 𝑜 is determined, we will never
invoke the RPG profiling procedure again (line 7) and next enter
the alignment phase.

Alignment phase. Once the optimal configuration 𝐶𝑜 is deter-
mined, all SMs will be ready to take the configuration into effect to
have desired number of CTAs to execute. Whereas no extra opera-
tions are needed for SMs configured as 𝐶𝑜 in the profiling phases,
either inflation (increase the CTA quota) or deflation (decrease the
CTA quota) should be applied to SMs in other groups. For SMs
previously split into group 𝑖 (𝑖 < 𝑜), the GPU dispatcher will assign
more eCTAs to them and for SMs from group 𝑗 ( 𝑗 > 𝑜), no more
eCTAs will be dispatched until the number of active eCTAs drops
below the global quota. Normal CTAs will thus be unaffected and
dispatched as usual to all SMs. Note that the LLC is split into several
slices with fixed size (e.g., 4 MB per slice), allowing RPG to request



corresponding proportion of LLC capacity used as L2S during the
profiling phase based on the number of eCTAs for all groups. The
upper limit of L2S usage is throttled to 50% of LLC capacity to avoid
serious performance downgrade.
3.3 Implementation and Usage
Implementation: As aforementioned, enabling of extra eCTA
launch necessitates hardware enhancements including reserved
registers per CTA and modified eviction logic in LLC. SMILE adopts
two general purpose registers to determine if eCTA or not, and
to log the starting address allocated on L2S for each eCTA. Note
that such registers can be reused from the scalar general purpose
registers (sGPRs) already provided in commodity GPUs. As for the
LLC space partition and eviction freezing, SMILE can simply bor-
row the existing functionalities on physical GPUs. For instance,
Nvidia grants to manage A100 L2 cache in an software controlled
fashion [13], and AMD RDNA GPUs permits to adjust cache pol-
icy via programming flag bits [16]. The key of SMILE falls onto
the proposed RPG profiling (Algorithm 1). First, the non-equal dis-
patch can be realized through setting masks on physical GPUs [17].
And, it is worth noting that the RPG procedure could be invoked
asynchronously with the running program by the GPU driver at
the host side, causing no performance interference to the primary
workload at the device side. While incurring moderate changes
and trivial overheads, we aggressively charge one cycle and add 1%
extra power as overheads in evaluations.

Usage: SMILE can be used in a relatively transparent fashion, as
the profiling and management are all automatically triggered at
hardware level. For backward compatibility, a flag bit can be added
to allow manually switch off the SMILE.

4 EXPERIMENTAL METHODOLOGY
4.1 Environment
4.1.1 Simulation. We evaluate SMILE using Accel-Sim [18] and Ac-
celWattch [19] to model a NVIDIA Ampere-like3 GPU. Specifically,
simulated L2, i.e., LLC, is enhanced to enable space partitions, to-
gether with CTA scheduling and request addressing to allow extra
CTAs to exploit the enlarged SMEM. Simulation runs are carried
out by feeding SASS traces, which are collected beforehand through
running the applications on physical GPUs.

Table 3: GPU configurations in simulator.
Parameter Value Parameter Value

Number of SM 80 Core clock 1132MHz
Scheduler LRR Schedulers / SM 4

Register File Size / SM 256KB L1 Cache / SM 28KB
Shared Memory Cache / SM 100KB L2 (or LLC) 30MB

4.1.2 Configuration. Detailed simulation configurations are as
shown in Table 3. For the critical SMEM setting, a maximum 100KB
L1 space is reserved as shared memory (i.e., the remaining 28KB
as data cache) to facilitate thread concurrency. Such setting aligns
with the real GPUs, which allow the unified 128KB L1 to set aside
SMEM space ranging from 0-100KB (i.e., 0/8/16/32/64/100KB). For
3The modeled architecture is generally based on RTX3070, which is the Ampere archi-
tecture officially supported by Accel-Sim. Meanwhile, it can be extremely challenging
to simulate extra large workloads to fully cover the massive 120+ SMs and significantly
enlarged caches. As such, we choose to adapt the RTX3070 to model a proportionally
down-scaled A100, which is roughly 30% less resources than the physical counterparts,
on SM, L1 and L2, etc.

L2, a down-scaled 30MB size is used in simulation to match the
maximum of Ampere GPUs.

Table 4: Evaluated applications.
App abbr. App abbr.

N-queen [14] NQU Gemm bias relu [8] GBR
LIBOR [14] LIB Conv2dfprop [8] CFP

Hybridsort [14] HBS Tensorop [8] TOP
Fused gemms [8] FG Sparse gemm [8] SPG
Fused convs [8] FC 2Dentropy [15] 2DE

4.1.3 Applications. To reflect the SMEM-oriented designs, we use
multiple workloads involving SMEM usages. As listed in Table 4,
the workloads are mainly from two benchmark suites, including
Rodinia [14] and CUTLASS [8].
4.2 Schemes and Metrics
4.2.1 Schemes. To evaluate the effectiveness of our proposed de-
sign, we compare SMILE against the baseline and prior arts:

— Baseline. Default settings on physical GPUs with only par-
tial L1 being used as SMEM and L2 is all for data cache.

— OSM [1]. A state-of-the-art approach using off-chip device
memory to enlarge the size of shared memory to increase
thread-level parallelism. Specifically, the improved version
UCM is being compared to SMILE.

— SMILE. Proposed design to separate partial L2 as extended
SMEM, and the separated SMEM size is determined by online
profiling, as introduced in Section 3.2.

— Ideal. L2-based SMEMextensionwith offline profiling, which
serves as the performance upper limit of SMILE. For this
scheme, optimal L2 partition is exhaustively searched in
offline phase, and then gets applied to the application to
maximize execution speedup.

4.2.2 Metrics. To assess performance, we use the IPC statistics
reported by the simulator, and then convert into a normalized
speedup to report performance improvement. The associated TLP
is measured using the thread occupancy, i.e., ratio of actual thread
count to theoretical peak. And, we further employ hit/miss ratio and
bandwidth utilization to calibrate the underlying L2 use changes.
5 RESULTS AND ANALYSIS
5.1 Performance
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Figure 4: Comparison of performance improvement.

We first compare performance improvement of SMILE against
baseline (no extra SMEM) and OSM (with extra SMEM being on
off-chip memory). In addition, the Ideal with offline profiling is
also included to depict the upper bound of SMILE. The normalized
results are plotted in Figure 4, where workloads are listed in perfor-
mance descending order from left to right, with Average being on
the rightmost. From the figure we can see that SMILE achieves an
average of 14.7% performance improvement across all studied appli-
cations, which defeats OSM of 5.9%, conveying that SMEM extension



on basis of fast on-chip LLC can be much more promising than that
of slow off-chip memory. Compared to Ideal, our proposed SMILE
manifests a 5.6% performance gap, which is largely attributed to
the contrast decisions between online and offline profiling modes.

On application level, whereas FC, FG and SPG achieve tremen-
dous speedups, others like 2DE and NQU exhibit negligible effects,
demonstrating that various workloads are inconsistently behav-
ing on SMEM adjustments, which generally echoes Figure 2 in
Section 2.2. Note that for the SMEM-insensitive 2DE and NQU,
SMILE keeps the baseline configuration by choosing not to extend
SMEM, but OSM insists on slicing off-chip device memory as SMEM,
aggravating memory accesses. Consequently, TLP improvement
and performance enhancement are not always identical, for which
SMILE relies on the proposed profiling to differentiate. Moreover,
the workloads FC, FG and SPG benefit more from OSM, owing to
the fact that OSM aggressively combines L1 data cache and shared
memory to provide a larger cache for both migrated SMEM and
normal global accesses. Despite showing slightly lower speedup
on those workloads, SMILE circumvents heavy changes on L1 and
global memory, and also crucially beats workloads like OSM on LIB
and HBS.

5.2 Profiling Quality
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Figure 5: Performance of varying extra SMEM configurations,
i.e., C1 - C4, from which Ideal chooses the one resulting in
highest speedup. Marked (▼) bars correspond to the eventual
decisions made by online profiling in SMILE.

As aforementioned, SMILE relies on profiling to decide the proper
SMEM extension, which is critical to the overall performance. In
order to gauge the profiling quality, we collect the selected SMEM
configurations of SMILE, and then compare to the ones adopted by
Ideal. As elaborated in Section 3.2, four extension strategies (C1
- C4) are presented to choose from for SMILE and Ideal, with the
latter exhaustively searching the one resulting in best performance.
Figure 5 lists the performance under each strategy in Ideal, and
also marks (▼) the one employed by SMILE.

It is clear that workloads, from left to right, are trending to be
more conservative on choosing extra CTAs. For instance, FC, FG and
SPG select C2 or C4, but 2DE and NQU picks up Baseline, i.e., no
extra CTAs. Besides, the choices of SMILE (marked with ▼) mostly
locate on the highest speedup bar, which is just the selection of
Ideal, confirming the online profiling accuracy. Exceptions occur
on FC, SPG and HBS, where the choices of SMILE is one grade
different from the optimal setting of Ideal (i.e., C1 vs. C2, and C3
vs. C4). Such sub-optimal decisions lead to the performance gaps
shown in Figure 4.

5.3 Occupancy and Cache Changes
Essentially, SMILE trades LLC space for raising thread level paral-
lelism, and is thus undoubtedly impacting the L1 and L2 cache ac-
cesses. To have a deeper understanding of the gained performance,

0

2

4

FC FG SPG LIB HBS TOP GBR CFP 2DE NQUN
or
m
al
iz
ed

oc
cu
p
an
cy

Baseline OSM SMILE Ideal

(a) Occupancy

0.0

0.5

1.0

FC FG SPG LIB HBS TOP GBR CFP 2DE NQU

L
1 

m
is

s
ra

ti
o

Baseline OSM SMILE Ideal

(b) L1 cache miss

0

0.5

1

FC FG SPG LIB HBS TOP GBR CFP 2DE NQU

L
2 

m
is

s
ra

ti
o

Baseline OSM SMILE Ideal

(c) L2 cache miss

0

500

1000

FC FG SPG LIB HBS TOP GBR CFP 2DE NQU

L
2

b
an
d
w
id
th

(G
B
/s
)

Baseline OSM SMILE Ideal

(d) L2 cache bandwidth
Figure 6: Comparison of occupancy and cache changes.

we further analyze the associated occupancy, and the underlying
cache changes, with results being provided in Figure 6.

Figure 6(a) shows the occupancy (i.e., TLP) of the contending
designs. In general, SMILE effectively helps increase occupancy over
the Baseline. Interesting that SMILE and OSM are mostly compara-
ble in terms of occupancy, while performance apparently differs
(see Figure 4). The predominating reason is that OSM blindly re-
serves large off-chip memory portion as the whole SMEM, which
actually permits more concurrent threads to run but is at the risk
of resource over-subscription. Such side effects can be observed
on 2DE and NQU, where OSM reports much higher occupancy than
SMILE, contradicting the speedup shown in Figure 4.

Figure 6(b) - (d) respectively present L1 miss ratio, L2 miss ratio
and L2 bandwidth. Be noted that L1 cache, or L1D, here is only the
data cache part (i.e., excluding the SMEM), and L2 cache includes
both the normal data portion and the separated L2S (i.e., the original
L2 in GPUs). For SMILE, the redirected SMEM accesses onto L2S
are also filtered through L1D. From Figure 6(b), we see that miss
ratios of SMILE and Ideal are on par with Baseline, but generally
higher than OSM. This happens because SMILE and Ideal largely
keep the default cache organizations, but OSM radically expels all
SMEM accesses to off-chip memory, and leaves the whole L1 to
cache all memory accesses, translating into improved data reuse.
Among the workloads, NQU and LIB have relatively fewer accesses,
which can be hidden by the massive shared memory accesses in all
SMEM-optimized designs, implying the sharp drops in the figure.
Regarding L2miss ratio in Figure 6(c), SMILE and Ideal are virtually
managing partial L2 as software-control scratchpad, having no data
replacements and misses and thus showing lower values. Ideal
values of 2DE and NQU are identical to the default, as it falls back
to Baseline on SMEM extension. Bandwidth in Figure 6(d) implies
that both SMILE and OSM are effectively uplifting L2 utilization,
indicating the L2’s original under-utilization. Specifically, TOP, GBR
and CFP retains high utilization in Baseline, suggesting the native
contention on global accesses instead of SMEM shortage, which



coincides with the inefficiency of SMILE. Again, the always high
bandwidth of OSM fails to translate into performance improvement,
with examples of 2DE and NQU.

5.4 Energy
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Figure 7: Comparison of energy consumption.

To evaluate energy efficiency, we use AccelWattch [19] to col-
lect power statistics and then convert into energy consumption
with respect to execution time. The energy results are as reported
in Figure 7. From the figure, we can see that SMILE can signifi-
cantly reduce energy consumption by an average of 9% while OSM
increases by 12%. OSM extends SMEM through reserving partial off-
chip memory space, which tends to increase data traffic and further
the power consumption. Particularly, SMEM-insensitive workloads
2DE and NQU are most energy demanding, which can be attributed
to worsen power and lengthened execution time as reported in Fig-
ure 4. To the contrary, FC and FG are favoring SMEM spaces, and
thus gain on energy reduction from both OSM and SMILE. Overall,
SMILE necessitates less energy on most workloads, conveying the
efficiency of LLC-based SMEM extension.

5.5 Sensitivity Studies
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Figure 8: Performance of varying L1 and L2 configurations.

Next, we explore the performance sensitivity by varying L2
capacity and L1D/SMEM. Results are separately illustrated in Figure
8(a) and Figure 8(b). As expected, smaller L2 and less allocated
SMEM worsen the performance, and slightly narrow down the
design space of SMILE. However, SMILE is stably achieving effective
performance improvement, revealing that the design is applicable
to varying scenarios.

6 RELATEDWORK
To accelerate GPU executions through better exploiting hardware
resources, a set of works have widely explored optimized uses
of register files [2, 3], shared memory [5, 20] and interconnects
[21, 22], etc. Those works are generally relying on the older GPU
generations having very tight LLCs, and are thus orthogonal to our
design targeting at GPUs with sufficient cache spaces. Specifically,
a myriad of schemes have been presented to better manage on-
chip caches, including L1 decoupling [23], LLC extension using
core resources [11], LLC partitioning [12] and contention tracking
[10]. Particularly, Morpheus [11] argues that LLC is scarce which
is based on the previous architecture (5MB L2), and thus strives
to work from the opposite direction to extend LLC capacity using
GPU core resources. Those approaches are all aiming to improve
data reuse, i.e., enhancing data efficiency. Differently, our proposed

SMILE is striving to trade LLC space for shared memory, essentially
targeting for allowing more threads to accelerate computations.

For boosting thread-level parallelism, CTA scheduling [6, 7] and
fine-grained pipelining [4, 8] have been paid much attention. To
large degree, those prior arts are complementary to SMILE, which
actually permits more CTAs to concurrently run and thus opens
up the design space of scheduling and pipelining. As explained
in earlier sections, the closest work to SMILE is OSM [1], which
enforces all sharedmemory usages onto off-chipmemory and leaves
the whole L1 as data cache, necessitating heavier changes than
SMILE but may still miss speedup opportunities. To this end, SMILE
is expected to be more feasible and applicable to real practices.

7 CONCLUSION
This paper proposes SMILE design to separate partial LLC to ex-
pand SMEM space. Experimental results demonstrate that SMILE
effectively boosts TLP and improves GPU performance.
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