
Autonomous Data-Race-Free GPU Testing

Tuan Ta

School of Electrical and

Computer Engineering

Cornell University

qtt2@cornell.edu

Xianwei Zhang

AMD Research

Advanced Micro Devices, Inc.

Xianwei.Zhang@amd.com

Anthony Gutierrez

AMD Research

Advanced Micro Devices, Inc.

Anthony.Gutierrez@amd.com

Bradford M. Beckmann

AMD Research

Advanced Micro Devices, Inc.

Brad.Beckmann@amd.com

Abstract—As the deep learning and high-performance

computing markets continue to grow, hardware designers are

increasingly optimizing future GPUs to run compute (a.k.a.

GPGPU) workloads. A key area of optimization for these

compute-oriented designs, which was not emphasized when GPUs

exclusively executed graphics workloads, is inter-thread data

sharing and synchronization. GPU cache coherence protocols now

support these operations and are governed by a specified memory

consistency model. In general, current GPU models are based on

sequential consistency for data-race-free (SC for DRF), which

mandates data written to memory must be globally visible only

after certain synchronization points. GPU coherence protocols

based on such relaxed memory models are particularly difficult to

design and test due to the large number of memory accesses that

may be reordered. This leaves GPU hardware designers struggling

to validate the correctness of GPU cache coherence optimizations.

To address this issue, this paper introduces a novel, completely

autonomous random testing methodology for complex GPU cache

coherence protocols. Our framework continuously generates

sequences of memory requests with minimal user intervention

using a mix of load, store, and atomic operations. The tester

dynamically and autonomously checks each response against an

expected global view of memory and immediately detects any

inconsistencies in a target coherence protocol, providing designers

detailed feedback on the issue. We then demonstrate the

methodology on the popular cycle-level gem5 simulator by

replacing its GPU core model with our unique testing framework.

The results show that the GPU tester can cover 94% and 100% of

all reachable state transitions in L1 and L2 caches respectively of

a representative GPU coherence protocol. This coverage is 6.25%

and 25% higher than the one achieved by a wide selection of 26

applications. In addition, the tester runs more than 50 times faster

than those applications, which enables efficient and fast protocol

debugging.

Index Terms—Cache coherence, central processing unit (CPU),

graphics processing unit (GPU), memory consistency, simulation,

testing.

I. INTRODUCTION

GPUs are the de facto high-throughput, programmable

accelerators targeting a wide breadth of compute applications.

In several emerging GPU applications, threads often

communicate with each other using fine-grained

synchronization via shared virtual memory, stressing the GPU’s

cache coherency protocol [38]. Therefore, hardware designers

are frequently relying on pre-silicon testing methods to

effectively, and correctly, model modern GPU coherence

protocols in order to reduce time-to-market.

Modern cache coherence protocols are particularly difficult

to test due to their state space explosion and tight coupling with

relaxed consistency models. Formal verification strives to

completely validate a protocol specification or implementation,

but it is slow and requires substantial manual effort [12]. The

challenges in formal verification are so immense that

improvements in the space are noteworthy as demonstrated by a

slew of recent publications [17][27][39][40][41][42][45].

Meanwhile, cycle-level simulators strive to model modern

cache controllers with the necessary fidelity to make accurate

performance projections. Such simulators are designed to

balance accuracy, simulation speed, and configurability. The

gem5 simulator [5], along with its Ruby cache and network

models [29], is one such simulation platform, and it is widely

used by industry and academia because of its flexibility and

fidelity. Recently, an industrial-quality GPU compute model

was added to gem5 [15], providing designers all the necessary

infrastructure to evaluate the rich GPU protocol design space.

However, rapidly testing newly developed GPU coherence

protocols is still a challenging problem.

Rapid protocol testing is important even when formal

verification has validated a protocol’s state transitions. For

instance, a protocol’s implementation may contain bugs due to

a variety of reasons that are independent of the protocol’s state

transitions [9][11][16]. More pragmatically, formal verification

is time consuming and requires expertise unknown by many

designers. Thus, hardware designers may choose to simply

tolerate implementation bugs and rely on data from an

independent functional memory model. However, such

separation gives designers little confidence the modelled

protocol is correct and can accurately project a future system’s

performance.

Alternatively, designers can tightly integrate the functional

and timing models [6] and use application-level testing with

limited success. However, most well-optimized applications do

not stress synchronization and protocol corner cases.

Furthermore, our results show this application-based testing

process is time consuming and ad hoc since millions of

instructions need to be simulated in detail to complete an

application. Alternatively, designers can write focused

microbenchmarks that stress certain memory interactions.

However, compiler optimizations and unanticipated timing

delays can make this approach extremely difficult. The results

of both approaches are inadequate, leaving lingering bugs that

978-1-7281-4045-2/19/$31.00 ©2019 IEEE 81

lessen a protocol designer’s confidence in a protocol’s

implementation.

To avoid the inadequate coverage and long latency of

application-based testing, while also evading significant formal

verification effort, prior work in the CPU space has proposed

autonomous randomized testing. Specifically, Wood et al. [43]

proposed random test generation for stressing cache controllers

using false sharing and leveraged the fact that strong CPU

protocols were building blocks to implement the sequentially

consistent (SC) memory model. By using the SC memory

model, their approach always knows correct values for

variables, requires no prior knowledge of the protocol’s state

transition details, stresses race conditions, and finds bugs

quickly compared to application-based testing. A CPU-only

random tester [5] was designed using a similar philosophy and

has been proven to be highly effective [29]. However, GPU

protocols operate under relaxed memory consistency models

[21][25][34], and simple testing approaches, such as the

approach proposed by Wood et al., are not directly applicable to

the more complicated semantics.

To combat the complexity of relaxed consistency, Adve and

Hill proposed Data-race-free (DRF) semantics [1] to simplify

their understanding. DRF models provide formal and precise

definitions that clearly specify to programmers what is

permissible, and what is not. DRF models also allow for many

low-level hardware and software optimizations to take place

underneath these well-defined semantics. As a result, DRF

semantics have been very successful in the industry and have

directly influenced many well-known memory models, such as

those in C++ [8] and Java [28].

Building on the success of DRF semantics, this paper

introduces a new testing methodology capable of autonomously

stressing GPU protocols designed to support relaxed

consistency. Dynamic “happens-before” relationships expressed

by atomic operations in DRF model are captured in our random

testing framework. The framework disallows data races in its

generated sequence of memory accesses to shared variables to

deterministically reason their values at any time.

Overall, the paper makes the following contributions:

• The paper introduces a novel DRF random testing
methodology applicable to GPU protocols supporting
relaxed memory model.

• Following the methodology, we provide a random,
highly configurable GPU tester, which generates
sequences of memory requests with respect to the
specified memory consistency model.

• We then evaluate our GPU tester against the application-
based testing approach. Our results show that the tester
identifies bugs much quicker and covers more coherence
state transitions than running a wide selection of GPU
applications. The tester covers 93.8% and 100% of all
reachable state transitions in L1 and L2 caches
respectively of a representative GPU coherence protocol.
The GPU tester achieves this coverage more than 50

times faster than it takes application-based testing to
reach similar or lower coverage.

• Finally, we show that the GPU tester can complement an
existing CPU tester to verify an integrated CPU-GPU
coherence protocol in a heterogeneous system.

II. BACKGROUND

A. Sequential Consistency for Data-Race-Free

While SC offers programmers a simple model to reason

about relative orders of concurrent memory operations, the

model prevents hardware from reordering memory operations to

achieve better performance. Therefore, many relaxed memory

models have been proposed as solutions to improve hardware

performance. The SC for DRF model 0 proposed by Adve and

Hill [1] is one of them. Under SC for DRF, a program behaves

as if it ran in an SC model if it has no data races. The behavior

of data races under SC for DRF is undefined, so conflicting

memory accesses like concurrent store operations to the same

variable need to be ordered by some synchronization

mechanisms such as memory fence.

B. Random CPU Coherence Testing Frameworks

There are several existing random testing frameworks for

CPU coherence protocols. Wood et al. [43] proposed an

automated testing framework that verified the functionality of

cache controllers in multi-processor systems. Their tester is an

N-state finite state machine issuing a sequence of loads and

stores. The state machines replace complex CPU micro-

architectural models, so they are much faster than simulating

real applications with detailed CPU models. The tester uses

pseudo-random numbers to generate memory addresses, so it

can access arbitrary cache lines and trigger false sharing

scenarios. The tester assumes a strong memory model, so it can

rely on the issuing order of load and store operations to

determine values of shared variables. This assumption simplifies

the tester’s implementation by allowing it to test CPU protocols

supporting strong memory model without knowledge of the

underlying protocols. Hangal et al. [17] built a tool called

TSOTool to verify total-store-order (TSO) compliant CPU

memory systems. The tool generates data-race programs that

issue load and store operations to a target memory system.

Values of those operations are observed and checked against a

set of TSO-defined axioms to detect any violation of the TSO

model.

C. Naively Applying CPU Coherence Testing to GPUs

Different from CPU protocols, GPU protocols operate under

relaxed memory models. Such relaxed models may make the

order of load and store operations from a GPU core appear

differently with respect to other GPU cores unless there are

explicit synchronization operations. A coherence protocol

supporting a relaxed memory model may leverage this property

to lazily perform memory operations until encountering an

explicit synchronization operation enforcing them to appear

globally to other cores. Since existing CPU testing frameworks

82

including ones proposed by Wood et al. and Hangal et al. do not

support such synchronization operations required by relaxed

memory models, they are not able to use observed values of load

and store operations to infer global states of shared variables.

Therefore, such CPU testing frameworks are not directly

applicable to GPU protocols.

D. The gem5 simulator

gem5 [5] is a highly configurable and modular simulation

infrastructure for computer-system architecture research. It is

widely used by academic and industrial researchers alike. gem5

includes several CPU models and supports all major ISAs,

including ARM and x86. In addition to its classic memory

model, gem5 includes the Ruby [29] memory system. Ruby is

a set of cache and interconnect models that allow users to

quickly specify new cache coherence protocols by using its

SLICC domain-specific language. Recently, AMD released an

open-source GPU compute model into the gem5 public

repository [15] along with a representative GPU cache

coherence protocol called VIPER [4]. VIPER is a write-through

protocol with release consistency semantics and was the base

protocol used by Power et al. [36] and Hechtman et al. [19].

III. DRF GPU TESTING FRAMEWORK

Our DRF GPU testing framework randomly generates

memory operations and dynamically tracks the “happens-

before” relationship between them to detect any coherence

violation. The framework does not model microarchitectural

details of GPU cores. Instead, it randomly generates and sends

streams of memory accesses including loads, stores, atomics,

and memory synchronization requests through memory ports as

a proxy GPU device. Fig. 1 shows the main differences between

running applications in a real GPU system and running the GPU

tester without detailed a GPU core’s model.

The remainder of this section describes the details of our

testing approach. Specifically, Section III.A describes how

streams of memory accesses are generated to stress a GPU

memory system while adhering to the DRF memory model.

Next, Section III.B explains how the tester reflects a generic

GPU thread model to resemble GPU’s memory traffic patterns.

Then Section III.C describes how the tester maintains data

integrity at any point in time. Finally, Section III.D presents how

the tester can generate a detailed log of memory transactions in

case of failures to help ease the debugging process.

A. DRF Memory Access Generation

The GPU tester maintains a set of shared variables accessible

by load, store, and synchronization operations. In DRF relaxed

model there are two types of variables: atomic/synchronization

and normal/non-synchronization variables. The tester generates

load/store operations accessing non-synchronization variables

and atomic operations accessing synchronization variables. This

constraint obeys the DRF memory model.

The tester randomly maps variables to a range of memory

addresses. This random mapping enables the tester to generate

conflicting memory operations accessing different variables

mapped to the same cache line. For example, in Fig. 2,

synchronization ‘variable 0’ and non-synchronization ‘variable

4’ can co-locate in ‘cache line 0’. Since cache controllers

operate at the granularity of cache lines, such random mapping

can help trigger false sharing cases when load, store, and atomic

operations race for the same cache line. False sharing accesses

are major sources of bugs in a coherence protocol’s specification

and implementation.

DRF programs avoid data races through well-defined critical

sections that are guarded by atomic operations. A critical section

starts once a thread acquires a lock which is implemented as an

atomic variable. It ends once the thread releases the lock.

Concurrent threads trying to update a shared variable must

successfully acquire a shared lock to avoid any data race. The

tester replicates the behavior of a DRF program by generating

and issuing streams of episodes to memory. Like a critical

section, an episode is a well-defined sequence of memory

operations guarded by atomic operations. For example, in Fig.

3, episode 0 (Eps 0) is a sequence of four memory operations. It

begins with an atomic operation with acquire semantics to a

synchronization variable. The acquire semantics orders the

atomic operation before any subsequent memory operations in

the episode. Following the first atomic operation are load and

store operations. An episode ends with another atomic operation

with release semantics that orders this atomic operation after any

previous memory operations in the episode.

The tester generates load and store operations in an episode

so that they do not form any data race with any other active

episodes in the system. For example, in Fig. 3, Eps 0 and 1 are

both active at the same time, and they both try to update and

Fig. 2. An example of a random mapping between variables and real addresses.

Fig. 1. Example testing systems in gem5 using applications and GPU tester.

83

access the same variables, which forms a data race between

them. In order to prevent two active episodes from having racy

memory accesses, when the tester initializes an episode, it

selects a synchronization variable to acquire. Based on the

selected synchronization variable, the tester determines active

episodes that acquire the same synchronization variable and

therefore potentially form a data race with the new episode. The

tester then generates all load and store operations for the new

episode so that no possible data race can be formed with any

active episode by applying the following two rules.

• No load or store operation is generated for a shared
variable being stored by an active episode.

• No store operation is generated for a shared variable
being loaded by an active episode.

B. GPU Thread Model in the Tester

Although the tester does not model microarchitectural

details of GPU cores, it does resemble how real GPUs core

would send many accesses to the memory system in parallel.

The tester consists of multiple threads that are connected to a

memory system. Each tester thread acts like a real GPU thread

and issues its sequence of memory accesses to memory.

Multiple threads grouped together in a wavefront (WF) operate

in lockstep. Threads in a WF can proceed to their next memory

operations only when all other threads in the WF finish their

current operations. This lockstep execution is similar to how

GPU threads operate in a single-instruction, multiple-thread

(SIMT) execution model. However, unlike an actual GPU

model, the tester takes advantage of the fact that within the

simulator it can directly attach to the cache hierarchy, bypassing

the GPU core model and reducing simulation time.

The tester can also be extended to evaluate any system

configuration; therefore, the user can configure a multi-GPU

system with a varying number of caches and diverse topologies.

As long as the system under test has a DRF memory model, the

tester will work seamlessly.

C. Data and Forward Progress Checks

To provide useful information to a hardware designer, the

tester must know whether loaded values are consistent with

expected values, and that the overall system is making forward

progress (i.e., there are no deadlocks). Our testing infrastructure

can do this in a fully autonomous manner, without receiving any

guidance from the user, because it maintains a reference

memory of all variables and their values. With respect to release

consistency, the tester understands that a newly written value

becomes globally visible to other threads after the episode retires

(i.e., when it finishes executing its last atomic operation with

release semantics) and updates its internal storage appropriately.

Using its up-to-date storage of all variables, the tester can

immediately identify inconsistent loaded values and generates

an error message outlining details of the bug.

The tester is able to detect if a memory system is not making

any forward progress for an unreasonably long period of time,

which may be due to a deadlock in the protocol’s

implementation. The tester records a timestamp for each

outstanding request when it is issued to the memory system.

Periodically, the tester runs a forward progress check and detects

whether any outstanding requests have not received a response

for more than a specified number of cycles. If so, the tester raises

a flag to signal a potential deadlock happening in the memory

system. This threshold is chosen heuristically to be one million

CPU cycles in our evaluation but is also configurable. This

check complements the default deadlock detection mechanism

implemented within Ruby and finds deadlock issues within the

GPU memory system interface.

Fig. 3. Valid and invalid generated episodes. Episode 1 violates DRF

constraints. Both episodes 0 and 1 try to read and update the same

variables, which creates data races. This type of episode is not generated

by the tester. Synchronization between episode 0.

Atomic_Acq (A)

LD (X) = 0

ST: 1 -> Y

Atomic_Rel (A)

Atomic_Acq (A)

LD (Y) = 0 or 1?

ST: 2 -> X

Atomic_Rel (A)

Atomic_Acq (A)

LD (Y) = 1

ST: 1 -> X

Atomic_Rel (A)
Time

race

no race

happened-before

Eps 0
Eps 1

(Invalid)

Eps 2

TABLE I. GPU L1 CACHE EVENTS

Event Description

Load Data read request from GPU

StoreThrough Data write request from GPU

Atomic Data atomic request from GPU

TCC_Ack Data response from GPU L2

TCC_AckWB Write completion ack from GPU L2

Evict Flash invalidation request from GPU

Repl Cache replacement request

TABLE II. GPU L2 CACHE EVENTS

Event Description

RdBlk Data read request from GPU L1

WrVicBlk Data write request from GPU L1

Atomic Data atomic request from GPU L1

AtomicD Atomic completion ACK

AtomicND Atomic incompletion ACK

Data Data response from memory

L2_Repl Cache replacement

PrbInv Invalidation request from other L2

WBAck Write completion ACK from memory

84

D. Event Logging

A key requirement for any testing infrastructure is providing

detailed information when problems are detected. Our tester

prints out all memory transactions related to a specific failed

operation by automatically creating detailed event logs during

runtime. For example, when a loaded value is not consistent with

the tester’s internal state, the tester prints out information about

the last transaction that updated the variable. The information

includes which thread, thread group, and episode issued the

transaction, when the transaction happened, and what value was

written to the variable. Such information is helpful in aiding a

memory system designer when attempting to narrow down a

specific window of activities causing the problem.

IV. EVALUATION

We use gem5 simulator [15] and a representative GPU

coherence protocol called VIPER [4] to evaluate efficiency of

the GPU tester. We compare its performance and coherence

state coverage against the application-based testing approach

that runs a set of diverse GPU applications. We then use an

existing CPU protocol tester in gem5 to show how our GPU

tester can complement the CPU tester in testing a coherent CPU-

GPU memory system.

VIPER is a write-through protocol performing store

operations immediately using per-byte dirty masks and does not

stall for exclusive permissions. The protocol supports two

synchronization operations: load acquire and store release.

When an L1 cache receives a load acquire, it invalidates all

cache entries to remove any possibly stale data. A store release

operation waits for all write-through operations to complete so

that the most up-to-date data are available in memory. VIPER

represents common characteristics of coherence protocols used

in AMD and NVIDIA GPUs including read-initiated

invalidations and write-through L1 caches.

The GPU’s memory system has per compute unit private L1

data caches and an L2 cache shared among GPU cores. The CPU

includes two cores with private L1 data caches and a shared L2

cache. The system directory is being shared by the CPU and

GPU. Fig. 4 shows all coherence state transitions. All possible

cache events in the GPU’s L1 and L2 caches are shown in

TABLE I and TABLE II respectively. It is important to note that

the tester is not specific to the VIPER protocol. The tester can

support other GPU protocols as well with minimal extensions.

For example, some protocols may support extra cache

invalidation or cache flush operations at synchronization points,

which requires adding such semantics to memory fence

operations and possibly changing how data are validated with

respect to the target memory model in the tester.

We sweep over different configurations as summarized in

TABLE III. The GPU and CPU tester runs are permutations of

various parameters (e.g., cache size, address range, and test

length). Application-based tests are composed of various

applications from compute [2][3], HeteroSync [37] and MI

applications, including DNNMark [12], DeepBench [32], and

MIOpen-benchmarks [14]. Descriptions of the applications are

provided in TABLE IV.

For fair comparison, applications should be diverse enough

to stress various cache transitions. We use a data locality

characterization approach adopted by Koo et al. [24] to

characterize data locality of each application. We profile the

cache line usages between WFs and classify them into streaming

(never reused), intra-WF (reused within the same WF), inter-WF

(reused by different WFs) and mixed-WF (mixed reuse). Fig. 6

reports the breakdown of the four categories, and the results

show that our selected applications demonstrate vastly different

behaviors and thus access cache differently. In addition, our

further profiling studies show that certain MI and HeteroSync

applications are heavily stressing atomic operations. Transition

coverage (i.e., fraction of activated transitions out of all

Fig. 4. State transitions in GPU L1 and L2 cache. “Undef”: the transition is

undefined. “Stall”: the transition stalls the cache controller. “-> X”: transition

to state X. State “V” means the cache line is in the valid state. State “I” means
the cache line is invalid. State “IV” means the cache line is waiting for refill

data. State “A” means the cache line is doing an atomic access and waiting

for an Ack to complete the access.

TABLE III. TESTER CONFIGURATIONS

Test Type GPU Tester Application CPU Tester

Protocol GPU_VIPER GPU_VIPER MOESI_AMD_Base

System size 8 CUs 8 CUs 2/4/8 CPUs

Cache size Small: 256B L1, 1KB L2

Large: 256KB L1, 1MB L2

Mixed: 256B L1, 1MB L2

16KB L1, 256KB L2 Small: 256/512B Corepair

Large: 256/512KB Corepair

Test length Permutation of [100, 200] actions/episode and

[10, 100] episodes/wavefront

Simulation time varies 100/10K/100K/1M loads

Address range Small: 10 atomic locations, 1M regular ones

Large: 100 atomic locations, 1M regular ones

16 GB 512 MB

Test runs Test 0, Test 1, …, Test 23 HACC, Square…, FFT Test 0, Test 1, …, Test 23

85

defined/reachable transitions) and execution time (i.e., time to

finish a simulation run) are collected to evaluate the GPU tester

and compare against real applications and the CPU tester.

In this section, we first show how the high configurability of

GPU tester helps explore different parts of the tester

configuration space. Second, we compare GPU tester and

applications in terms of their cache transition coverage and

testing time. Third, we describe how well the GPU tester

complements CPU tester to increase the overall state transition

coverage in the coherence directory in a shared CPU-GPU

system.

A. Exploring the Tester Configuration Space

Due to the diversity of memory systems, and to support

testing future designs, the GPU tester must be highly

configurable so that users can easily test a wide range of designs.

In addition, configurability allows the tester to achieve high

coverage in a short amount of time. Cache size, memory address

range, cache line size, synchronization vs non-synchronization

variable ratio, the episode length, etc. are all configurable in the

tester. Users can choose to vary values of some parameters to

focus on certain corner-case state transitions. In this section, we

show how changing cache size parameter can stress different

subsets of possible state transitions in GPU L1 and L2 caches.

 Fig. 5 shows heat maps of transition hit frequency in two

different testing configurations: small and large GPU caches

(i.e., other parameters including test length and episode length

are identical). The shade of each transition in the maps

corresponds to how frequently it is hit by the tester. The large

cache testing case (Fig. 5.(b)) triggers cache hit transitions (e.g.,

[Load, V] in GPU L1, [StoreThrough, V] in L1 and [RdBlk, V]

in GPU L2) more frequently than the small cache testing case

(Fig. 5.(a)) does due to the difference in cache capacity.

However, the small cache testing case is more effective in

triggering cache replacement-related transitions (e.g, [V, Repl],

[A, Repl] in L1, [V, L2_Rep] in L2) due to its relatively small

cache capacity.

In addition to cache size, other parameters including address

range and episode length can be configured to target different

subsets of an entire state transition space. For example, smaller

address range increases the number of sharing accesses between

threads, which stresses transient states. Increasing the length of

episodes induces more non-synchronization accesses per

synchronization access, which is likely to increase inter-episode

interactions. By combining various configuration sets that stress

different parts of a protocol, the tester can hit individual

transitions in much shorter period than memory accesses

generated by actual GPU applications.

Fig. 6. Data locality in selected applications.

(a). Small Cache Size (b). Large Cache Size

Fig. 5. GPU L1 and L2 transition hit frequency with different cache sizes. Small cache size: 256B 2-way L1, and 1KB 2-way L2. Large cache size: 256KB

16-way L1, and 1MB 16-way L2.

86

B. GPU Tester versus Applications

Applications or unit tests are typically used to perform

regression testing. However, as we will show, application-based

testing is a slow process, and tailoring an application suite to

provide the right amount of coverage is inefficient. To quantify

testing efficiency, we classify transitions (e.g., [A, E, B] where

state A transitions into state B via event E), in the Ruby system

into four classes as illustrated in Fig. 7:

• Undefined (Undef): no defined transitions from A via E.
If event E occurs while a block is in state A, this triggers
a fault signaling that the protocol implementation is
faulty.

• Inactive (Inact): there are possible transitions from A via
E, but the transitions are never observed during testing.

• Active (Active): there are defined transitions from A via
E, and the transitions are activated during testing.

(a). GPU Tester (b). All Applications

Fig. 7. Comparison of the GPU L1 and L2 transitions covered by GPU tester and applications

Fig. 8. Transition coverage of GPU tester on the GPU L1 and L2 caches.

Fig. 9. Transition coverage of applications on the GPU L1 and L2 caches.

87

• Unreachable by GPU tester (Impsb): transitions from A
via E are impossible to be reached by GPU tester because
of the CPU-related constraints. For instance, in L2,
PrbInv-triggered transitions are not reachable by the
GPU tester since there is only one single L2 cache in the
testing system. PrbInv events are only triggered by a
remote L2 cache (e.g., CPU L2 cache) to invalidate a
target cache line. In an application-based testing system,
those transitions can be reached since the CPU L2 cache
can send an invalidation request to invalidate a cache line
in the GPU L2 cache.

Following the classifications from the GPU L1 and L2

comparison in Fig. 7, we see that GPU tester and applications

are showing the same undefined squares (i.e., transitions), but

the GPU tester shows more active ones, indicating that more

transitions are hit and covered by the GPU tester than when

using applications. Fig. 8 and Fig. 9 further compare the

transition coverages and testing time of the GPU tester and

applications respectively. Results are reported in the order of run

time, and the final “(UNION)” shows the union of the coverage

of all tests and the total cumulative run time. Our GPU tester is

able to reach 94% coverage on the GPU L1 and 100% coverage

of all reachable transitions on the GPU L2, whereas application-

based tests reach 6.25% and 25% lower coverage on the L1 and

L2 respectively. The inactive transitions are mainly contributed

by corner cases (e.g., store hits on a pending atomic operation)

and CPU or DMA related requests (e.g., the GPU’s L2 probe-

invalidate transitions). Further, the GPU tester runs more than

50x faster to reach similar or higher coverage since the tester

does not model any detailed GPU pipeline. This much higher

testing speed translates directly to the debugging efficiency

since bugs can be reproduced much faster than they are in the

application-based testing approach.

Fig. 9 further shows that the union coverage of the

applications is dominated by the Interac and CM applications

that use more atomic operations and thus activate more

transitions than the remaining applications. This behavior of

application-based testing shows that not all applications can be

effectively used to test most state transitions. Only few selective

applications can reach a large space of all possible state

transitions. Unfortunately, choosing such effective applications

is challenging without a deep understanding of their memory

access patterns.

C. Complementing the CPU tester

To provide complete memory testing one would also need to

test the CPU-side caches. For an APU, the system directory is

typically shared by the CPU and the GPU, each of which is

issuing different request types to the directory and thus can

activate some unique transitions. Therefore, to fully test the

system the CPU must also issue requests to the directory. Fig.

10.(a)-(b) illustrate the directory coverage of applications and

the CPU Tester.

Given that GPU and CPU testers are stressing different

transitions in the directory, we run each separately and take the

union of their coverage, with results being reported in Fig.

10.(c). As expected, the combination is capable of activating

transitions that can only be uniquely triggered by either the CPU

or GPU tester, and the combined coverage is 21.4% higher than

the applications (56.6% versus 35.2%). However, by comparing

Fig. 10.(a) to Fig. 10.(c), we see that the applications do activate

some transitions that are not triggered by GPU and CPU testers,

and such transitions are DMA related, which is not modeled in

either tester. In addition, with respect to run time, the GPU and

CPU testers are still significantly shorter (~12.6x) than the

applications.

V. CASE STUDY

In this section, we show a case study on how the tester

discovered two common bugs in the GPU VIPER protocol and

helped protocol designers debug them.

One of the most common protocol bugs occurs when a

loaded value of a shared variable is not consistent with the last

value written. This indicates the hardware model is incorrect,

assuming a DRF program. When data inconsistency occurs, the

bug must have happened in between the current load operation

and the last write operation on the variable. When detecting the

inconsistency, the tester will report detailed information about

the problem.

(a). All Applications (35.2%) (b). CPU Tester (49.7%) (c). GPU+CPU Tester (56.6%)

Fig. 10. System Directory transitions covered by different test types.

88

TABLE V shows example output from the tester for the

value inconsistency bug. Both the last reader and last writer tried

to access the same variable at address 0x52860. The write

operation happened (i.e., at cycle 16,098 by thread 12 in group

2) before the read operation (i.e., at cycle 16,905 by thread 35 in

group 4). Since the tester ensures that read and write operations

on the same variables by different threads are ordered correctly

by atomic operations, if the tested memory system were bug free

then inconsistency should not have happened. In addition, the

bug must have occurred in the period between two operations.

Given the debugging information, a protocol writer can

zoom in to view that specific window, print out relevant memory

transactions initiated by the two threads, examine states of all

relevant cache controllers, and diagnose the issue. In this

example, the issue was that two false sharing write operations

on different memory addresses of the same cache line (i.e., false

sharing) race at the GPU L2 cache controller in the GPU VIPER

protocol. The two operations were not serialized correctly at the

controller, which made the write operation on address 0x52860

fail to update the cache line. False sharing between memory

accesses is a frequent cause of protocol implementation failures.

The tester can be configured so that false sharing happens more

often, which helps expose hidden bugs much faster than simply

running real applications, which are often designed to avoid

false sharing (e.g., by padding data structures to align to cache

block boundaries).

Another common protocol bug is multiple atomic operations

not atomically updating shared synchronization variables

correctly. The tester issues atomic operations that atomically

adds a constant positive value to shared variables so that their

values are always monotonically increasing. An atomic

operation returns a variable’s old value before the operation is

performed on the variable. Since atomic operations happen

atomically and always increase values of variables, their return

values are unique. If atomic operations performing on a variable

return duplicate values, the tester detects and reports the

violating operations to the user. Using the report, a protocol

writer can zoom into the small window of execution between the

two operations and examine their memory transactions to find

out where and when the bug happens. This way of testing atomic

operations is significantly more efficient than using real

applications since incorrect synchronization in real applications

can lead to extremely complicated failure conditions.

VI. RELATED WORK

A. Improving Full-System Simulation Performance

Several prior works have recognized the need to improve the

performance of simulation when evaluating complex full-

system workloads, such as server workloads. These workloads

rely heavily on library calls, OS functionality, and devices (e.g.,

NICs). Hardavellas et al. developed SimFlex [18], a full-system

simulator designed with performance in mind. SimFlex relies on

Simics [26], a functional full-system simulator, for the execution

of workloads and the OS. In addition to relying on a functional

full-system simulator, SimFlex utilizes a compile-time approach

for component interconnection, which allowed compile-time

optimizations across component boundaries. The most novel

feature of SimFlex is its use of the SMARTS [44] statistical

sampling methodology and extends it to multi-core systems. By

using statistical sampling, simulation complexity and runtime

can be reduced because many events need not be modelled,

while simulation accuracy remains high.

Mauer et al. [31] proposed decoupling the functional and

timing aspects of full-system simulation and introduce TFsim, a

timing-first simulator. They recognize that designers typically

rely on simulators that provide both functional and timing

accuracy. However, such models become difficult to implement

accurately and with acceptable performance as computer system

increase in complexity. TFsim also relies on Simics [26] for

functional simulation. TFsim first executes dynamic instructions

in their timing-first model and only invokes the functional

simulator at commit time. If the functional simulator detects an

error, the timing simulator’s state is updated to reflect the correct

state, which is obtained via the functional simulator.

Narayanasamy et al. [33] recognized the need to emulate the

OS effects when running architectural simulations. However,

they also understand that correctly modelling the OS leads to

increased runtime and complexity of simulation. Their work

proposes Pin-System Effect Logger (pinSEL), a Pin-based [23]

tool for logging OS effects. pinSEL instruments binaries and

runs them natively on the OS for which it was compiled. As the

instrumented binary executes, pinSEL creates a log of OS

effects. The log contains changes to register state, values of

memory locations by loads after the system call, whether those

locations were modified by the OS, interrupts, and DMA

actions. With pinSEL only application instructions need to be

modelled, and OS effects are emulated in a simulator using the

logged events.

B. Designing Coherence Protocols for Verification

Traditional formal verification methods are complex and

very slow. Many algorithms used in such methods are NP-

complete, and verification methods used in industrial settings

often require massive amounts of compute or expensive

emulation tools. In order to alleviate some of the complexity of

verifying cache coherence protocols, several prior works

investigate the design of formally verifiable cache coherence

protocols. Zhang et al. proposed fractal coherence [45], which

are cache coherence protocols that are designed to have fractal

TABLE V. AN EXAMPLE OF A READ-WRITE INCONSISTENCY BUG

Last Reader Last Writer

Thread ID 35 12

Thread group ID 4 2

Episode ID 727 652

Address 0x52860

Cycle 16,905 16,098

Read/Written Value 16 17

89

properties. With such properties the protocols can be easily

verified to scale up correctly to an arbitrary number of cores.

Voskuilen and Vijaykumar extend fractal coherence [40][41] in

order to improve its performance. While these protocols are

suitable for verification, they do suffer from performance loss

and may not be suitable for complex heterogeneous systems.

C. Automatic Protocol Generation from Specifications

More recent work by Oswald et al. [35], and Matthews and

Sorin [30], have proposed generating verifiable cache coherence

protocols from theoretical principles. These works look to

bridge the gap between formal verification and the design of

protocols. These works remain focused on CPU protocols. In

[30] atomic specifications are used to automatically generate

directory protocols, and in [35] ProtoGen is proposed. ProtoGen

is capable of generating complete MSI, MESI, and MOSI

protocols given only their stable state definitions.

D. Random Testing for CPU Coherence Protocols

As previously mentioned, Wood et al. proposed a random

testing strategy for multi-core CPU systems [43], and Martin et

al. utilize this design to develop a CPU tester for the Ruby

memory models in gem5 [29]. While this testing strategy works

well for CPUs, as discussed in section 2, it is not easily

extended to more relaxed GPU consistency models, or for

Heterogeneous systems. We use the basic philosophy of this

prior work and build upon it to develop our random testing

framework for relaxed GPU consistency and coherence models.

In addition, Hangal et al. [17] proposed TSOTool that

randomly generates programs with data races to verify memory

systems implementing TSO memory model. Since the tool is

focused solely on TSO memory, it is also not applicable to test

GPU memory systems that adopt much more relaxed memory

models.

While prior work has shown that formal verification, along

with protocols designed for formal verification [40][41][45],

can be effective for easing the burden of proving formal

correctness for designers, and have demonstrated how

theoretical frameworks can be used to generate correct

protocols implementations [30][35], these approaches are not

necessarily applicable for researchers who wish to quickly and

accurately test state-of-the-art relaxed memory models in

heterogeneous environments. For these researchers, some

abstraction is tolerable, however correctness must be ensured at

low cost. Therefore, our random GPU testing infrastructure

provides a sweet spot for coherence and consistency

verification when quickly evaluating new ideas.

VII. CONCLUSIONS

As computer systems become more heterogeneous and

complex, it is important that the simulation platforms on which

researchers do their work be accurate and bug free. Because

formally verifying consistency models and coherence protocols

is challenging, and because bugs can still creep into the

implementation of formally verified protocols, it is important

that researchers can quickly test their protocol implementations

for correctness.

To address this challenge, we have developed a random

testing framework for modern, relaxed GPU protocols in the

state-of-the-art gem5 simulation platform. To implement the

framework, we leverage DRF’s simplified semantics rather

than the more complicated semantics of relaxed consistency.

Our results show that we can achieve 100% coverage of the

GPU L2 cache with the GPU tester alone, nearly 25% higher

coverage than tests based on applications, at approximately 54x

shorter of the runtime. In addition, the system directory

coverage, when combined with the CPU random tester is

56.6%, which is 21% higher than applications alone. Even

when the GPU and CPU testers are run in serial, we can achieve

this greater coverage, while running one or more orders of

magnitude faster than running applications.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers

for their feedback. AMD, the AMD Arrow logo, and

combinations thereof are trademarks of Advanced Micro

Devices, Inc. Other product names used in this publication are

for identification purposes only and may be trademarks of their

respective companies.

REFERENCES

[1] S. Adve and M.D. Hill. “Weak Ordering–A New Definition”. In the

proceedings of the 17th International Symposium on Computer
Architecture (ISCA), pp. 2–14, 1990.

[2] AMD. Compute Applications.

http://github.com/AMDComputeLibraries/ComputeApps, 2017.
Accessed: September 21, 2018.

[3] AMD. HCC Sample Applications.
http://github.com/RadeonOpenCompute/HCC-Example-Application,
2017. Accessed: September 21, 2018.

[4] B.M. Beckmann and A. Gutierrez. “The AMD gem5 APU Simulator:

Modeling Heterogeneous Systems in gem5”. Tutorial at the 48th Annual

ACM/IEEE International Symposium on Microarchitecture (MICRO),
2015.

http://gem5.org/wiki/images/f/fd/AMD_gem5_APU_simulator_micro_2
015_final.pptx. Accessed: September 21, 2018.

[5] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A. Basu, J.

Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M.D. Hill, and D.A. Wood. “The gem5 Simulator”. In
SIGARCH Computer Architecture News, 39(2), pp. 1–7, 2011.

[6] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi, and S.K.

Reinhardt. “ The M5 Simulator: Modeling Networked Systems”. In IEEE
Micro, 26(4), pp. 52–60, 2006.

[7] B. Black and J.P. Shen. “Calibration of Microprocessor Models”. In IEEE
Computer, 31(5), pp. 59–65, 1998.

[8] H.-J. Boehm and S.V. Adve. “Foundations of the C++ Concurrency

Memory Model”. In the proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLD), pp. 68 –78, 2008.

[9] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli. “Accuracy Evaluation of

gem5 Simulator System”. In the proceedings of the 7th International

Workshop on Reconfigurable Communication-Centric Systems-on-Chip
(ReCoSoC), pp. 1–7, 2012.

90

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S. Lee, and K.
Skadron. “Rodinia: A Benchmark Suite for Heterogeneous Computing”.

In the proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC), pp. 44–54, 2009.

[11] R. Desikan, D. Burger, and S.W. Keckler. “Measuring Experimental Error

in Microprocessor Simulation”. In the proceedings of the 28th IEEE/ACM
International Symposium on Computer Architecture (ISCA), pp. 266–277,
2001.

[12] D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. “Protocol Verification

as a Hardware Design Aid”. In the proceedings of the 1992 IEEE

International Conference on Computer Design: VSLI in Computers &
Processors (ICCD), pp. 522–525, 1992.

[13] S. Dong and D. Kaeli. “DNNMark: A Deep Neural Network Benchmark
Suite for GPUs”. In the proceedings of the 10th Workshop on General
Purpose GPUs (GPGPU), pp. 63–72, 2017.

[14] P. Flick. MIOpen Benchmarks. https://github.com/patflick/miopen-
benchmark, 2017. Accessed: September 21, 2018.

[15] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, J. Kalamatianos, O.

Kayiran, M. LeBeane, M. Poremba, B. Potter, S. Puthoor, M.D. Sinclair,

M. Wyse, J. Yin, X. Zhang, A. Jain, and T.G. Rogers. “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language

Level”. In the proceedings of the 24th International Symposium on High
Performance Computer Architecture (HPCA), pp. 608–619, 2018.

[16] A. Gutierrez, J. Pusdesris, R.G. Dreslinski, T. Mudge, C. Sudanthi, C.D.

Emmons, M. Hayenga, and N. Paver. “Source of Error in Full-System
Simulation”. In the proceedings of the 2014 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 13–22, 2014.

[17] S. Hangal, D. Vahia, C. Manovit, J.-Y.J. Lu. “TSOTool: A Program for
Verifying Memory Systems Using the Memory Consistency Model”. In

the proceedings of the 31st Annual International Symposium on Computer
Architecture, pp. 114–123, 2014.

[18] N. Hardavellas, S. Somogyi, T.F. Wenisch, E. Wunderlich, S. Chen, J.

Kim, B. Falsafi, J.C. Hoe, and A.G. Nowatzyk. “SimFlex: A Fast,
Accurate, Flexible Full-System Simulation Framework for Performance

Evaluation of Server Architecture. In SIGMETRICS Performance
Evaluation, 31(4), pp. 31–35, 2004.

[19] B.A. Hechtman, S. Che, D.R. Hower, Y. Tian, B.M. Beckmann, M.D.

Hill, S.K. Reinhardt, and D.A. Wood, “QuickRelease: A throughput-
oriented approach to release consistency on GPUs”. In IEEE 20th

International Symposium on High Performance Computer Architecture
(HPCA) (pp. 189-200), 2014.

[20] D.R. Hower, B.A. Hechtman, B.M. Beckmann, B.R. Gaster, M.D. Hill,

S.K. Reinhardt, and D.A. Wood. “Heterogeneous-race-free Memory
Models”. In the proceedings of the 19th International Conference on

Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 427–440, 2014.

[21] HSA Foundation™. “HSA Platform System Architecture Specification

1.2”. http://www.hsafoundation.com/standards. Accessed: February 1,
2019.

[22] HSA Foundation™. “HSA Programmer’s Reference Manual: HSAIL
Virtual ISA and Programming Model, Compiler Writer, and Object
Format (BRIG) Revision: Version 1.2”. 2018.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.

Wallace, V.J. Reddi, and K. Hazelwood. “Pin: Building Customized

Program Analysis Tools with Dynamic Instrumentation”. In the
proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pp. 190–200, 2005.

[24] G. Koo, Y. Oh, W. Ro and M. Annavaram. “Access Pattern-Aware Cache

Management for Improving Data Utilization in GPU”. In the proceedings

of the 44th ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 307–319, 2017.

[25] D. Lustig, S. Sahasrabuddhe, and O. Giroux. “A Formal Analysis of the
NVIDIA PTX Memory Consistency Model”. In the proceedings of the

24th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 257–270, 2019.

[26] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. “Simics: A Full
System Simulation Platform”. In IEEE Computer, 35(2), pp. 50–58, 2002.

[27] Y.A. Manerker, D. Lustig, M. Martonosi, and A. Gupta. “PipeProof:

Automated Memory Consistency Proofs for Microarchitectural

Specifications”. In the proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 788–801,
2018.

[28] J. Manson, W. Pugh, and S.V. Adve. “The Java Memory Model”. In the

proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pp. 378–391, 2005.

[29] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M. R. Marty, M. Xu, A.R.

Alameldeen, K.E. Moore, M.D. Hill, and D.A. Wood. “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset”. In
SIGARCH Computer Architecture News, 33(4), pp. 92–99, 2005.

[30] O. Matthews and D.J. Sorin. “Architecting Hierarchical Coherence

Protocols for Push-button Parametric Verification”. In the proceedings

of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 477–489, 2017.

[31] C.J. Mauer, M.D. Hill, and D.A. Wood. “Full-System Timing-First
Simulation”. In the proceedings of the 2002 ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), pp. 108–116, 2002.

[32] S. Narang. “DeepBench”. https://svail.github.io/DeepBench/, 2016.
Accessed: September 21, 2018.

[33] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder.
“Automatic Logging of Operating System Effects to Guide Application-

Level Architecture Simulation”. In the proceedings of the Joint

International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS/Performance), pp. 216–227, 2006.

[34] NVIDIA. “CUDA Toolkit Documentation: Memory Consistency
Model”. https://docs.nvidia.com/cuda/parallel-thread-

execution/index.html#memory-consistency-model. Accessed: February
1, 2019.

[35] N. Oswald, V. Nagarajan, an D.J. Sorin. “ProtoGen: Automatically

Generating Directory Cache Coherence Protocols from Atomic
Specifications”. In the proceedings of the 45th ACM/IEEE International
Symposium on Computer Architecture (ISCA), pp. 247–260, 2018.

[36] J. Power, A. Basu, J. Gu, S. Puthoor, B.M. Beckmann, M.D. Hill, S.K.

Reinhardt, and D.A. Wood. “Heterogeneous System Coherence for

Integrated CPU-GPU Systems”. In the proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.
457–467, 2013.

[37] M. Sinclair, J. Alsop and S. Adve. “HeteroSync: A Benchmark Suite for

Fine-Grained Synchronization on Tightly Coupled GPUs”. In the IEEE

International Symposium on Workload Characterization (IISWC),
October 2017.

[38] D.J. Sorin, M.D. Hill, and D.A. Wood. “A Primer on Memory
Consistency and Cache Coherence”. In Synthesis Lectures on Computer
Architecture, 2011.

[39] C. Trippel, Y.A. Manerker, D. Lustig, M. Pellauer, and M. Martonosi.

“TriCheck: Memory Model Verification at the Trisection of Software,

Hardware, and ISA”. In the proceedings of the 22nd International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pp. 119–133, 2017.

[40] G. Voskuilen and T.N. Vijaykumar. “Fractal++: Closing the Performance

Gap Between Fractal and Conventional Coherence”. In the proceedings

of the 41st ACM/IEEE International Symposium on Computer
Architecture (ISCA), pp. 409–420, 2014.

[41] G. Voskuilen and T.N. Vijaykumar. “High-Performance Fractal
Coherence”. In the proceedings of the 19th International Conference on

91

Architectural Support for Programming languages and Operating
Systems (ASPLOS), pp. 701–714, 2014.

[42] J. Wickerson, M. Batty, B.M. Beckmann, and A.F. Donaldson. “Remote-

Scope Promotion: Clarified, Rectified, and Verified”. In the proceedings

of the ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA), pp.
731–747, 2015.

[43] D.A. Wood, G.A. Gibson, and R.H. Katz. “Verifying a Multiprocessor
Cache Controller Using Random Test Generation”. In IEEE Design &
Test of Computers, 7(4), pp. 13–25, 1990.

[44] R. E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. “SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical

Sampling”. In the proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA), pp. 84–95, 2003.

[45] M. Zhang, A. R. Lebeck, and D.J. Sorin. “Fractal Coherence: Scalably

Verifiable Cache Coherence”. In the proceedings of the 43rd Annual
ACM/IEEE International Symposium on Microarchitecture (MICRO), pp.
471–482, 2010

92

