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Abstract—As the deep learning and high-performance 

computing markets continue to grow, hardware designers are 

increasingly optimizing future GPUs to run compute (a.k.a. 

GPGPU) workloads. A key area of optimization for these 

compute-oriented designs, which was not emphasized when GPUs 

exclusively executed graphics workloads, is inter-thread data 

sharing and synchronization. GPU cache coherence protocols now 

support these operations and are governed by a specified memory 

consistency model. In general, current GPU models are based on 

sequential consistency for data-race-free (SC for DRF), which 

mandates data written to memory must be globally visible only 

after certain synchronization points. GPU coherence protocols 

based on such relaxed memory models are particularly difficult to 

design and test due to the large number of memory accesses that 

may be reordered. This leaves GPU hardware designers struggling 

to validate the correctness of GPU cache coherence optimizations. 

To address this issue, this paper introduces a novel, completely 

autonomous random testing methodology for complex GPU cache 

coherence protocols. Our framework continuously generates 

sequences of memory requests with minimal user intervention 

using a mix of load, store, and atomic operations. The tester 

dynamically and autonomously checks each response against an 

expected global view of memory and immediately detects any 

inconsistencies in a target coherence protocol, providing designers 

detailed feedback on the issue. We then demonstrate the 

methodology on the popular cycle-level gem5 simulator by 

replacing its GPU core model with our unique testing framework. 

The results show that the GPU tester can cover 94% and 100% of 

all reachable state transitions in L1 and L2 caches respectively of 

a representative GPU coherence protocol. This coverage is 6.25% 

and 25% higher than the one achieved by a wide selection of 26 

applications. In addition, the tester runs more than 50 times faster 

than those applications, which enables efficient and fast protocol 

debugging. 

Index Terms—Cache coherence, central processing unit (CPU), 

graphics processing unit (GPU), memory consistency, simulation, 

testing. 

I. INTRODUCTION

GPUs are the de facto high-throughput, programmable 

accelerators targeting a wide breadth of compute applications. 

In several emerging GPU applications, threads often 

communicate with each other using fine-grained 

synchronization via shared virtual memory, stressing the GPU’s 

cache coherency protocol [38]. Therefore, hardware designers 

are frequently relying on pre-silicon testing methods to 

effectively, and correctly, model modern GPU coherence 

protocols in order to reduce time-to-market. 

Modern cache coherence protocols are particularly difficult 

to test due to their state space explosion and tight coupling with 

relaxed consistency models. Formal verification strives to 

completely validate a protocol specification or implementation, 

but it is slow and requires substantial manual effort [12]. The 

challenges in formal verification are so immense that 

improvements in the space are noteworthy as demonstrated by a 

slew of recent publications [17][27][39][40][41][42][45]. 

Meanwhile, cycle-level simulators strive to model modern 

cache controllers with the necessary fidelity to make accurate 

performance projections. Such simulators are designed to 

balance accuracy, simulation speed, and configurability. The 

gem5 simulator [5], along with its Ruby cache and network 

models [29], is one such simulation platform, and it is widely 

used by industry and academia because of its flexibility and 

fidelity. Recently, an industrial-quality GPU compute model 

was added to gem5 [15], providing designers all the necessary 

infrastructure to evaluate the rich GPU protocol design space. 

However, rapidly testing newly developed GPU coherence 

protocols is still a challenging problem. 

Rapid protocol testing is important even when formal 

verification has validated a protocol’s state transitions. For 

instance, a protocol’s implementation may contain bugs due to 

a variety of reasons that are independent of the protocol’s state 

transitions [9][11][16]. More pragmatically, formal verification 

is time consuming and requires expertise unknown by many 

designers. Thus, hardware designers may choose to simply 

tolerate implementation bugs and rely on data from an 

independent functional memory model. However, such 

separation gives designers little confidence the modelled 

protocol is correct and can accurately project a future system’s 

performance. 

Alternatively, designers can tightly integrate the functional 

and timing models [6] and use application-level testing with 

limited success. However, most well-optimized applications do 

not stress synchronization and protocol corner cases. 

Furthermore, our results show this application-based testing 

process is time consuming and ad hoc since millions of 

instructions need to be simulated in detail to complete an 

application. Alternatively, designers can write focused 

microbenchmarks that stress certain memory interactions. 

However, compiler optimizations and unanticipated timing 

delays can make this approach extremely difficult. The results 

of both approaches are inadequate, leaving lingering bugs that 
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lessen a protocol designer’s confidence in a protocol’s 

implementation. 

To avoid the inadequate coverage and long latency of 

application-based testing, while also evading significant formal 

verification effort, prior work in the CPU space has proposed 

autonomous randomized testing. Specifically, Wood et al. [43] 

proposed random test generation for stressing cache controllers 

using false sharing and leveraged the fact that strong CPU 

protocols were building blocks to implement the sequentially 

consistent (SC) memory model. By using the SC memory 

model, their approach always knows correct values for 

variables, requires no prior knowledge of the protocol’s state 

transition details, stresses race conditions, and finds bugs 

quickly compared to application-based testing. A CPU-only 

random tester [5] was designed using a similar philosophy and 

has been proven to be highly effective [29]. However, GPU 

protocols operate under relaxed memory consistency models 

[21][25][34], and simple testing approaches, such as the 

approach proposed by Wood et al., are not directly applicable to 

the more complicated semantics. 

To combat the complexity of relaxed consistency, Adve and 

Hill proposed Data-race-free (DRF) semantics [1] to simplify 

their understanding. DRF models provide formal and precise 

definitions that clearly specify to programmers what is 

permissible, and what is not. DRF models also allow for many 

low-level hardware and software optimizations to take place 

underneath these well-defined semantics. As a result, DRF 

semantics have been very successful in the industry and have 

directly influenced many well-known memory models, such as 

those in C++ [8] and Java [28]. 

Building on the success of DRF semantics, this paper 

introduces a new testing methodology capable of autonomously 

stressing GPU protocols designed to support relaxed 

consistency. Dynamic “happens-before” relationships expressed 

by atomic operations in DRF model are captured in our random 

testing framework. The framework disallows data races in its 

generated sequence of memory accesses to shared variables to 

deterministically reason their values at any time. 

Overall, the paper makes the following contributions: 

• The paper introduces a novel DRF random testing
methodology applicable to GPU protocols supporting
relaxed memory model.

• Following the methodology, we provide a random,
highly configurable GPU tester, which generates
sequences of memory requests with respect to the
specified memory consistency model.

• We then evaluate our GPU tester against the application-
based testing approach. Our results show that the tester
identifies bugs much quicker and covers more coherence
state transitions than running a wide selection of GPU
applications. The tester covers 93.8% and 100% of all
reachable state transitions in L1 and L2 caches
respectively of a representative GPU coherence protocol.
The GPU tester achieves this coverage more than 50

times faster than it takes application-based testing to 
reach similar or lower coverage. 

• Finally, we show that the GPU tester can complement an
existing CPU tester to verify an integrated CPU-GPU
coherence protocol in a heterogeneous system.

II. BACKGROUND

A. Sequential Consistency for Data-Race-Free

While SC offers programmers a simple model to reason

about relative orders of concurrent memory operations, the 

model prevents hardware from reordering memory operations to 

achieve better performance. Therefore, many relaxed memory 

models have been proposed as solutions to improve hardware 

performance. The SC for DRF model 0 proposed by Adve and 

Hill [1] is one of them. Under SC for DRF, a program behaves 

as if it ran in an SC model if it has no data races. The behavior 

of data races under SC for DRF is undefined, so conflicting 

memory accesses like concurrent store operations to the same 

variable need to be ordered by some synchronization 

mechanisms such as memory fence. 

B. Random CPU Coherence Testing Frameworks

There are several existing random testing frameworks for

CPU coherence protocols. Wood et al. [43] proposed an 

automated testing framework that verified the functionality of 

cache controllers in multi-processor systems. Their tester is an 

N-state finite state machine issuing a sequence of loads and

stores. The state machines replace complex CPU micro-

architectural models, so they are much faster than simulating

real applications with detailed CPU models. The tester uses

pseudo-random numbers to generate memory addresses, so it

can access arbitrary cache lines and trigger false sharing

scenarios. The tester assumes a strong memory model, so it can

rely on the issuing order of load and store operations to

determine values of shared variables. This assumption simplifies

the tester’s implementation by allowing it to test CPU protocols

supporting strong memory model without knowledge of the

underlying protocols. Hangal et al. [17] built a tool called

TSOTool to verify total-store-order (TSO) compliant CPU

memory systems. The tool generates data-race programs that

issue load and store operations to a target memory system.

Values of those operations are observed and checked against a

set of TSO-defined axioms to detect any violation of the TSO

model.

C. Naively Applying CPU Coherence Testing to GPUs

Different from CPU protocols, GPU protocols operate under

relaxed memory models. Such relaxed models may make the 

order of load and store operations from a GPU core appear 

differently with respect to other GPU cores unless there are 

explicit synchronization operations. A coherence protocol 

supporting a relaxed memory model may leverage this property 

to lazily perform memory operations until encountering an 

explicit synchronization operation enforcing them to appear 

globally to other cores. Since existing CPU testing frameworks 
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including ones proposed by Wood et al. and Hangal et al. do not 

support such synchronization operations required by relaxed 

memory models, they are not able to use observed values of load 

and store operations to infer global states of shared variables. 

Therefore, such CPU testing frameworks are not directly 

applicable to GPU protocols. 

D. The gem5 simulator

gem5 [5] is a highly configurable and modular simulation

infrastructure for computer-system architecture research. It is 

widely used by academic and industrial researchers alike. gem5 

includes several CPU models and supports all major ISAs, 

including ARM and x86. In addition to its classic memory 

model, gem5 includes the Ruby [29] memory system. Ruby is 

a set of cache and interconnect models that allow users to 

quickly specify new cache coherence protocols by using its 

SLICC domain-specific language. Recently, AMD released an 

open-source GPU compute model into the gem5 public 

repository [15] along with a representative GPU cache 

coherence protocol called VIPER [4]. VIPER is a write-through 

protocol with release consistency semantics and was the base 

protocol used by Power et al. [36] and Hechtman et al. [19]. 

III. DRF GPU TESTING FRAMEWORK

Our DRF GPU testing framework randomly generates 

memory operations and dynamically tracks the “happens-

before” relationship between them to detect any coherence 

violation. The framework does not model microarchitectural 

details of GPU cores. Instead, it randomly generates and sends 

streams of memory accesses including loads, stores, atomics, 

and memory synchronization requests through memory ports as 

a proxy GPU device. Fig. 1 shows the main differences between 

running applications in a real GPU system and running the GPU 

tester without detailed a GPU core’s model. 

The remainder of this section describes the details of our 

testing approach. Specifically, Section III.A describes how 

streams of memory accesses are generated to stress a GPU 

memory system while adhering to the DRF memory model. 

Next, Section III.B explains how the tester reflects a generic 

GPU thread model to resemble GPU’s memory traffic patterns. 

Then Section III.C describes how the tester maintains data 

integrity at any point in time. Finally, Section III.D presents how 

the tester can generate a detailed log of memory transactions in 

case of failures to help ease the debugging process. 

A. DRF Memory Access Generation

The GPU tester maintains a set of shared variables accessible

by load, store, and synchronization operations. In DRF relaxed 

model there are two types of variables: atomic/synchronization 

and normal/non-synchronization variables. The tester generates 

load/store operations accessing non-synchronization variables 

and atomic operations accessing synchronization variables. This 

constraint obeys the DRF memory model. 

The tester randomly maps variables to a range of memory 

addresses. This random mapping enables the tester to generate 

conflicting memory operations accessing different variables 

mapped to the same cache line. For example, in Fig. 2, 

synchronization ‘variable 0’ and non-synchronization ‘variable 

4’ can co-locate in ‘cache line 0’. Since cache controllers 

operate at the granularity of cache lines, such random mapping 

can help trigger false sharing cases when load, store, and atomic 

operations race for the same cache line. False sharing accesses 

are major sources of bugs in a coherence protocol’s specification 

and implementation. 

DRF programs avoid data races through well-defined critical 

sections that are guarded by atomic operations. A critical section 

starts once a thread acquires a lock which is implemented as an 

atomic variable. It ends once the thread releases the lock. 

Concurrent threads trying to update a shared variable must 

successfully acquire a shared lock to avoid any data race. The 

tester replicates the behavior of a DRF program by generating 

and issuing streams of episodes to memory. Like a critical 

section, an episode is a well-defined sequence of memory 

operations guarded by atomic operations. For example, in Fig. 

3, episode 0 (Eps 0) is a sequence of four memory operations. It 

begins with an atomic operation with acquire semantics to a 

synchronization variable. The acquire semantics orders the 

atomic operation before any subsequent memory operations in 

the episode. Following the first atomic operation are load and 

store operations. An episode ends with another atomic operation 

with release semantics that orders this atomic operation after any 

previous memory operations in the episode.  

The tester generates load and store operations in an episode 

so that they do not form any data race with any other active 

episodes in the system. For example, in Fig. 3, Eps 0 and 1 are 

both active at the same time, and they both try to update and 

Fig. 2. An example of a random mapping between variables and real addresses. 

Fig. 1. Example testing systems in gem5 using applications and GPU tester. 
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access the same variables, which forms a data race between 

them. In order to prevent two active episodes from having racy 

memory accesses, when the tester initializes an episode, it 

selects a synchronization variable to acquire. Based on the 

selected synchronization variable, the tester determines active 

episodes that acquire the same synchronization variable and 

therefore potentially form a data race with the new episode. The 

tester then generates all load and store operations for the new 

episode so that no possible data race can be formed with any 

active episode by applying the following two rules. 

• No load or store operation is generated for a shared
variable being stored by an active episode.

• No store operation is generated for a shared variable
being loaded by an active episode.

B. GPU Thread Model in the Tester

Although the tester does not model microarchitectural

details of GPU cores, it does resemble how real GPUs core 

would send many accesses to the memory system in parallel. 

The tester consists of multiple threads that are connected to a 

memory system. Each tester thread acts like a real GPU thread 

and issues its sequence of memory accesses to memory. 

Multiple threads grouped together in a wavefront (WF) operate 

in lockstep. Threads in a WF can proceed to their next memory 

operations only when all other threads in the WF finish their 

current operations. This lockstep execution is similar to how 

GPU threads operate in a single-instruction, multiple-thread 

(SIMT) execution model. However, unlike an actual GPU 

model, the tester takes advantage of the fact that within the 

simulator it can directly attach to the cache hierarchy, bypassing 

the GPU core model and reducing simulation time. 

The tester can also be extended to evaluate any system 

configuration; therefore, the user can configure a multi-GPU 

system with a varying number of caches and diverse topologies. 

As long as the system under test has a DRF memory model, the 

tester will work seamlessly. 

C. Data and  Forward Progress Checks

To provide useful information to a hardware designer, the

tester must know whether loaded values are consistent with 

expected values, and that the overall system is making forward 

progress (i.e., there are no deadlocks). Our testing infrastructure 

can do this in a fully autonomous manner, without receiving any 

guidance from the user, because it maintains a reference 

memory of all variables and their values. With respect to release 

consistency, the tester understands that a newly written value 

becomes globally visible to other threads after the episode retires 

(i.e., when it finishes executing its last atomic operation with 

release semantics) and updates its internal storage appropriately. 

Using its up-to-date storage of all variables, the tester can 

immediately identify inconsistent loaded values and generates 

an error message outlining details of the bug. 

The tester is able to detect if a memory system is not making 

any forward progress for an unreasonably long period of time, 

which may be due to a deadlock in the protocol’s 

implementation. The tester records a timestamp for each 

outstanding request when it is issued to the memory system. 

Periodically, the tester runs a forward progress check and detects 

whether any outstanding requests have not received a response 

for more than a specified number of cycles. If so, the tester raises 

a flag to signal a potential deadlock happening in the memory 

system. This threshold is chosen heuristically to be one million 

CPU cycles in our evaluation but is also configurable. This 

check complements the default deadlock detection mechanism 

implemented within Ruby and finds deadlock issues within the 

GPU memory system interface. 

Fig. 3. Valid and invalid generated episodes. Episode 1 violates DRF 

constraints. Both episodes 0 and 1 try to read and update the same 

variables, which creates data races. This type of episode is not generated 

by the tester. Synchronization between episode 0. 

Atomic_Acq (A)

LD (X) = 0

ST: 1 -> Y

Atomic_Rel (A)

Atomic_Acq (A)

LD (Y) = 0 or 1?
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Atomic_Rel (A)

Atomic_Acq (A)
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ST: 1 -> X

Atomic_Rel (A)
Time
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Eps 0
Eps 1 
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Eps 2

TABLE I. GPU L1 CACHE EVENTS 

Event Description 

Load Data read request from GPU 

StoreThrough Data write request from GPU 

Atomic Data atomic request from GPU 

TCC_Ack Data response from GPU L2 

TCC_AckWB Write completion ack from GPU L2 

Evict Flash invalidation request from GPU 

Repl Cache replacement request 

TABLE II. GPU L2 CACHE EVENTS 

Event Description 

RdBlk Data read request from GPU L1 

WrVicBlk Data write request from GPU L1 

Atomic Data atomic request from GPU L1 

AtomicD Atomic completion ACK 

AtomicND Atomic incompletion ACK 

Data Data response from memory 

L2_Repl Cache replacement 

PrbInv Invalidation request from other L2 

WBAck Write completion ACK from memory 
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D. Event Logging

A key requirement for any testing infrastructure is providing

detailed information when problems are detected. Our tester 

prints out all memory transactions related to a specific failed 

operation by automatically creating detailed event logs during 

runtime. For example, when a loaded value is not consistent with 

the  tester’s internal state, the tester prints out information about 

the last transaction that updated the variable. The information 

includes which thread, thread group, and episode issued the 

transaction, when the transaction happened, and what value was 

written to the variable. Such information is helpful in aiding a 

memory system designer when attempting to narrow down a 

specific window of activities causing the problem.  

IV. EVALUATION

We use gem5 simulator [15] and a representative GPU 

coherence protocol called VIPER [4] to evaluate efficiency of 

the GPU tester. We compare its performance and coherence 

state coverage against the application-based testing approach 

that runs a set of diverse GPU applications. We then use an 

existing CPU protocol tester in gem5 to show how our GPU 

tester can complement the CPU tester in testing a coherent CPU-

GPU memory system. 

VIPER is a write-through protocol performing store 

operations immediately using per-byte dirty masks and does not 

stall for exclusive permissions. The protocol supports two 

synchronization operations: load acquire and store release. 

When an L1 cache receives a load acquire, it invalidates all 

cache entries to remove any possibly stale data. A store release 

operation waits for all write-through operations to complete so 

that the most up-to-date data are available in memory. VIPER 

represents common characteristics of coherence protocols used 

in AMD and NVIDIA GPUs including read-initiated 

invalidations and write-through L1 caches. 

The GPU’s memory system has per compute unit private L1 

data caches and an L2 cache shared among GPU cores. The CPU 

includes two cores with private L1 data caches and a shared L2 

cache. The system directory is being shared by the CPU and 

GPU. Fig. 4 shows all coherence state transitions. All possible 

cache events in the GPU’s L1 and L2 caches are shown in 

TABLE I and TABLE II respectively. It is important to note that 

the tester is not specific to the VIPER protocol. The tester can 

support other GPU protocols as well with minimal extensions. 

For example, some protocols may support extra cache 

invalidation or cache flush operations at synchronization points, 

which requires adding such semantics to memory fence 

operations and possibly changing how data are validated with 

respect to the target memory model in the tester. 

We sweep over different configurations as summarized in 

TABLE III. The GPU and CPU tester runs are permutations of 

various parameters (e.g., cache size, address range, and test 

length). Application-based tests are composed of various 

applications from compute [2][3], HeteroSync [37] and MI 

applications, including DNNMark [12], DeepBench [32], and 

MIOpen-benchmarks [14]. Descriptions of the applications are 

provided in TABLE IV. 

For fair comparison, applications should be diverse enough 

to stress various cache transitions. We use a data locality 

characterization approach adopted by Koo et al. [24] to 

characterize data locality of each application. We profile the 

cache line usages between WFs and classify them into streaming 

(never reused), intra-WF (reused within the same WF), inter-WF 

(reused by different WFs) and mixed-WF (mixed reuse). Fig. 6 

reports the breakdown of the four categories, and the results 

show that our selected applications demonstrate vastly different 

behaviors and thus access cache differently. In addition, our 

further profiling studies show that certain MI and HeteroSync 

applications are heavily stressing atomic operations. Transition 

coverage (i.e., fraction of activated transitions out of all 

Fig. 4. State transitions in GPU L1 and L2 cache. “Undef”: the transition is 

undefined. “Stall”: the transition stalls the cache controller. “-> X”: transition 

to state X. State “V” means the cache line is in the valid state. State “I” means 
the cache line is invalid. State “IV” means the cache line is waiting for refill 

data. State “A” means the cache line is doing an atomic access and waiting 

for an Ack to complete the access. 

TABLE III. TESTER CONFIGURATIONS 

Test Type GPU Tester Application CPU Tester 

Protocol GPU_VIPER GPU_VIPER MOESI_AMD_Base 

System size 8 CUs 8 CUs 2/4/8 CPUs 

Cache size Small: 256B L1, 1KB L2 

Large: 256KB L1, 1MB L2 

Mixed: 256B L1, 1MB L2 

16KB L1, 256KB L2 Small: 256/512B Corepair 

Large: 256/512KB Corepair 

Test length Permutation of [100, 200] actions/episode and 

[10, 100] episodes/wavefront 

Simulation time varies 100/10K/100K/1M loads 

Address range Small: 10 atomic locations, 1M regular ones 

Large: 100 atomic locations, 1M regular ones 

16 GB 512 MB 

Test runs Test 0, Test 1, …, Test 23 HACC, Square…, FFT Test 0, Test 1, …, Test 23 
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defined/reachable transitions) and execution time (i.e., time to 

finish a simulation run) are collected to evaluate the GPU tester 

and compare against real applications and the CPU tester. 

In this section, we first show how the high configurability of 

GPU tester helps explore different parts of the tester 

configuration space. Second, we compare GPU tester and 

applications in terms of their cache transition coverage and 

testing time. Third, we describe how well the GPU tester 

complements CPU tester to increase the overall state transition 

coverage in the coherence directory in a shared CPU-GPU 

system. 

A. Exploring the Tester Configuration Space

Due to the diversity of memory systems, and to support

testing future designs, the GPU tester must be highly 

configurable so that users can easily test a wide range of designs. 

In addition, configurability allows the tester to achieve high 

coverage in a short amount of time. Cache size, memory address 

range, cache line size, synchronization vs non-synchronization 

variable ratio, the episode length, etc. are all configurable in the 

tester. Users can choose to vary values of some parameters to 

focus on certain corner-case state transitions. In this section, we 

show how changing cache size parameter can stress different 

subsets of possible state transitions in GPU L1 and L2 caches. 

 Fig. 5 shows heat maps of transition hit frequency in two 

different testing configurations: small and large GPU caches 

(i.e., other parameters including test length and episode length 

are identical). The shade of each transition in the maps 

corresponds to how frequently it is hit by the tester. The large 

cache testing case (Fig. 5.(b)) triggers cache hit transitions (e.g., 

[Load, V] in GPU L1, [StoreThrough, V] in L1 and [RdBlk, V] 

in GPU L2) more frequently than the small cache testing case 

(Fig. 5.(a)) does due to the difference in cache capacity. 

However, the small cache testing case is more effective in 

triggering cache replacement-related transitions (e.g, [V, Repl], 

[A, Repl] in L1, [V, L2_Rep] in L2) due to its relatively small 

cache capacity. 

In addition to cache size, other parameters including address 

range and episode length can be configured to target different 

subsets of an entire state transition space. For example, smaller 

address range increases the number of sharing accesses between 

threads, which stresses transient states. Increasing the length of 

episodes induces more non-synchronization accesses per 

synchronization access, which is likely to increase inter-episode 

interactions. By combining various configuration sets that stress 

different parts of a protocol, the tester can hit individual 

transitions in much shorter period than memory accesses 

generated by actual GPU applications. 

Fig. 6. Data locality in selected applications. 

(a). Small Cache Size (b). Large Cache Size 

Fig. 5. GPU L1 and L2 transition hit frequency with different cache sizes. Small cache size: 256B 2-way L1, and 1KB 2-way L2. Large cache size: 256KB 

16-way L1, and 1MB 16-way L2. 
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B. GPU Tester versus Applications

Applications or unit tests are typically used to perform

regression testing. However, as we will show, application-based 

testing is a slow process, and tailoring an application suite to 

provide the right amount of coverage is inefficient. To quantify 

testing efficiency, we classify transitions (e.g., [A, E, B] where 

state A transitions into state B via event E), in the Ruby system 

into four classes as illustrated in Fig. 7: 

• Undefined (Undef): no defined transitions from A via E.
If event E occurs while a block is in state A, this triggers
a fault signaling that the protocol implementation is
faulty.

• Inactive (Inact): there are possible transitions from A via
E, but the transitions are never observed during testing.

• Active (Active): there are defined transitions from A via
E, and the transitions are activated during testing.

(a). GPU Tester (b). All Applications 

Fig. 7. Comparison of the GPU L1 and L2 transitions covered by GPU tester and applications 

Fig. 8. Transition coverage of GPU tester on the GPU L1 and L2 caches. 

Fig. 9. Transition coverage of applications on the GPU L1 and L2 caches. 
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• Unreachable by GPU tester (Impsb): transitions from A
via E are impossible to be reached by GPU tester because
of the CPU-related constraints. For instance, in L2,
PrbInv-triggered transitions are not reachable by the
GPU tester since there is only one single L2 cache in the
testing system. PrbInv events are only triggered by a
remote L2 cache (e.g., CPU L2 cache) to invalidate a
target cache line. In an application-based testing system,
those transitions can be reached since the CPU L2 cache
can send an invalidation request to invalidate a cache line
in the GPU L2 cache.

Following the classifications from the GPU L1 and L2 

comparison in Fig. 7, we see that GPU tester and applications 

are showing the same undefined squares (i.e., transitions), but 

the GPU tester shows more active ones, indicating that more 

transitions are hit and covered by the GPU tester than when 

using applications. Fig. 8 and Fig. 9 further compare the 

transition coverages and testing time of the GPU tester and 

applications respectively. Results are reported in the order of run 

time, and the final “(UNION)” shows the union of the coverage 

of all tests and the total cumulative run time. Our GPU tester is 

able to reach 94% coverage on the GPU L1 and 100% coverage 

of all reachable transitions on the GPU L2, whereas application-

based tests reach 6.25% and 25% lower coverage on the L1 and 

L2 respectively. The inactive transitions are mainly contributed 

by corner cases (e.g., store hits on a pending atomic operation) 

and CPU or DMA related requests (e.g., the GPU’s L2 probe-

invalidate transitions). Further, the GPU tester runs more than 

50x faster to reach similar or higher coverage since the tester 

does not model any detailed GPU pipeline. This much higher 

testing speed translates directly to the debugging efficiency 

since bugs can be reproduced much faster than they are in the 

application-based testing approach. 

Fig. 9 further shows that the union coverage of the 

applications is dominated by the Interac and CM applications 

that use more atomic operations and thus activate more 

transitions than the remaining applications. This behavior of 

application-based testing shows that not all applications can be 

effectively used to test most state transitions. Only few selective 

applications can reach a large space of all possible state 

transitions. Unfortunately, choosing such effective applications 

is challenging without a deep understanding of their memory 

access patterns. 

C. Complementing the CPU tester

To provide complete memory testing one would also need to

test the CPU-side caches. For an APU, the system directory is 

typically shared by the CPU and the GPU, each of which is 

issuing different request types to the directory and thus can 

activate some unique transitions. Therefore, to fully test the 

system the CPU must also issue requests to the directory. Fig. 

10.(a)-(b) illustrate the directory coverage of applications and 

the CPU Tester. 

Given that GPU and CPU testers are stressing different 

transitions in the directory, we run each separately and take the 

union of their coverage, with results being reported in Fig. 

10.(c). As expected, the combination is capable of activating 

transitions that can only be uniquely triggered by either the CPU 

or GPU tester, and the combined coverage is 21.4% higher than 

the applications (56.6% versus 35.2%). However, by comparing 

Fig. 10.(a) to Fig. 10.(c), we see that the applications do activate 

some transitions that are not triggered by GPU and CPU testers, 

and such transitions are DMA related, which is not modeled in 

either tester. In addition, with respect to run time, the GPU and 

CPU testers are still significantly shorter (~12.6x) than the 

applications. 

V. CASE STUDY

In this section, we show a case study on how the tester 

discovered two common bugs in the GPU VIPER protocol and 

helped protocol designers debug them. 

One of the most common protocol bugs occurs when a 

loaded value of a shared variable is not consistent with the last 

value written. This indicates the hardware model is incorrect, 

assuming a DRF program. When data inconsistency occurs, the 

bug must have happened in between the current load operation 

and the last write operation on the variable. When detecting the 

inconsistency, the tester will report detailed information about 

the problem. 

(a). All Applications (35.2%) (b). CPU Tester (49.7%) (c). GPU+CPU Tester (56.6%) 

Fig. 10. System Directory transitions covered by different test types. 

88



TABLE V shows example output from the tester for the 

value inconsistency bug. Both the last reader and last writer tried 

to access the same variable at address 0x52860. The write 

operation happened (i.e., at cycle 16,098 by thread 12 in group 

2) before the read operation (i.e., at cycle 16,905 by thread 35 in

group 4). Since the tester ensures that read and write operations

on the same variables by different threads are ordered correctly

by atomic operations, if the tested memory system were bug free

then inconsistency should not have happened. In addition, the

bug must have occurred in the period between two operations.

Given the debugging information, a protocol writer can 

zoom in to view that specific window, print out relevant memory 

transactions initiated by the two threads, examine states of all 

relevant cache controllers, and diagnose the issue. In this 

example, the issue was that two false sharing write operations 

on different memory addresses of the same cache line (i.e., false 

sharing) race at the GPU L2 cache controller in the GPU VIPER 

protocol. The two operations were not serialized correctly at the 

controller, which made the write operation on address 0x52860 

fail to update the cache line. False sharing between memory 

accesses is a frequent cause of protocol implementation failures. 

The tester can be configured so that false sharing happens more 

often, which helps expose hidden bugs much faster than simply 

running real applications, which are often designed to avoid 

false sharing (e.g., by padding data structures to align to cache 

block boundaries). 

Another common protocol bug is multiple atomic operations 

not atomically updating shared synchronization variables 

correctly. The tester issues atomic operations that atomically 

adds a constant positive value to shared variables so that their 

values are always monotonically increasing. An atomic 

operation returns a variable’s old value before the operation is 

performed on the variable. Since atomic operations happen 

atomically and always increase values of variables, their return 

values are unique. If atomic operations performing on a variable 

return duplicate values, the tester detects and reports the 

violating operations to the user. Using the report, a protocol 

writer can zoom into the small window of execution between the 

two operations and examine their memory transactions to find 

out where and when the bug happens. This way of testing atomic 

operations is significantly more efficient than using real 

applications since incorrect synchronization in real applications 

can lead to extremely complicated failure conditions. 

VI. RELATED WORK

A. Improving Full-System Simulation Performance

Several prior works have recognized the need to improve the

performance of simulation when evaluating complex full-

system workloads, such as server workloads. These workloads 

rely heavily on library calls, OS functionality, and devices (e.g., 

NICs). Hardavellas et al. developed SimFlex [18], a full-system 

simulator designed with performance in mind. SimFlex relies on 

Simics [26], a functional full-system simulator, for the execution 

of workloads and the OS. In addition to relying on a functional 

full-system simulator, SimFlex utilizes a compile-time approach 

for component interconnection, which allowed compile-time 

optimizations across component boundaries. The most novel 

feature of SimFlex is its use of the SMARTS [44] statistical 

sampling methodology and extends it to multi-core systems. By 

using statistical sampling, simulation complexity and runtime 

can be reduced because many events need not be modelled, 

while simulation accuracy remains high. 

Mauer et al. [31] proposed decoupling the functional and 

timing aspects of full-system simulation and introduce TFsim, a 

timing-first simulator. They recognize that designers typically 

rely on simulators that provide both functional and timing 

accuracy. However, such models become difficult to implement 

accurately and with acceptable performance as computer system 

increase in complexity. TFsim also relies on Simics [26] for 

functional simulation. TFsim first executes dynamic instructions 

in their timing-first model and only invokes the functional 

simulator at commit time. If the functional simulator detects an 

error, the timing simulator’s state is updated to reflect the correct 

state, which is obtained via the functional simulator. 

Narayanasamy et al. [33] recognized the need to emulate the 

OS effects when running architectural simulations. However, 

they also understand that correctly modelling the OS leads to 

increased runtime and complexity of simulation. Their work 

proposes Pin-System Effect Logger (pinSEL), a Pin-based [23] 

tool for logging OS effects. pinSEL instruments binaries and 

runs them natively on the OS for which it was compiled. As the 

instrumented binary executes, pinSEL creates a log of OS 

effects. The log contains changes to register state, values of 

memory locations by loads after the system call, whether those 

locations were modified by the OS, interrupts, and DMA 

actions. With pinSEL only application instructions need to be 

modelled, and OS effects are emulated in a simulator using the 

logged events. 

B. Designing Coherence Protocols for Verification

Traditional formal verification methods are complex and

very slow. Many algorithms used in such methods are NP-

complete, and verification methods used in industrial settings 

often require massive amounts of compute or expensive 

emulation tools. In order to alleviate some of the complexity of 

verifying cache coherence protocols, several prior works 

investigate the design of formally verifiable cache coherence 

protocols. Zhang et al. proposed fractal coherence [45], which 

are cache coherence protocols that are designed to have fractal 

TABLE V. AN EXAMPLE OF A READ-WRITE INCONSISTENCY BUG 

Last Reader Last Writer 

Thread ID 35 12 

Thread group ID 4 2 

Episode ID 727 652 

Address 0x52860 

Cycle 16,905 16,098 

Read/Written Value 16 17 
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properties. With such properties the protocols can be easily 

verified to scale up correctly to an arbitrary number of cores. 

Voskuilen and Vijaykumar extend fractal coherence [40][41] in 

order to improve its performance. While these protocols are 

suitable for verification, they do suffer from performance loss 

and may not be suitable for complex heterogeneous systems. 

C. Automatic Protocol Generation from Specifications

More recent work by Oswald et al. [35], and Matthews and

Sorin [30], have proposed generating verifiable cache coherence 

protocols from theoretical principles. These works look to 

bridge the gap between formal verification and the design of 

protocols. These works remain focused on CPU protocols. In 

[30] atomic specifications are used to automatically generate

directory protocols, and in [35] ProtoGen is proposed. ProtoGen

is capable of generating complete MSI, MESI, and MOSI

protocols given only their stable state definitions.

D. Random Testing for CPU Coherence Protocols

As previously mentioned, Wood et al. proposed a random

testing strategy for multi-core CPU systems [43], and Martin et 

al. utilize this design to develop a CPU tester for the Ruby 

memory models in gem5 [29]. While this testing strategy works 

well for CPUs, as discussed in section 2, it is not easily 

extended to more relaxed GPU consistency models, or for 

Heterogeneous systems. We use the basic philosophy of this 

prior work and build upon it to develop our random testing 

framework for relaxed GPU consistency and coherence models. 

In addition, Hangal et al. [17] proposed TSOTool that 

randomly generates programs with data races to verify memory 

systems implementing TSO memory model. Since the tool is 

focused solely on TSO memory, it is also not applicable to test 

GPU memory systems that adopt much more relaxed memory 

models. 

While prior work has shown that formal verification, along 

with protocols designed for formal verification [40][41][45], 

can be effective for easing the burden of proving formal 

correctness for designers, and have demonstrated how 

theoretical frameworks can be used to generate correct 

protocols implementations [30][35], these approaches are not 

necessarily applicable for researchers who wish to quickly and 

accurately test state-of-the-art relaxed memory models in 

heterogeneous environments. For these researchers, some 

abstraction is tolerable, however correctness must be ensured at 

low cost. Therefore, our random GPU testing infrastructure 

provides a sweet spot for coherence and consistency 

verification when quickly evaluating new ideas. 

VII. CONCLUSIONS

As computer systems become more heterogeneous and 

complex, it is important that the simulation platforms on which 

researchers do their work be accurate and bug free. Because 

formally verifying consistency models and coherence protocols 

is challenging, and because bugs can still creep into the 

implementation of formally verified protocols, it is important 

that researchers can quickly test their protocol implementations 

for correctness. 

To address this challenge, we have developed a random 

testing framework for modern, relaxed GPU protocols in the 

state-of-the-art gem5 simulation platform. To implement the 

framework, we leverage DRF’s simplified semantics rather 

than the more complicated semantics of relaxed consistency. 

Our results show that we can achieve 100% coverage of the 

GPU L2 cache with the GPU tester alone, nearly 25% higher 

coverage than tests based on applications, at approximately 54x 

shorter of the runtime. In addition, the system directory 

coverage, when combined with the CPU random tester is 

56.6%, which is 21% higher than applications alone. Even 

when the GPU and CPU testers are run in serial, we can achieve 

this greater coverage, while running one or more orders of 

magnitude faster than running applications. 
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