
Compilation Principle
编译原理

第13讲：语义分析(1)
张献伟

xianweiz.github.io
DCS290, 4/7/2022

https://xianweiz.github.io/

Quiz Questions
• Q1: main differences between LL(k) and LR(k)?

• Q2: for the grammar, get FIRST(S) and FIRST(A).

• Q3: is the grammar a LL(1)?

• Q4: augment the grammar, and get the initial state (S0).

• Q5: LR(0), SLR(1), LR(1), LALR(1), what are the differences?

2

FIRST(S) = {a}, FIRST(A) = {a}

LL(k): top-down, leftmost derivation; LR(k): bottom-up, reverse of
rightmost derivation.

NO. One-lookahead of S is a, failing to distinguish the two rules.

LR(0): no lookahead, aggressive reduce
SLR(1): one lookahead, reduce using FOLLOW
LR(1): one lookahead, reduce using specified terminals
LALR(1): a compromise of LR(1) and LR(0)/SLR(1)

S à AB | a
A à a
B à b

{ S’ à .S, S à .AB, S à .a, A à .a }

Compilation Phases[编译阶段]

3

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

https://lowlevelbits.org/bitcode-demystified/

https://lowlevelbits.org/bitcode-demystified/

Compilation Phases (cont.)

4

proj1 proj2 proj3

proj4

https://github.com/arcsysu/SYsU-lang

https://github.com/arcsysu/SYsU-lang

5

Why Semantic Analysis?[语义分析]

• Because programs use symbols (a.k.a. identifiers)
− Identifiers require context to figure out the meaning

• Consider the English sentence: “He ate it”
− This sentence is syntactically correct
− But it makes sense only in the context of a previous sentence:

“Sam bought a pizza.” (what if “Sam bought a car.”?)

• Semantic analysis
− Associates identifiers with objects they refer to[关联]

p ”He” --> “Sam”
p “it” --> “pizza”

− Checks whether identifiers are used correctly[检查]
p “He” and “it” refer to some object: def-use check
p “it” is a type of object that can be eaten: type check

6

Why Semantic Analysis (cont.)
• Semantics of a language is much more difficult to

describe than syntax[语义比语法更难描述]
− Syntax: describes the proper form of the programs[仅形式]
− Semantics: defines what the programs means (i.e., what each

program does when it executes)[到意义]

• Context cannot be analyzed using a CFG parser[CFG不能分
析上下文信息]

− Associating IDs to objects require expressing the pattern:
{wcw | w ∊ (a|b)*}
p The first w represents the definition of a ID
p The c represents arbitrary intervening code
p The second w represents the use of the ID

7

Semantic Analysis
• Deeper check into the source program[对程序进一步分析]

− Last stage of the front end[前端最后阶段]
− Compiler’s last chance to reject incorrect programs[最后拒绝机会]
− Verify properties that aren’t caught in earlier phases

p Variables are declared before they’re used[先声明后使用]

p Type consistency when using IDs[变量类型一致]

p Expressions have the right types[表达式类型]

p … …

• Gather useful info about program for later phases[收集后续
信息]

− Determine what variables are meant by each identifier
− Build an internal representation of inheritance hierarchies
− Count how many variables are in scope at each point
− …

8
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Example

9

base class not defined

array index out of bounds (runtime)

1) y variable not declared
2) cannot multiply a string

cannot redefine functions

cannot add void to int

no main() function

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Example (cont.)

10

Semantic Analysis: Implementation
• Attribute grammars[属性文法]

− One-pass compilation
p Semantic analysis is done right in the middle of parsing

− Augment rules to do checking during parsing
− Approach suggested in the Compilers book

• AST walk[语法树遍历]
− Two-pass compilation

p First pass digests the syntax and builds a parse tree
p The second pass traverses the tree to verify that the program respects

all semantic rules
− Strict phase separation of Syntax Analysis and Semantic Analysis

11
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Syntax Directed Translation[语法制导翻译]

12

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Semantic Translation
(语义翻译)

Syntax Directed Translation
(语法制导翻译)

Syntax Directed Translation[语法制导翻译]

• To translate based on the program’s syntactic structure[语
法结构]

− Syntactic structure: structure of a program given by grammar
− The parsing process and parse trees are used to direct semantic

analysis and the translation of the program
p i.e., CFG-driven translation[CFG驱动的翻译]

• How? Augment the grammar used in parser:
− Attach semantic attributes[语义属性] to each grammar symbol

p The attributes describe the symbol properties
p An attribute has a name and an associated value: a string, a number, a

type, a memory location, an assigned register …
− For each grammar production, give semantic rules or actions[语
义规则或动作]

p The actions describe how to compute the attribute values associated
with each symbol in a production

13
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf

Attributes[语义属性]

• Attributes can represent anything depending on the task[
属性可以表示任意含义]

− If computing expression: a number (value of expression)
− If building AST: a pointer (pointer to AST for expression)
− If generating code: a string (assembly code for expression)
− If type checking: a type (type for expression)

• Format: X.a (X is a symbol, a is one of its attributes)
• For Project 2 – Syntax Analysis

− Semantic attributes
p Name, type

− Semantic actions

14

How to Specify Syntax Directed Translation

• Syntax Directed Definitions (SDD)[语法制导定义]
− Attributes + semantic rules[语义规则]for computing them

p Attributes for grammar symbols[文法符号和语义属性关联]

p Semantic rules for productions[产生式和语义规则关联]

− Example rules for computing the value of an expression
E -> E1 + E2 RULE: {E.val = E1.val + E2.val}
E -> id RULE: {E.val = id.lexval}

• Syntax Directed Translation scheme (SDT)[语法制导翻译方
案]

− Attributes + semantic actions[语义动作] for computing them
− Example actions for computing the value of an expression

E -> E1 + E2 {E.val = E1.val + E2.val}
E -> id {E.val = id.lexval}

15

SDD vs. SDT
• SDD[语法制导定义]: 是CFG的推广，翻译的高层次规则说明

− A CFG grammar together with attributes and semantic rules
p A subset of them are also called attribute grammars[属性文法]

• No side effects, i.e., rules are strictly local to each production

− Semantic rules imply no order to attribute evaluation

• SDT[语法制导翻译方案]: SDD的补充，具体翻译实施方案
− An executable specification of the SDD

p Fragments of programs are attached to different points in the
production rules

− The order of execution is important

16

D -> T L
T -> int
T -> float
L -> L1, id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh

D -> T { L.inh = T.type } L
T -> int { T.type = int }
T -> float { T.type = float }
L -> { L1.inh = L.inh }L1, id

Grammar SDD SDT

SDD vs. SDT (cont.)
• Syntax: A -> ⍺ {action1} β {action2} 𝛾 …
• Actions are executed ”at that point” in the RHS

− action1 executes after ⍺ has been produced but before β
− action2 executes after ⍺, action1, β but before 𝛾

• Semantic rule vs. action[语义规则 vs. 语义动作]
− Semantic rules are not associated with locations in RHS

p SDD doesn’t impose any order other than dependences
− Location of action in RHS specifies when it should occur

p SDT specifies the execution order and time of each action

17

SDD[语法制导定义]

• SDD has two types of attributes[两种属性]
− For a non-terminal A at a parse-tree node N

• Synthesized attribute[综合属性]
− Defined by a semantic rule associated with the production at N

p The production must have A as its head (i.e., A -> …)
− A synthesized attribute of node N is defined only by attribute

values at N’s children and N itself[子节点或自身]

• Inherited attribute[继承属性]
− Defined by a semantic rule associated with the production at

the parent of N
p The production must have A as a symbol in its body (i.e., … -> …A…)

− An inherited attributed at node N is defined only by attribute
values at N’s parent, N itself, and N’s siblings[父节点、自身或兄弟
节点]

18

P

C1 C2 C3

• Synthesized attribute for non-terminal A of parse-tree
node N[非终结符的综合属性]

− Only defined by N’s children and N itself
p Passed up the tree

− P.syn_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals can have synthesized attributes[终结符综合属性]
− Lexical values supplied by the lexical analysis
− Thus, no semantic rules in SDD for terminals

Synthesized Attribute[综合属性]

19

E.val

E1.val + T.val

E.val = E1.val + T.val

• Inherited attribute for non-terminal A of parse-tree node
N[非终结符继承属性]

− Only defined by N’s parent, N’s siblings and N itself
p Passed down a parse tree

− C2.inh_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals cannot have inherited attributes[终结符无继承属
性]

− Only synthesized attributes from lexical analysis

Inherited Attribute[继承属性]

20

P

C1 C2 C3

D

T.type L.inh

D -> T L (L.inh = T.type)

SDD[语法制导定义]

• Attribute dependencies in a production rule[产生式中的属
性依赖]

• SDD has rule of the form for each grammar production
b = f(A.attrs, ⍺.attrs, β.attrs, 𝛾.attrs)

• b is either an attribute in LHS (an attribute of A)
− In which case b is a synthesized attribute
− Why?

• Or, b is an attribute in RHS (e.g., of β)
− In which case b is an inherited attribute
− Why?

21

A -> ⍺ β 𝛾

Inherited

Synthesized

From A’s perspective ⍺, β, 𝛾 are children

From β’s perspective A, ⍺, 𝛾 are parent or siblings

Example: Synthesized Attribute[综合]

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

22

SDD:

Arithmetic expressions with + and *
(1) Print the numerical value of the entire expression
(2) Compute value of summation
(3) Value copy
(4) Compute value of multiplication
(5) Value copy
(6) Value copy

Each non-terminal has a single
synthesized attribute val
Terminal digit has a synthesized
attribute lexval

