Compilation Principle

% % JE I8

F13PE: 15 AT (1)
i NGE

xianweiz.github.io
DCS290, 4/7/2022

https://xianweiz.github.io/

Quiz Questions

* Q1: main differences between LL(k) and LR(k)?
LL(k): top-down, leftmost derivation; LR(k): bottom-up, reverse of
rightmost derivation.

e Q2: for the grammar, get FIRST(S) and FIRST(A).

S>AB|a
FIRST(S) = {a}, FIRST(A) = {a} A g
* Q3:is the grammar a LL(1)? B>b

NO. One-lookahead of S is g, failing to distinguish the two rules.
* Q4: augment the grammar, and get the initial state (S;).

{S">.5,S>.AB,S> .3, A> .a}
* Q5: LR(0), SLR(1), LR(1), LALR(1), what are the differences?

LR(0): no lookahead, aggressive reduce
SLR(1): one lookahead, reduce using FOLLOW
LR(1): one lookahead, reduce using specified terminals
LALR(1): a compromise of LR(1) and LR(0)/SLR(1)
@ turs g

Compilation Phases 4B

Source Code Source Code

’ ¢ N

/ \

/ \
v
]
]
]
]

;’ Lexical Analysis
- Token Stream |
: Syntax Analysis Front End F tend
L i . CAnalysis) ONECH) AST
Syntax Tree | (Clang) ’
: : ! Code) Semantic
Semantic Analysis | Generation Analysis
.. Syntax Tree A
‘::::::::::::::::ii:::::::::::::::
P : LLVM IR
Intermediate ,
Code Generation e
IR" Optimization ‘ Printer
Optimization . Back End Assenbly
IR| (Synthesis) —_— s ivm
Code Generation | | LEkeD) il
Target Code '

Executable File

) F K B 3 il
- s;tm-smmmm https://lowlevelbits.org/bitcode-demystified/ 4

https://lowlevelbits.org/bitcode-demystified/

Compilation Phases (cont.)

sysu-compiler

—_— —_— f —_— —_— —_— —_— —_—
(\ rontend e \ (\
preprocessor —Code—q lexer +TokenFlow—b| parser -I—JsonAST—ﬂ generator |l
| | |
projl proj2 proj3
LLViA-IR
midend
(\
| | optimizer ||
|
pr<|)_|4
LLViA-IR
backend
translator —Assemble—b{ linker

4q

https://github.com/arcsysu/SYsU-lang

A C~

PFco N

https://github.com/arcsysu/SYsU-lang

| AD 20222 EARFEHENRGERDKE

i3 GRIERSIRIHE (ENERT)
|
2&1%%%
ww Glt Repo
%%M F Shared File Storage |
Jggiig ARM ARM LR
;tzﬁjcﬁ: SCHXH T

———

S L s
| s uk A3 ——
EENRER ARMSLC 4 |

(SysY2020)

x86 Server
(CentOS7)

Why Semantic Analysis?[i& 4 #7]

* Because programs use symbols (a.k.a. identifiers)
— |ldentifiers require context to figure out the meaning

* Consider the English sentence: “He ate it”
— This sentence is syntactically correct

— But it makes sense only in the context of a previous sentence:
“Sam bought a pizza.” (what if “Sam bought a car.”?)

* Semantic analysis

— Associates identifiers with objects they refer to[5cHk]
o "He” -->“Sam”
o “it” --> “pizza”

— Checks whether identifiers are used correctly[#]

o “He” and “it” refer to some object: def-use check
o “it” is a type of object that can be eaten: type check

@ FTuxt ° g

Why Semantic Analysis (cont.)

* Semantics of a language is much more difficult to
describe than syntax[i& X bt 512 5 HE iR]
— Syntax: describes the proper form of the programs[{{JjZ]

- Semantics: defines what the programs means (i.e., what each
program does when it executes)[3| & Y]

* Context cannot be analyzed using a CFG parser[CFGANGES)
fr B R B R
— Associating IDs to objects require expressing the pattern:
{wew | w € (a|b)*}
o The first w represents the definition of a ID

o The c represents arbitrary intervening code
o The second w represents the use of the ID

“‘ : . f
‘\/‘ ivﬂnl\‘ﬁnﬁ " :E LZ

Semantic Analysis

* Deeper check into the source program[X}F 7 i#t— 5 5 #7]
— Last stage of the front end[# ¥ G P Bt
— Compiler’s last chance to reject incorrect programs(ix g fE 441 23]

— Verify properties that aren’t caught in earlier phases
o Variables are declared before they’re used[%: 7/ ¥ J5 1%]
o Type consistency when using IDs[25 & 27 —5]
o Expressions have the right types[# ik 2275

* Gather useful info about program for later phases[I&4E J&5 4:
=Sy
- Determine what variables are meant by each identifier
- Build an internal representation of inheritance hierarchies

— Count how many variables are in scope at each point

\ ’pmtz
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf 4

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Example

#include <iostream>

base class not defined

using namespace std;

//Derived class

class Child : public{

string myInteger;

array index out of bounds (runtime)

void doSomethin
] v {el 1l 21 31 4};

- Ial;

}' -lyinteger ¥ y ¥ 3 1) y variable not declared
il Goser=trTra N 2) cannot multiply a string
) tL-————z::%::\“‘§_~___—__¥

int getSum(int n) {

return [doSomething() + nf;
}
}; i i i
cannot add void to int

no main() function

cannot redefine functions

A

‘_"

oo S

e \
rg°

9 S
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf w

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Example (cont.

test.cpp:6:22: error: expected-class name
class Child : public Base {
A
test.cpp:15:8: error: class member cannot be redeclared
void doSomething() {

A

test.cpp:9:8: note: previous definition is here

#include <iostream>
namespace std;

//Derived class
class Child : publ Base {
string myInteger;

void doSomething() {
int x[1 = {e, 1, 2, 3, 4};
int: z ;= Yal;
x[5] = myInteger *x y * z;
}

void doSomething() {

void doSomething() {

A }
test.cpp:12:24: error: use of undeclared identifier 'y' int getsum(int n) {
X[5] = myInteger * y * z; ; return doSomething() + n;
A i

test.cpp:19:26: error: invalid operands to binary expression ('void' and 'int')
return doSomething() + n;

Nnvmnnnnnnnnnnn NN

4 errors generated.

test.cpp:6:27: error: expeéted class—name befbre '{' token
6 | class Child : public Base {
| A
test.cpp:15:8: error: 'void Child::doSomething()' cannot be overloaded with 'void Child::doSomething()'
15 | void doSomething() {
| Anvmmmmmmnnn
test.cpp:9:8: note: previous declaration 'void Child::doSomething()'
9 | void doSomething() {
| Anvmmmmmmmnn
test.cpp: In member function 'void Child::doSomething()':
test.cpp:12:24: error: 'y' was not declared in this scope
12 | x[5] = myInteger * y % z;
| A
test.cpp: In member function 'int Child::getSum(int)':
test.cpp:19:26: error: invalid operands of types 'void' and 'int' to binary 'operator+'

19 | return doSomething() + n;
~~~~~~~~~~~~~ A ~

L i | |

void int

SUN YAT-SEN'




Semantic Analysis: Implementation

o Attribute grammars[)&@ M vk
— One-pass compilation
o Semantic analysis is done right in the middle of parsing

— Augment rules to do checking during parsing
— Approach suggested in the Compilers book

o AST walk[iE V5 7]

— Two-pass compilation
o First pass digests the syntax and builds a parse tree

o The second pass traverses the tree to verify that the program respects
all semantic rules

— Strict phase separation of Syntax Analysis and Semantic Analysis

11 e
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf 4



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

Syntax Directed Translation[i&vE #5113

Source Code

. l N
/ N
! \
! v
|

Lexical Analysis

Token Stream"

Syntax Analysis

Syntax Tree"

- [SemanticAnalysisT| . Syntax Directed Translation
“._Syntax Tree . . T B 5] 252
== ~— Semantic Translation (1A il 80 )

/ ntermediate y ) A

Code Generation | | (15 ><§EHHZ)

IR

\ 4
Optimization
IR

\ 4

Code Generation

v

Target Code

e Dyede




Syntax Directed Translationiz i 5t

* To translate based on the program’s syntactic structure[i&
VAL
— Syntactic structure: structure of a program given by grammar
— The parsing process and parse trees are used to direct semantic

analysis and the translation of the program
o i.e., CFG-driven translation[CFGEKXz) [ FH %]

* How? Augment the grammar used in parser:

— Attach semantic attributes[i& X J& 4] to each grammar symbol
o The attributes describe the symbol properties

o An attribute has a name and an associated value: a string, a number, a
type, a memory location, an assigned register ...

— For each grammar production, give semantic rules or actions[i&
NN BB 1E]
o The actions describe how to compute the attribute values associated
with each symbol in a production

&) Tk B

4 | ’PE%
Naw/ suv wrsevunimtps : //web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf 24



https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf

Attributes[iE X &)

 Attributes can represent anything depending on the task|
J& T Al LRI AR B Y]
- If computing expression: a number (value of expression)
- If building AST: a pointer (pointer to AST for expression)
- If generating code: a string (assembly code for expression)
- If type checking: a type (type for expression)

* Format: X.a (X'is a symbol, a is one of its attributes)

* For Project 2 — Syntax Analysis

— Semantic attributes
o Name, type
— Semantic actions

CompUnit: FuncDef {
auto inner = stak.back();
stak.pop_back();
stak.push_back(llvm::json::0bject{{"kind", "TranslationUnitDecl"},
{"inner", llvm::json::Array{inner}}});




How to Specify Syntax Directed Translation

* Syntax Directed Definitions (SDD)[iE7: 4 5 5E Y]
— Attributes + semantic rules[i& X N|1for computing them
o Attributes for grammar symbols[ =TS s g i e B
o Semantic rules for productions[=4: R AE SN < EL]
— Example rules for computing the value of an expression
E->E,+E, RULE:{E.val =E,.val + E,.val}
E->id RULE: {E.val = id.lexval}

* Syntax Directed Translation scheme (SDT)[i& VA S8 7
%]
— Attributes + semantic actions[i& X #{E] for computing them
— Example actions for computing the value of an expression
E->E,+E, {E.val=E,val+E,.val}
E->id {E.val = id.lexval}

“‘ : . f
‘\J‘ ivﬂnl\‘ﬁnﬁ " ‘hm LZ




SDD vs. SDT
o SDD[EIEHI S5 X RCFGIIHES, BRI 2 U

- A CFG grammar together with attributes and semantic rules
o A subset of them are also called attribute grammars|jg £ 3i2]

* Noside effects, i.e., rules are strictly local to each production

— Semantic rules imply no order to attribute evaluation
o SDTE VA FHIPE T &): SODHI#M 78, B ARBH RSt 7 &

— An executable specification of the SDD
o Fragments of programs are attached to different points in the

production rules

— The order of execution is important
Grammar SDD SDT
D->TL L.inh = T.type D->T{L.inh=T.type}L
T->int T.type = int T->int{T.type =int}
T -> float T.type = float T -> float { T.type = float }
L,.inh = L.inh L->{L,.inh =L.inh }L,, id

A'r;‘[!?




SDD vs. SDT (cont.)

* Syntax: A -> a {action,} B {action,} y ...

e Actions are executed "at that point” in the RHS
— action, executes after o has been produced but before 3
— action, executes after a, action,, B but before y

* Semantic rule vs. action[iE X vs. 1E L EH1E]

— Semantic rules are not associated with locations in RHS
o SDD doesn’t impose any order other than dependences

— Location of action in RHS specifies when it should occur
o SDT specifies the execution order and time of each action
A—-{..}X{..}Y{..}
Semantic Actions
©tuxe 17

M[iti



SDD[#E I E X

* SDD has two types of attributes[# )& 4]

— For a non-terminal A at a parse-tree node N

 Synthesized attribute[%: & )& 1]

- Defined by a semantic rule associated with the production at N
o The production must have A as its head (i.e., A->...)

— A synthesized attribute of node N is defined only by attribute
values at \N’s children and N itself[ 775 mi B H &]

* Inherited attribute[4t & J& 4]
— Defined by a semantic rule associated with the production at
the parent of N
o The production must have A as a symbol in its body (i.e., ... -> ...A...)

— An inherited attributed at node N is defined only by attribute

valges at N’s parent, N itself, and N’s siblings[&2 ¥ s B &0 H
™A

“‘ : . f
‘\/‘ ivﬂnl\‘ﬁnﬁ " :E LZ




Synthesized Attribute[44& &)

e Synthesized attribute for non-terminal A of parse-tree
node N[AE&Z5R/T I ZRE JE 1]
— Only defined by N’s children and N itself

o Passed up the tree
- P.syn_attr = f(P.attrs, C,.attrs, C,.attrs, C;.attrs)

» Terminals can have synthesized attributes[Z& 45 5545 & & ]
— Lexical values supplied by the lexical analysis

— Thus, no semantic rules in SDD for terminals
E.val = E,.val + T.val

E.val

E,.val + T.val

19 Dhig:



Inherited Attribute[4t% & 4

* Inherited attribute for non-terminal A of parse-tree node
NEHEZ S5 75 48 7K g PE]
— Only defined by N’s parent, N’s siblings and N itself
o Passed down a parse tree

— C,.inh_attr = f(P.attrs, C,.attrs, C,.attrs, C;.attrs)

* Terminals cannot have inherited attributes[Z 45 & L4k K J&
1]
— Only synthesized attributes from lexical analysis
D->TL(L.inh=T.type)

20 Dhig:



SDD[#E I E X

. Attrlbute dependencies in a production rule[f= £ F H) &

i nherite

A-> o B vy

N
Synthesizew

* SDD has rule of the form for each grammar production
b = f(A.attrs, a.attrs, B.attrs, y.attrs)

* b is either an attribute in LHS (an attribute of A)
— In which case b is a synthesized attribute
- Why? From A’s perspective o, B, y are children

* Or, b is an attribute in RHS (e.g., of B)
- In which case b is an inherited attribute
- Why? From B’s perspective A, a, y are parent or siblings

(@) Tux % 21 I




Example: Synthesized Attribute[£: 4]

SDD:

Production Rules | Semantic Rules

(1) L->E S E ] Each non-terminal has a single
(2)E->E, +T E.val = E,.val + T.val synthesized attribute val
(3)E->T E.val = T.val Terminal digit has a synthesized
(4) T -> Tl w F T.Val = Tl.VaI X F.Va/ attrlbute Iexval

(5) T->F T.val = F.val

(6) F-> (E) F.val = E.val

(7) F -> digit F.val = digit.lexval

Arithmetic expressions with + and *
(1) Print the numerical value of the entire expression
Compute value of summation
Value copy
Compute value of multiplication
Value copy
(6) Value copy
@ tuxs E L




