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Quiz Questions
• Q1: main differences between LL(k) and LR(k)?

• Q2: for the grammar, get FIRST(S) and FIRST(A).

• Q3: is the grammar a LL(1)?

• Q4: augment the grammar, and get the initial state (S0).

• Q5: LR(0), SLR(1), LR(1), LALR(1), what are the differences?
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FIRST(S) = {a}, FIRST(A) = {a}

LL(k): top-down, leftmost derivation; LR(k): bottom-up, reverse of 
rightmost derivation.

NO. One-lookahead of S is a, failing to distinguish the two rules. 

LR(0): no lookahead, aggressive reduce
SLR(1): one lookahead, reduce using FOLLOW
LR(1): one lookahead, reduce using specified terminals
LALR(1): a compromise of LR(1) and LR(0)/SLR(1)

S à AB | a
A à a
B à b

{ S’ à .S, S à .AB, S à .a, A à .a }



Compilation Phases[编译阶段]
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https://lowlevelbits.org/bitcode-demystified/

https://lowlevelbits.org/bitcode-demystified/


Compilation Phases (cont.)
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proj1 proj2 proj3

proj4

https://github.com/arcsysu/SYsU-lang

https://github.com/arcsysu/SYsU-lang
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Why Semantic Analysis?[语义分析]

• Because programs use symbols (a.k.a. identifiers)
− Identifiers require context to figure out the meaning

• Consider the English sentence: “He ate it”
− This sentence is syntactically correct
− But it makes sense only in the context of a previous sentence: 

“Sam bought a pizza.” (what if “Sam bought a car.”?)

• Semantic analysis
− Associates identifiers with objects they refer to[关联]

p ”He” --> “Sam”
p “it” --> “pizza”

− Checks whether identifiers are used correctly[检查]
p “He” and “it” refer to some object: def-use check
p “it” is a type of object that can be eaten: type check
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Why Semantic Analysis (cont.)
• Semantics of a language is much more difficult to 

describe than syntax[语义比语法更难描述]
− Syntax: describes the proper form of the programs[仅形式]
− Semantics: defines what the programs means (i.e., what each 

program does when it executes)[到意义]

• Context cannot be analyzed using a CFG parser[CFG不能分
析上下文信息]

− Associating IDs to objects require expressing the pattern:
{wcw | w ∊ (a|b)*}
p The first w represents the definition of a ID
p The c represents arbitrary intervening code
p The second w represents the use of the ID

7



Semantic Analysis
• Deeper check into the source program[对程序进一步分析]

− Last stage of the front end[前端最后阶段]
− Compiler’s last chance to reject incorrect programs[最后拒绝机会]
− Verify properties that aren’t caught in earlier phases

p Variables are declared before they’re used[先声明后使用]

p Type consistency when using IDs[变量类型一致]

p Expressions have the right types[表达式类型]

p … …

• Gather useful info about program for later phases[收集后续
信息]

− Determine what variables are meant by each identifier
− Build an internal representation of inheritance hierarchies
− Count how many variables are in scope at each point
− …
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https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf


Example
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base class not defined

array index out of bounds (runtime)

1) y variable not declared
2) cannot multiply a string

cannot redefine functions

cannot add void to int

no main() function

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf


Example (cont.)
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Semantic Analysis: Implementation
• Attribute grammars[属性文法]

− One-pass compilation
p Semantic analysis is done right in the middle of parsing

− Augment rules to do checking during parsing
− Approach suggested in the Compilers book

• AST walk[语法树遍历]
− Two-pass compilation

p First pass digests the syntax and builds a parse tree
p The second pass traverses the tree to verify that the program respects 

all semantic rules
− Strict phase separation of Syntax Analysis and Semantic Analysis
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https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/lectures/08/Slides08.pdf


Syntax Directed Translation[语法制导翻译]
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Syntax Directed Translation[语法制导翻译]

• To translate based on the program’s syntactic structure[语
法结构]

− Syntactic structure: structure of a program given by grammar
− The parsing process and parse trees are used to direct semantic 

analysis and the translation of the program
p i.e., CFG-driven translation[CFG驱动的翻译]

• How? Augment the grammar used in parser:
− Attach semantic attributes[语义属性] to each grammar symbol

p The attributes describe the symbol properties
p An attribute has a name and an associated value: a string, a number, a 

type, a memory location, an assigned register …
− For each grammar production, give semantic rules or actions[语
义规则或动作]

p The actions describe how to compute the attribute values associated 
with each symbol in a production
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https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/160%20Syntax-Directed%20Translation.pdf


Attributes[语义属性] 

• Attributes can represent anything depending on the task[
属性可以表示任意含义]

− If computing expression: a number (value of expression)
− If building AST: a pointer (pointer to AST for expression)
− If generating code: a string (assembly code for expression)
− If type checking: a type (type for expression)

• Format: X.a (X is a symbol, a is one of its attributes)
• For Project 2 – Syntax Analysis

− Semantic attributes
p Name, type

− Semantic actions
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How to Specify Syntax Directed Translation

• Syntax Directed Definitions (SDD)[语法制导定义]
− Attributes + semantic rules[语义规则]for computing them

p Attributes for grammar symbols[文法符号和语义属性关联]

p Semantic rules for productions[产生式和语义规则关联]

− Example rules for computing the value of an expression
E -> E1 + E2 RULE: {E.val = E1.val + E2.val}
E -> id            RULE: {E.val = id.lexval}

• Syntax Directed Translation scheme (SDT)[语法制导翻译方
案]

− Attributes + semantic actions[语义动作] for computing them
− Example actions for computing the value of an expression

E -> E1 + E2 {E.val = E1.val + E2.val}
E -> id            {E.val = id.lexval}
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SDD vs. SDT
• SDD[语法制导定义]: 是CFG的推广，翻译的高层次规则说明

− A CFG grammar together with attributes and semantic rules
p A subset of them are also called attribute grammars[属性文法]

• No side effects, i.e., rules are strictly local to each production

− Semantic rules imply no order to attribute evaluation

• SDT[语法制导翻译方案]: SDD的补充，具体翻译实施方案
− An executable specification of the SDD

p Fragments of programs are attached to different points in the 
production rules

− The order of execution is important
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D -> T L
T -> int
T -> float
L -> L1, id

L.inh = T.type
T.type = int
T.type = float
L1.inh = L.inh

D -> T { L.inh = T.type } L
T -> int { T.type = int }
T -> float { T.type = float }
L -> { L1.inh = L.inh }L1, id

Grammar SDD SDT



SDD vs. SDT (cont.)
• Syntax: A -> ⍺ {action1} β {action2} 𝛾 …
• Actions are executed ”at that point” in the RHS

− action1 executes after ⍺ has been produced but before β
− action2 executes after ⍺, action1, β but before 𝛾

• Semantic rule vs. action[语义规则 vs. 语义动作]
− Semantic rules are not associated with locations in RHS

p SDD doesn’t impose any order other than dependences
− Location of action in RHS specifies when it should occur

p SDT specifies the execution order and time of each action
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SDD[语法制导定义]

• SDD has two types of attributes[两种属性]
− For a non-terminal A at a parse-tree node N

• Synthesized attribute[综合属性]
− Defined by a semantic rule associated with the production at N

p The production must have A as its head (i.e., A -> …)
− A synthesized attribute of node N is defined only by attribute 

values at N’s children and N itself[子节点或自身]

• Inherited attribute[继承属性]
− Defined by a semantic rule associated with the production at 

the parent of N
p The production must have A as a symbol in its body (i.e., … -> …A…)

− An inherited attributed at node N is defined only by attribute 
values at N’s parent, N itself, and N’s siblings[父节点、自身或兄弟
节点]
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P

C1 C2 C3

• Synthesized attribute for non-terminal A of parse-tree 
node N[非终结符的综合属性]

− Only defined by N’s children and N itself
p Passed up the tree

− P.syn_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals can have synthesized attributes[终结符综合属性]
− Lexical values supplied by the lexical analysis
− Thus, no semantic rules in SDD for terminals

Synthesized Attribute[综合属性]
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E.val

E1.val + T.val

E.val = E1.val + T.val



• Inherited attribute for non-terminal A of parse-tree node 
N[非终结符继承属性]

− Only defined by N’s parent, N’s siblings and N itself
p Passed down a parse tree

− C2.inh_attr = f(P.attrs, C1.attrs, C2.attrs, C3.attrs)

• Terminals cannot have inherited attributes[终结符无继承属
性]

− Only synthesized attributes from lexical analysis

Inherited Attribute[继承属性]
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P

C1 C2 C3

D

T.type L.inh

D -> T L (L.inh = T.type)



SDD[语法制导定义]

• Attribute dependencies in a production rule[产生式中的属
性依赖]

• SDD has rule of the form for each grammar production
b = f(A.attrs, ⍺.attrs, β.attrs, 𝛾.attrs)

• b is either an attribute in LHS (an attribute of A)
− In which case b is a synthesized attribute
− Why? 

• Or, b is an attribute in RHS (e.g., of β)
− In which case b is an inherited attribute
− Why? 
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A -> ⍺ β 𝛾

Inherited

Synthesized

From A’s perspective ⍺, β, 𝛾 are children

From β’s perspective A, ⍺, 𝛾 are parent or siblings



Example: Synthesized Attribute[综合]

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval
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SDD:

Arithmetic expressions with + and *
(1) Print the numerical value of the entire expression
(2) Compute value of summation
(3) Value copy
(4) Compute value of multiplication
(5) Value copy
(6) Value copy

Each non-terminal has a single 
synthesized attribute val
Terminal digit has a synthesized
attribute lexval


