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Review Questions
• SDD vs. SDT

• What are S-SDD and L-SDD?

• Why S-SDD is natural to be implemented in LR parsing?

• Why L-SDD is not natural for LR parsing?

• At high level, why L-SDD can be implemented in LR?

• Roughly, how do we modify L-SDD for LR parsing?
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Add non-terminal markers to make all actions at production end.

Semantic actions can be in anywhere of the production body.

Syn a:ributes: evaluate parent a=er seeing all children (=reduce).

Left-attributed, the needed attribute values must be in the stack.

S-SDD: synthesized-SDD (only syn attributes),
L-SDD: left-attributed SDD (only left-to-right dependency).

SDD = Syntax Directed Definitions, SDT = SD Translation Schemes



Overview of Symbol Table[符号表]
• Symbol table records info of each symbol name in a 

program[符号表记录每个符号的信息]
− symbol = name = identifier

• Symbol table is created in the semantic analysis phase[语
义分析阶段创建]

− Because it is not until the semantic analysis phase that enough 
info is known about a name to describe it

• But, many compilers set up a table at lexical analysis time 
for the various variables in the program[词法分析阶段准备]

− And fill in info about the symbol later during semantic analysis 
when more information about the variable is known

• Symbol table is used in code generation to output 
assembler directives of the appropriate size and type[后续
代码生成阶段使用]
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Binding[绑定]

• Binding: match idenFfier use with definiFon[使用-定义]
− DefiniMon: associaMng an id with a memory locaMon
− Hence, binding associates an id use with a locaMon
− Binding is an essenMal step before machine code generaMon

• If there are mulFple definiFons, which one to use?

4



Binding[绑定]

• Binding: match identifier use with definition[使用-定义]
− Definition: associating an id with a memory location
− Hence, binding associates an id use with a location
− Binding is an essential step before machine code generation

• If there are multiple definitions, which one to use?

4

void foo() 
{ 

char x;     /* allocated at mem[0x100] */ 
...
{ 

int x;   /* allocated at mem[0x200] */
… 

} 

}



Binding[绑定]

• Binding: match identifier use with definition[使用-定义]
− Definition: associating an id with a memory location
− Hence, binding associates an id use with a location
− Binding is an essential step before machine code generation

• If there are multiple definitions, which one to use?

4

void foo() 
{ 

char x;     /* allocated at mem[0x100] */ 
...
{ 

int x;   /* allocated at mem[0x200] */
… 

} 
x = x + 1;

}



Binding[绑定]

• Binding: match identifier use with definition[使用-定义]
− Definition: associating an id with a memory location
− Hence, binding associates an id use with a location
− Binding is an essential step before machine code generation

• If there are multiple definitions, which one to use?

4

void foo() 
{ 

char x;     /* allocated at mem[0x100] */ 
...
{ 

int x;   /* allocated at mem[0x200] */
… 

} 
x = x + 1;

}
/* add mem[0x100],1 ? add mem[0x200],1 ?



Binding[绑定]

• Binding: match idenFfier use with definiFon[使用-定义]
− DefiniMon: associaMng an id with a memory locaMon
− Hence, binding associates an id use with a locaMon
− Binding is an essenMal step before machine code generaMon

• If there are mulFple definiFons, which one to use?

4

void foo() 
{ 

char x;     /* allocated at mem[0x100] */ 
...
{ 

int x;   /* allocated at mem[0x200] */
… 

} 
x = x + 1;

}
/* add mem[0x100],1 ? add mem[0x200],1 ?



Binding[绑定]

• Binding: match identifier use with definition[使用-定义]
− Definition: associating an id with a memory location
− Hence, binding associates an id use with a location
− Binding is an essential step before machine code generation

• If there are multiple definitions, which one to use?

4

void foo() 
{ 

char x;     /* allocated at mem[0x100] */ 
...
{ 

int x;   /* allocated at mem[0x200] */
… 

} 
x = x + 1;

}
/* add mem[0x100],1 ? add mem[0x200],1 ?



Scope[作用域]

• Scope: program region where a definition can be bound 
− Uses of identifier in the scope is bound to that definition
− For C: auto/local, static, global

• Some properties of scopes
− Use not in scope of any definition results in undefined error 
− Scopes for the same identifier can never overlap

p There is at most one binding at any given time

• Two types: static scoping and dynamic scoping 
− Depending on how scopes are formed
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Static Scoping[静态作用域]

• Scopes formed by where definitions are in program text[
声明起作用的那段区域]

− Also known as lexical scoping since related to program text 
C/C++, Java, Python, JavaScript[也叫词法作用域]

• Rule: bind to the closest enclosing definition 
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void foo() 
{ 

char x;
...
{ 

int x;
… 

} 
x = x + 1;

} 



Dynamic Scoping[动态作用域]

• Scopes formed by when definitions happen during 
runtime[运行时决定]

− Perl, Bash, LISP, Scheme

• Rule: bind to most recent definition in current execution 

7

void foo()
{

(1) char x;
(2) if (...) {
(3) int x;
(4) ... 

}
(5) x = x + 1;
}

• Which x’s definition is the most recent? 
- Execution (a): ...(1)...(2)...(5)
- Execution (b): ...(1)...(2)...(3)...(4)...(5) 



Static vs. Dynamic Scoping[对比]

• Most languages that started with dynamic scoping (LISP, 
Scheme, Perl) added static scoping afterwards
• Why? With dynamic scoping ... 

− All bindings are done at execution time
− Hard to figure out by eyeballing, for both compiler and human

• Pros of static scoping[静态的好处]
− Static scoping leads to fewer programmer errors

p Bindings readily apparent from lexical structure of code
− Static scoping leads to more efficient code

p Compiler can determine bindings at compile time
p Compiler can translate identifier directly to memory location
p Results in generation of efficient code

• We will discuss static scoping only
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What is Symbol Table[符号表]

• Symbol: same thing as identifier (used interchangeably)
• Symbol table: a compiler data structure that tracks info about 

all program symbols
− Each entry represents a definition of that identifier
− Maintains list of definitions that reach current program point 
− List updated whenever scopes are entered or exited
− Used to perform binding of identifier uses at current point
− Built by either... 

p Traversing the parse tree in a separate pass after parsing
p Using semantic actions as an integral part of parsing pass

• Usually discarded after generating executable binary
− Machine code instructions no longer contain symbols
− For use in debuggers, symbol tables may be included

p To display symbol names instead of addresses in debuggers
p For GCC, using ‘gcc -g ...” includes debug symbol tables
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Maintaining Symbol Table[维护]

• Basic idea
int x=0; ... void foo() { int x=0; ... x=x+1; } ... x=x+1 ...

− Start processing foo:
p Add definition of x, overriding old definition of x if any

− After processing foo:
p Remove definition of x, restoring old definition of x if any

• Operations
− enter_scope()         start a new scope
− exit_scope()            exit current scope

− find_symbol(x)       find the information about x
− add_symbol(x)       add a symbol x to the symbol table
− check_symbol(x)    true if x is defined in current scope
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Symbol Table Structure[结构]

• Frontend time affected by symbol table access time[符号
表访问时间影响编译前端性能]

− Frontend: lexical, syntax, semantic analyses
− Frequent searches on any large data structure is expensive 
− Symbol table design is important for compiler performance

• What data structure to choose?[可选数据结构]
− List[线性表]
− Binary tree[二叉树]
− Hash table[哈希表]

• Tradeoffs: time vs. space[空间和时间的权衡]
− Let us first consider the organization w/o scope
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Symbol Table Structure (cont.)
• Array: no space wasted, insert/delete: O(n), search: O(n)
• Linked list: extra pointer space, insert/delete: O(1), 

search: O(n)
− Optimization: move recently used identifier to the head 
− Frequently used identifiers are found more quickly

• Binary tree: use more space than array/list
− But insert/delete/search is O(log n) on balanced tree
− In the worst case, tree may reduce to linked list

p Then insert/delete/search becomes O(n)
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Symbol Table Structure (cont.)
• hash(id_name) → index[哈希表]

− A hash function decides mapping from identifier to index 
− Conflicts resolved by chaining multiple IDs to same index 

• Memory consumption from hash table (N << M)
− M: the size of hash table
− N: the number of stored identifiers 

• But insert/delete/search in O(1) time
− Can become O(n) with frequent conflicts and long chains 

• Most compilers choose hash table for its quick access 
time 
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Adding Scope to Symbol Table[作用域]

• To handle multiple scopes in a program,[处理多个作用域]
− Conceptually, need an individual table for each scope 

p In order to be able to enter and exit scopes

• Sometimes symbols in scope can be discarded on exit:

• Sometimes not:

14

if (...) { int v; } /* block scope */ 
/* v is no longer valid */ 
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Adding Scope to Symbol Table[作用域]

• To handle multiple scopes in a program,[处理多个作用域]
− Conceptually, need an individual table for each scope 

p In order to be able to enter and exit scopes

• Sometimes symbols in scope can be discarded on exit:

• Sometimes not:

• How can scoping be enforced without discarding 
symbols?

− Keep a stack of active scopes at a given point
− Keep a list of all reachable scopes in the entire program 
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Handle Scopes with Stack
• Organize all symbol tables into a scope stack[作用域栈]

− An individual symbol table for each scope
p Scope is defined by nested lexical structure, e.g., {C1 {C2 {C3}} {C4}}

− Stack holds one entry for each open scope
p Innermost scope is stored at the top of the stack

• Stack push/pop happen when entering/exiting a scope
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Handle Scopes with Stack (cont.)
• Operations

− When entering a scope
p Create a new symbol table to hold all variables declared in that scope
p Push a pointer to the symbol table on the stack

− Pop the pointer to the symbol table when exiting scope
− Search from the top of the stack
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Handle Scopes with Stack (cont.)
• Operations

− When entering a scope
p Create a new symbol table to hold all variables declared in that scope
p Push a pointer to the symbol table on the stack

− Pop the pointer to the symbol table when exiting scope
− Search from the top of the stack
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Handle Scopes using Chaining
• Cons of stacking symbol tables[栈方式的缺点]

− Inefficient searching due to multiple hash table lookups
p All global variables will be at the bottom of the stack

− Inefficient use of memory due to multiple hash tables
p Must size hash tables for max anticipated size of scope

• Solution: single symbol table for all scopes using chaining
− Insert: insert (ID, current nesting level) at front of chain
− Search: fetch ID at the front of chain
− Delete: when exiting level k, remove all symbols with level k

p For efficient deletion, IDs for each level maintained in a list
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Handle Scopes using Chaining (cont.)
• Note: symbol table only maintains currently active scopes

− All entries with the closing scope are deleted upon exiting

• Note: does not maintain list of all reachable scopes
− Cannot refer back to old scopes that have been exited
− Still useful for block scopes that are discarded on exit

• Usages
− Unsuitable for class scopes (only block scopes)[✗]
− Exiting scopes is slightly more expensive[✗]

p Requires traversing the entire symbol table
− Lookup requires only a single hash table access[✓]
− Savings in memory due to single large hash table[✓]
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Info Stored in Symbol Table
• Entry in symbol table

− String: the name of identifier
− Kind: function, variable, struct type, class type

• Attributes vary with the kind of symbols
− variable: type, address of variable
− function: prototype, address of function body
− struct type: field names, field types
− class type: symbol table for class
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Attribute List in Symbol Table
• Type info can be arbitrarily complicated

− Type can be an array with multiple dimensions
char arr[20][20];

− Type can be a struct with multiple fields

• Store all type info in an attribute list
− Entry for an array variable with 2 dimensions

− Entry for a struct variable

− Entry for a struct type with 2 fields
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struct Point {
float x;
float y;

} point;



Use Type Information[类型信息]

• Each variable or function entry contains type info
• Type info is used in later code generation stage[代码生成]

− To calculate how much memory to alloc for a variable
− To translate uses of variables to machine instructions 

p Should a ’+’ on variable be an integer or a floating point add? 
p Should a variable assignment be a 4 byte or 8 byte copy?

− To translate calls to functions to machine instructions 
p What are the types of arguments passed to the function?
p What is the type of value returned by the function? 

• Also used in later code optimization stage[代码优化]
− To help compiler understand semantics of program 

• Also used in semantic analysis stage for Type Checking
− Uses types to check semantic correctness of program 
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Type and Type Checking
• Type: a set of values + a set of operations on these values

− int/double: same memory storage
• Type checking: verifying type consistency across program[
类型一致性检查]

− A program is said to be type consistent if all operators are 
consistent with the operand value types

− Much of what we do in semantic analysis is type checking
• Some type checking examples:

− Given char *str = “Hello”;
p str[2] is consistent: char* type allows [] operator
p str/2 is not: char* type does not allow / operator

− Given int pi = 3;
p pi/2 is consistent: int type allows / operator
p pi=3.14 is not: = operator not allowed on different types

• Compiler must type convert implicitly to make it consistent
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Static Type Checking[静态类型检查]

• Static type checking: at compile time[静态：编译时]
− Infers program is type consistent through code analysis

p Collect info via declarations and store in symbol table
p Check the types involved in each operation

− E.g., int a, b, c; a = b + c; can be proven type consistent because 
the addition of two ints is an int

• Difficult for a language to only do static type checking
− Some type errors usually cannot be detected at compile time

p E.g., a and b are of type int, a * b may not in the valid range of int
p Typecasting can be pretty risky thing to do (Basically, typecast suspends 

type checking)
• unsigned a; (int)a;
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Dynamic Type Checking[动态检查]

• Dynamic type checking: at execution time[动态：执行时]
− Type consistency by checking types of runtime values
− Include type info for each data location at runtime

p E.g., a variable of type double would contain both the actual double 
value and some kind of tag indicating “double type”

p The execution of any operation begins by first checking these type tags
p The operation is performed only if everything checks out (otherwise, a 

type error occurs and usually halts execution)
− E.g., C++/Java downcasting to a subclass

p Is dynamic_cast<Child*>(parent); type consistent?
− Array bounds check:

p Is int A[10], i; … A[i] = i; type consistent?

• Static type checking is always more desirable. Why?
− Always good to catch more errors before runtime
− Dynamic type checking carries runtime overhead

25



Static vs. Dynamic Typing[静态-动态]

• Static typing: C/C++, Java, …
− Variables have static types → hold only one type of value

p E.g. int x; → x can only hold ints
p E.g. char *x; → x can only hold char pointers

− How are types assigned to variables?
p C/C++, Java: types are explicitly defined
p int x; → explicit assignment of type int to x

• Pros / cons of static typing
− More programmer effort

p Programmer must adhere to strict type rules
p Defining advanced types can be quite complex (e.g. classes)

− Less program bugs and execution time
p Thanks to static type checking
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Static vs. Dynamic Typing (cont.)
• Dynamic Typing: Python, JavaScript, PHP, ...

− Variables have dynamic types → can hold multiple types
var x; /* var declaration without a static type */
x = 1; /* now x holds an integer value */
x = "one"; /* now x holds a string value */

− How are types assigned to variables?
p Type is a runtime property → type tags stored with values
p Dynamic type checking must be done during runtime

• Pros / cons of dynamic typing
− Less programmer effort

p Flexible type rule means program is more malleable
p Absence of types / classes declarations means shorter code
p Makes it suitable for scripting or prototyping languages

− More program bugs and execution time
p Due to dynamic type checking
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Type System[类型系统]

• StaFc / dynamic typing are type systems 
− Type System: types + type rules of a language

• StaFc / dynamic type checking are methods
− Methods to enforce the rules of the given type system

• StaFc type checking is not used exclusively for staFc 
typing

− StaMc type checking also used for dynamic typing
− If certain types can be inferred and checked at compile Mme

p Can reduce dynamic type checks inserted into code

• Dynamic type checking is not used only for dynamic 
typing

− Some features of staMcally typed languages require it
p e.g. downcasjng requires type check of object type tag
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Type Systems: Soundness, Completeness
• Static type checking through inference 

− Inference: deducing a conclusion[结论] from a set of premises[前
提]

− What are the premises? Type rules in the type system
− What is the conclusion? Accept / reject after applying rules

• A type system is said to be Sound[可靠] if:
− Only correct programs are accepted
− Flipside: all incorrect programs are rejected

• A type system is said to be Complete[完备] if:
− All correct programs are accepted
− Flipside: only incorrect programs are rejected

• A type system strives to be both sound and complete
− The rules of inference (type rules) should reflect that
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Rules of Inference
• What are rules of inference?

− Inference rules have the form
if Precondition is true, then Conclusion is true

− Below concise notation used to express above statement 
Precondition
Conclusion 

− For example: Given E3 → E1 + E2, a rule may be:
if E1, E2 are type consistent and int types (Precondition),
then E3 is type consistent and is an int type (Conclusion)

• Recursive type checking via inference
− Start from variable and constant types at bottom of tree

p Serves as initial preconditions for the inference
− Apply rules on operator nodes while working up the tree

p Checks type consistency and assigns type to node
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LLVM: SemanLc Analysis
• Clang does not traverse the AST after parsing

− Instead, it performs type checking on the fly, together with AST 
node generation

− After the combined parsing and semantic analysis, the ParseAST
function invokes the method HandleTranslationUnit to trigger 
any client that is interested in consuming the final AST.
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// perform semantic checking for the if statement, emitting diagnostics accordingly

https://github.com/llvm-mirror/clang/blob/master/lib/Parse/ParseStmt.cpp
https://clang.llvm.org/doxygen/ParseAST_8cpp_source.html

Bruno Cardoso Lopes and Rafael Auler, Getting Started with LLVM Core Libraries

https://github.com/llvm-mirror/clang/blob/master/lib/Parse/ParseStmt.cpp
https://clang.llvm.org/doxygen/ParseAST_8cpp_source.html


LLVM: Module
• The Module class represents the top level structure 

present in LLVM programs
− An LLVM module is effectively either a translation unit of the 

original program or a combination of several translation units 
merged by the linker

− The Module class keeps track of a list of Functions, a list of 
GlobalVariables, and a SymbolTable
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https://releases.llvm.org/7.1.0/docs/ProgrammersManual.html#symboltable

https://releases.llvm.org/7.1.0/docs/ProgrammersManual.html


LLVM: Symbol Table
• Public members of Module class

− SymbolTable *getSymbolTable()
p Return a reference to the SymbolTable for this Module

− Function *getOrInsertFunction(const std::string &Name, const 
FunctionType *T)

p Look up the specified function in the Module SymbolTable. If it does not 
exist, add an external declaration for the function and return it. 

− std::string getTypeName(const Type *Ty)
p If there is at least one entry in the SymbolTable for the specified Type, 

return it. Otherwise return the empty string
− bool addTypeName(const std::string &Name, const Type *Ty)

p Insert an entry in the SymbolTable mapping Name to Ty. If there is 
already an entry for this name, true is returned and the SymbolTable is 
not modified.
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