Compilation Principle

% % JE I8

F16iE: 15 X (4)
i NGE

xianweiz.github.io
DCS290, 4/28/2022

B

https://xianweiz.github.io/

Review Questions

* SDD vs. SDT
SDD = Syntax Directed Definitions, SDT = SD Translation Schemes

* What are S-SDD and L-SDD?
S-SDD: synthesized-SDD (only syn attributes),

L-SDD: left-attributed SDD (only left-to-right dependency).
* Why S-SDD is natural to be implemented in LR parsing?

Syn attributes: evaluate parent after seeing all children (=reduce).

 Why L-SDD is not natural for LR parsing?

Semantic actions can be in anywhere of the production body.

* At high level, why L-SDD can be implemented in LR?

Left-attributed, the needed attribute values must be in the stack.

* Roughly, how do we modify L-SDD for LR parsing?

Add non-terminal markers to make all actions at production end.

MG“‘

Overview of Symbol Table[#%5 %]

e Symbol table records info of each symbol name in a
program[fF 5 RiIL KBTS G L]
- symbol = name = identifier

* Symbol table is created in the semantic analysis phase[i&

X B B]

— Because it is not until the semantic analysis phase that enough
info is known about a name to describe it

* But, many compilers set up a table at lexical analysis time
for the various variables in the program[imyE i BX 4]

— And fill in info about the symbol later during semantic analysis
when more information about the variable is known

e Symbol table is used in code generation to output
assembler directives of the appropriate size and type[)= 4z

M‘G?

Binding (45

* Binding: match identifier use with definition[{# FH-x& X]
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is an essential step before machine code generation

* If there are multiple definitions, which one to use?

4 Dhige

Binding (45

* Binding: match identifier use with definition[{# FH-x& X]
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is an essential step before machine code generation

* If there are multiple definitions, which one to use?

void foo()

{

char x; /* allocated at mem[0x100] */

{
int x; /* allocated at mem[0x200] */

»‘ri‘ﬁ“‘

Binding (45

* Binding: match identifier use with definition[{# FH-x& X]
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is an essential step before machine code generation

* If there are multiple definitions, which one to use?

void foo()

{

char x; /* allocated at mem[0x100] */

{
int x; /* allocated at mem[0x200] */

»‘ri‘ﬁ“‘

Binding (45

* Binding: match identifier use with definition[{# FH-x& X]
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is an essential step before machine code generation

* If there are multiple definitions, which one to use?

void foo()

{

char x; /* allocated at mem[0x100] */

{
int x; /* allocated at mem[0x200] */

}
x =x + 1; /* add mem[0x100],1 ? add mem[0x200],1 ?

»‘ri‘ﬂ“ﬁ

Binding (45

* Binding: match identifier use with definition[{# FH-x& X]
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is an essential step before machine code generation

* If there are multiple definitions, which one to use?

void foo()

{

char x; /* allocated at mem[0x100] */

{
int x; /* allocated at mem[0x200] */

x =x + 1; /* add mem[0x100],1 ? add mem[0x200],1 ?

»‘ri‘ﬁ“‘

Binding (45

* Binding: match identifier use with definition[{# FH-x& X]
— Definition: associating an id with a memory location
— Hence, binding associates an id use with a location
- Binding is an essential step before machine code generation

* If there are multiple definitions, which one to use?

void foo()

{

charx; /* allocated at mem[0x100] */

{
int x;| /* allocated at mem[0x200] */

x = x + 1; /* add mem[0x100],1 ? add mem[0x200],1 ?

»‘ri‘ﬁ“‘

ScopefE k]

* Scope: program region where a definition can be bound
— Uses of identifier in the scope is bound to that definition
— For C: auto/local, static, global

* Some properties of scopes
— Use not in scope of any definition results in undefined error

— Scopes for the same identifier can never overlap
o There is at most one binding at any given time

* Two types: static scoping and dynamic scoping
- Depending on how scopes are formed

@tuxs IR

Static Scoping[s &1 F k]

* Scopes formed by where definitions are in program text|
o B R AE R RS B X 3]
— Also known as lexical scoping since related to program text
C/C++, Java, Python, JavaScript[nialiEAE F 18]

* Rule: bind to the closest enclosing definition

void foo()

{

char x:

»‘ri‘ﬁ“ﬁ

Dynamic Scopingzh4E A

* Scopes formed by when definitions happen during
runtime[iz 17 P E]
— Perl, Bash, LISP, Scheme
 Rule: bind to most recent definition in current execution

void foo() . o .
{ Which x’s definition is the most recent?

8; ;h(ar)x{? - Execution (a): ...(1)...(2)...(5)
(3) intx; - Execution (b): ...(1)...(2)...(3)...(4)...(5)
4) ..
}

(5) x=x+1;

() f
‘\/‘ ivﬂnl\‘ﬁnﬁ ‘& GH [Z

Static vs. Dynamic Scoping[xf Lt

* Most languages that started with dynamic scoping (LISP,
Scheme, Perl) added static scoping afterwards

* Why? With dynamic scoping ...
— All bindings are done at execution time
— Hard to figure out by eyeballing, for both compiler and human

* Pros of static scoping[Ff A B #T-4b]
— Static scoping leads to fewer programmer errors
o Bindings readily apparent from lexical structure of code

— Static scoping leads to more efficient code

o Compiler can determine bindings at compile time
o Compiler can translate identifier directly to memory location
o Results in generation of efficient code

* We will discuss static scoping only

MH“‘

What is Symbol Table[#5 %)

* Symbol: same thing as identifier (used interchangeably)

* Symbol table: a compiler data structure that tracks info about
all program symbols
— Each entry represents a definition of that identifier
- Maintains list of definitions that reach current program point
— List updated whenever scopes are entered or exited
- Used to perform binding of identifier uses at current point

— Built by either...
o Traversing the parse tree in a separate pass after parsing
o Using semantic actions as an integral part of parsing pass

* Usually discarded after generating executable binary
— Machine code instructions no longer contain symbols

— For use in debuggers, symbol tables may be included
o To display symbol names instead of addresses in debuggers
o For GCC, using ‘gcc-g ...” includes debug symbol tables

@tuxs IR

Maintaining Symbol Table[4t4]

e Basic idea
int x=0; ... void foo() { int x=0; ... x=x+1; } ... x=x+1 ...

— Start processing foo:
o Add definition of x, overriding old definition of x if any

— After processing foo:
o Remove definition of x, restoring old definition of x if any

* Operations
— enter_scope() start a new scope
- exit_scope() exit current scope

- find_symbol(x) find the information about x
- add_symbol(x) add a symbol x to the symbol table
- check_symbol(x) true if x is defined in current scope

@tuxs IR

Symbol Table Structure[4;#)

* Frontend time affected by symbol table access time[ff =
< U7 0] s 1] 5 W) 2 196 117 S 111 R]
- Frontend: lexical, syntax, semantic analyses
- Frequent searches on any large data structure is expensive
- Symbol table design is important for compiler performance

* What data structure to choose?[n] i %4 45 4]
— List[£: 14 3]
- Binary tree[— ¥ #]
— Hash table[5 7 3]

* Tradeoffs: time vs. space[4 [a] A [&] AL 7]

— Let us first consider the organization w/o scope

@tuxs IR

Symbol Table Structure (cont.)

* Array: no space wasted, insert/delete: , search:
* Linked list: extra pointer space, insert/delete: ,
search:

— Optimization: move recently used identifier to the head
- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list
— But insert/delete/search is on balanced tree

- In the worst case, tree may reduce to linked list
o Then insert/delete/search becomes O(n)

dy | info; id; | info {id, | infoo > @

ids | infoo
) Cvsalary) (vage

Symbol Table Structure (cont.)

 Array: no space wasted, insert/delete: O(n), search:

* Linked list: extra pointer space, insert/delete: ,

search:

— Optimization: move recently used identifier to the head
- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list

— But insert/delete/search is
- In the worst case, tree may reduce to linked list

o Then insert/delete/search becomes O(n)

id4 | info4

ids | infoo

[oF

info+

1 1do

infoo

on balanced tree

12

Symbol Table Structure (cont.)

* Array: no space wasted, insert/delete: O(n), search: O(n)

* Linked list: extra pointer space, insert/delete: ,

search:

— Optimization: move recently used identifier to the head
- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list

— But insert/delete/search is
- In the worst case, tree may reduce to linked list

o Then insert/delete/search becomes O(n)

id4 | info4

ids | infoo

[oF

info+

1 1do

infoo

on balanced tree

12

Symbol Table Structure (cont.)

* Array: no space wasted, insert/delete: O(n), search: O(n)

* Linked list: extra pointer space, insert/delete: 0(1),

search:

— Optimization: move recently used identifier to the head
- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list

— But insert/delete/search is
- In the worst case, tree may reduce to linked list

o Then insert/delete/search becomes O(n)

id4 | info4

ids | infoo

[oF

info+

1 1do

infoo

on balanced tree

12

Symbol Table Structure (cont.)

* Array: no space wasted, insert/delete: O(n), search: O(n)

* Linked list: extra pointer space, insert/delete: 0(1),
search:O(n)
— Optimization: move recently used identifier to the head

- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list

— But insert/delete/search is
- In the worst case, tree may reduce to linked list

o Then insert/delete/search becomes O(n)

id4 | info4

ids | infoo

[oF

info+

1 1do

infoo

on balanced tree

12

Symbol Table Structure (cont.)

* Array: no space wasted, insert/delete: O(n), search: O(n)

* Linked list: extra pointer space, insert/delete: 0(1),
search:O(n)
— Optimization: move recently used identifier to the head

- Frequently used identifiers are found more quickly

* Binary tree: use more space than array/list
— But insert/delete/search is O(log n) on balanced tree
- In the worst case, tree may reduce to linked list

o Then insert/delete/search becomes O(n)

id4 | info4

ids | infoo

[oF

info+

1 1do

infoo

12

Symbol Table Structure (cont.)

* hash(id_name) = index[a % 3%]
— A hash function decides mapping from identifier to index
— Conflicts resolved by chaining multiple IDs to same index

* Memory consumption from hash table (N << M)
— M: the size of hash table
— N: the number of stored identifiers

* But insert/delete/search in O(1) time
— Can become O(n) with frequent conflicts and long chains

* Most compilers choose hash table for its quick access
time

| idy | infoq id2 | infoz | nil

1 id3 | infos

»Q‘E‘Z

Adding Scope to Symbol Table[{k k]

* To handle multiple scopes in a program, [4b ¥ £ /M F 18]

— Conceptually, need an individual table for each scope
o In order to be able to enter and exit scopes

* Sometimes symbols in scope can be discarded on exit:

if (...) {intv; }/* block scope */
/* vis no longer valid */
* Sometimes not:

»Q‘E‘Z

Adding Scope to Symbol Table[{k k]

* To handle multiple scopes in a program, [4b ¥ £ /M F 18]

— Conceptually, need an individual table for each scope
o In order to be able to enter and exit scopes

* Sometimes symbols in scope can be discarded on exit:
if (...) {intv; }/* block scope */

[*Vis no longer valid */ class X { ... void foo() {...} ... } /* class scope */
* Sometimes not: /* foo() is no longer valid */
Xv;

call v.foo(); /* v.foo() is still valid */

»Q‘E‘Z

Adding Scope to Symbol Table[{k k]

* To handle multiple scopes in a program, [4b ¥ 2 ™ME A5
— Conceptually, need an individual table for each scope
o In order to be able to enter and exit scopes

* Sometimes symbols in scope can be discarded on exit:
if (...) {intv; }/* block scope */

[*Vis no longer valid */ class X { ... void foo() {...} ... } /* class scope */
* Sometimes not: /* foo() is no longer valid */
Xv;

call v.foo(); /* v.foo() is still valid */
* How can scoping be enforced without discarding
symbols?
- Keep a stack of active scopes at a given point
- Keep a list of all reachable scopes in the entire program

: } P

Handle Scopes with Stack

* Organize all symbol tables into a scope stack[{F %]

- An individual symbol table for each scope
o Scope is defined by nested lexical structure, e.g., {C; {C, {C5}} {C,}}

— Stack holds one entry for each open scope
o Innermost scope is stored at the top of the stack

* Stack push/pop happen when entering/exiting a scope

G

Ic2

C,

»Q‘E‘Z

Handle Scopes with Stack

* Organize all symbol tables into a scope stack[{F %]

- An individual symbol table for each scope
o Scope is defined by nested lexical structure, e.g., {C; {C, {C5}} {C,}}

— Stack holds one entry for each open scope
o Innermost scope is stored at the top of the stack

* Stack push/pop happen when entering/exiting a scope

Parsinghere - - - - 4=l- - - — - = - - — — — 1 .

»Q‘E‘Z

Handle Scopes with Stack

* Organize all symbol tables into a scope stack[{F %]

- An individual symbol table for each scope

o Scope is defined by nested lexical structure, e.g., {C; {C, {C5}} {C,}}

— Stack holds one entry for each open scope
o Innermost scope is stored at the top of the stack

* Stack push/pop happen when entering/exiting a scope

Parsinghere - - - - 4=l- - - — - = - - — — — 1 .

IC4 C,’s Symbol Table

Symbol tables
15

A

Scope stack
Dyéd:

Handle Scopes with Stack (cont.)

* Operations

— When entering a scope
o Create a new symbol table to hold all variables declared in that scope
o Push a pointer to the symbol table on the stack

— Pop the pointer to the symbol table when exiting scope
— Search from the top of the stack

C,
C, C;’s Symbol Table
Parsing here G
g C,’s Symbol Table |
IC4 C,’s Symbol Table [<
Symbol tables Scope stack

16 Dhige

Handle Scopes with Stack (cont.)

* Operations
— When entering a scope

o Create a new symbol table to hold all variables declared in that scope

o Push a pointer to the symbol table on the stack

— Pop the pointer to the symbol table when exiting scope
— Search from the top of the stack

G

Ic2

17

C,’s Symbol Table

C;’s Symbol Table

C,’s Symbol Table

C,’s Symbol Table

Symbol tables

Scope stack
Dyéd:

Handle Scopes using Chaining

 Cons of stacking symbol tables[# /7 2 1k &]

— Inefficient searching due to multiple hash table lookups

o All global variables will be at the bottom of the stack

- Inefficient use of memory due to multiple hash tables
o Must size hash tables for max anticipated size of scope

* Solution: single symbol table for all scopes using chaining

- Insert: insert (ID, current nesting level) at front of chain

— Search: fetch ID at the front of chain
— Delete: when exiting level k, remove all symbols with level k

o For efficient deletion, IDs for each level maintained in a list

h(k) -

infoq

nesting level = 2

infos

nesting level = 1

nil

i | infos

nesting level = 2

Mﬂ?

Handle Scopes using Chaining (cont.)

* Note: symbol table only maintains currently active scopes
— All entries with the closing scope are deleted upon exiting

* Note: does not maintain list of all reachable scopes
— Cannot refer back to old scopes that have been exited
— Still useful for block scopes that are discarded on exit

* Usages
— Unsuitable for class scopes (only block scopes)[X]
— Exiting scopes is slightly more expensive[X]
o Requires traversing the entire symbol table
— Lookup requires only a single hash table access[V/]
— Savings in memory due to single large hash table[/]

: } P

Info Storec

in Symbol Table

* Entry in symbo

table

— String: the name of identifier

— Kind: function,

variable, struct type, class type

string

kind | attributes

* Attributes vary with the kind of symbols
— variable: type, address of variable
— function: prototype, address of function body
— struct type: field names, field types
— class type: symbol table for class

20

Mﬂ?

Attribute List in Symbol Table

* Type info can be arbitrarily complicated
— Type can be an array with multiple dimensions

char arr[20][20]; struct Point {
— Type can be a struct with multiple fields float x;
. . . . float y;
e Store all type info in an attribute list } point; Y
— Entry for an array variable with 2 dimensions
id |array variable | base type | ———f 1st dimension size 2nd dimension size
— Entry for a struct variable
id |struct variable = point to struct type entry
— Entry for a struct type with 2 fields
id |struct type |total size field, id | type | size field, id | type | size

21 INCCE

Use Type InformationZ5#i{z 8]

e Each variable or function entry contains type info

* Type info is used in later code generation stage[{thS A4 %]
— To calculate how much memory to alloc for a variable

— To translate uses of variables to machine instructions

o Should a’+ on variable be an integer or a floating point add?
o Should a variable assignment be a 4 byte or 8 byte copy?

— To translate calls to functions to machine instructions

o What are the types of arguments passed to the function?
o What is the type of value returned by the function?

* Also used in later code optimization stage[{CiZih4k]
— To help compiler understand semantics of program

* Also used in semantic analysis stage for Type Checking
- Uses types to check semantic correctness of program

@tuxs IR

Type and Type Checking

* Type: a set of values + a set of operations on these values
— int/double: same memory storage

» Type checking: verlfymg type consistency across program|
I alehare

— A program is sald to be type consistent if all operators are
consistent with the operand value types

- Much of what we do in semantic analysis is type checking

* Some type checking examples:
— Given char *str = “Hello”;
o str[2] is consistent: char™ type allows [] operator
o str/2 is not: char* type does not allow / operator
- Givenint pi = 3;
o pi/2 is consistent: int type allows / operator

o pi=3.14 is not: = operator not allowed on different types
* Compiler must type convert implicitly to make it consistent

@tuxs IR

Static Type Checking[# &2 246 75

* Static type checking: at compile time[i{##s: ZRiFEHT]
- Infers program is type consistent through code analysis

o Collect info via declarations and store in symbol table
o Check the types involved in each operation

- E.g.,inta, b, c;a=Db+c; can be proven type consistent because
the addition of two ints is an int

* Difficult for a language to only do static type checking

— Some type errors usually cannot be detected at compile time
o E.g., a and b are of type int, a * b may not in the valid range of int

o Typecasting can be pretty risky thing to do (Basically, typecast suspends
type checking)

* unsigned a; (int)a;

@tuxs IR

Dynamic Type Checking[#h&#]

* Dynamic type checking: at execution time[zjzs: FUATHT]
— Type consistency by checking types of runtime values

- Include type info for each data location at runtime

o E.g., a variable of type double would contain both the actual double
value and some kind of tag indicating “double type”

o The execution of any operation begins by first checking these type tags

o The operation is performed only if everything checks out (otherwise, a
type error occurs and usually halts execution)

- E.g., C++/Java downcasting to a subclass
o Is dynamic_cast<Child*>(parent); type consistent?

— Array bounds check:
o Isint A[10], i; ... A[i] =i; type consistent?
e Static type checking is always more desirable. Why?
— Always good to catch more errors before runtime
- Dynamic type checking carries runtime overhead

: } P

Static vs. Dynamic Typing[&#&-ah35)

e Static typing: C/C++, Java, ...
— Variables have static types = hold only one type of value
o E.g.int x; 2 x can only hold ints
o E.g. char *x; & x can only hold char pointers
- How are types assigned to variables?

o C/C++, Java: types are explicitly defined
o int x; = explicit assignment of type int to x

* Pros / cons of static typing

— More programmer effort

o Programmer must adhere to strict type rules

o Defining advanced types can be quite complex (e.g. classes)
— Less program bugs and execution time

o Thanks to static type checking

MH“‘

Static vs. Dynamic Typing (cont.)

* Dynamic Typing: Python, JavaScript, PHP, ...

— Variables have dynamic types = can hold multiple types

var x; /* var declaration without a static type */
x = 1; /* now x holds an integer value */
x = "one"; /* now x holds a string value */

- How are types assigned to variables?

o Type is a runtime property - type tags stored with values
o Dynamic type checking must be done during runtime

* Pros / cons of dynamic typing

— Less programmer effort
o Flexible type rule means program is more malleable
o Absence of types / classes declarations means shorter code
o Makes it suitable for scripting or prototyping languages
— More program bugs and execution time
o Due to dynamic type checking

»Q‘E‘Z

Type System[£ 4;)

e Static / dynamic typing are type systems
- Type System: types + type rules of a language

* Static / dynamic type checking are methods
- Methods to enforce the rules of the given type system

e Static type checking is not used exclusively for static
typing
— Static type checking also used for dynamic typing

— If certain types can be inferred and checked at compile time
o Can reduce dynamic type checks inserted into code

* Dynamic type checking is not used only for dynamic
typing
- Some features of statically typed languages require it
o e.g. downcasting requires type check of object type tag

: } P

ype Systems: Soundness, Completeness

e Static type checking through inference

-~ ITrE\ference: deducing a conclusion[%5i¢] from a set of premises[Hi
]

— What are the premises? Type rules in the type system

— What is the conclusion? Accept / reject after applying rules

* A type system is said to be Sound| 7/] if:
— Only correct programs are accepted
- Flipside: all incorrect programs are rejected

* A type system is said to be Complete[7= #] if:
— All correct programs are accepted
— Flipside: only incorrect programs are rejected

* A type system strives to be both sound and complete
— The rules of inference (type rules) should reflect that

: } P

Rules of Inference

e What are rules of inference?
— Inference rules have the form
if Precondition is true, then Conclusion is true

— Below concise notation used to express above statement
Precondition

Conclusion
— For example: Given E3 - E1 + E2, a rule may be:
if E1, E2 are type consistent and int types (Precondition),
then E3 is type consistent and is an int type (Conclusion)

* Recursive type checking via inference
— Start from variable and constant types at bottom of tree
o Serves as initial preconditions for the inference

— Apply rules on operator nodes while working up the tree
o Checks type consistency and assigns type to node

A

(&) F w % 2 30
\“‘

Ny / SUN YAT-SEN UNIVERSITY

M‘GLX

LLVM: Semantic Analysis

* Clang does not traverse the AST after parsing

- Instead, it performs type checking on the fly, together with AST
node generation

1202 StmtResult Parser::ParselfStatement(SourceLocation *TrailingElselLoc) {

1341 // perform semantic checking for the if statement, emitting diagnostics accordingly

1342 return Actions.ActOnIfStmt(IfLoc, IsConstexpr, InitStmt.get(), Cond,
1343 ThenStmt.get(), ElseLoc, ElseStmt.get());
1344 }

https://github.com/llvm-mirror/clang/blob/master/lib/Parse/ParseStmt.cpp
https://clang.llvm.org/doxygen/ParseAST 8cpp source.html

— After the combined parsing and semantic analysis, the ParseAST
function invokes the method HandleTranslationUnit to trigger
any client that is interested in consuming the final AST.

Frontend (Clang)

C, C++, Objective-C ' . . .
source code Syntactic analysis Semantic analysis LLVM IR generator

https://github.com/llvm-mirror/clang/blob/master/lib/Parse/ParseStmt.cpp
https://clang.llvm.org/doxygen/ParseAST_8cpp_source.html

LLVM: Module

* The Module class represents the top level structure
present in LLVM programs

— An LLVM module is effectively either a translation unit of the
original program or a combination of several translation units
merged by the linker

— The Module class keeps track of a list of Functions, a list of
GlobalVariables, and a SymbolTable

Module i
Function Basic Block

[Target Information] "] Label
rgumentJ*

[Phl Instruction]*

Global Symbols -
Entry Basic Block

[Global Variables]* [Instruction]*

[Basic Block]*

Terminator Instruction

[Function Declaration]*

[Function Definition]*

[Other Stuff]

32 Qﬂlz
https://releases.llvm.org/7.1.0/docs/ProgrammersManual.html#symboltable Uﬁ

https://releases.llvm.org/7.1.0/docs/ProgrammersManual.html

LLVM: Symbol Table

e Public members of Module class
- SymbolTable *getSymbolTable()

o Return a reference to the SymbolTable for this Module
— Function *getOrinsertFunction(const std::string &Name, const
FunctionType *T)

o Look up the specified function in the Module SymbolTable. If it does not
exist, add an external declaration for the function and return it.

— std::string getTypeName(const Type *Ty)

o If there is at least one entry in the SymbolTable for the specified Type,
return it. Otherwise return the empty string

- bool addTypeName(const std::string &Name, const Type *Ty)

o Insert an entry in the SymbolTable mapping Name to Ty. If there is
already an entry for this name, true is returned and the SymbolTable is
not modified.

(&) Tmx % 33 Djud:

