
Compilation Principle
编译原理

第21讲：目标代码生成(1)
张献伟

xianweiz.github.io
DCS290, 6/2/2022

https://xianweiz.github.io/

Review Questions
• Q1: what is a Basic Block?

• Q2: how to partition code into BBs?

• Q3: BBs of the listed code?

• Q4: What is a control-flow graph?

• Q5: What is the CFG of the listed code?

2

w = 0
y = 0
x = x + y
if x > z: goto L1
y = z
z ++
goto L2

L1: y = x
x ++

L2: w = x + z

w = 0
y = 0
x = x + y
if x > z: goto L1
y = z
z ++
goto L2

L1: y = x
x ++

L2: w = x + z

A straight-line sequence of code with only one
entry point and only one exit.

Identify leader insts; a BB consists of a leader
inst and subsequent insts before next leader.

A directed graph where nodes are BBs, edges
show flow of execution between BBs.

B1

B2

B3

B4

B1

B2 B3
B4

B1, B2, B3, B4

• O0: no optimization
− Compiles the fastest and generates the most debuggable code

• O1: somewhere between O0 and O2
• O2: moderate level of optimization enabling most

optimizations
• O3: like O2,

− except that it enables opts that take longer to perform or that
may generate larger code (in an attempt to make the program
run faster)

• Os: like O2 with exta opts to reduce code size
• Oz: like Os, but reduce code size further
• O4: enables link-time opt Clang has support for O4, but

not opt
3

Book: Getting Started with LLVM Core Libraries, C5

LLVM Optimization Flags

4
https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html#x1-12003r1

• Compare the performance of the benchmark when
compiled with either GCC or LLVM

− Compile benchmark at six optimization levels
− Each workload was run 3 times with each executable on the

Intel Core i7-2600 machines

Performance at Varying Flags

https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html

Combine GCC/LLVM？

5

Fuasm 优
化器

LLVM

GCC

IAR

ARMC
C

...

融合的
汇编代码

.bc

clang cc1 llvm-
ld

.c .s .o .out

.i

cpp cc1 as ld

.c .s .o .out

编译器1 (LLVM)

编译器2 (GCC)

Fuasm优
化器

llvm-as
llc

•目标同一段代码在不同的编译器上存在性能差异
−不同编译器的优化策略不同
−不同编译器的优化方法实现不同

•多编译器性能优化
− Fuasm:编译基于函数替换的汇编代码融合

https://getianao.github.io/

https://getianao.github.io/

LLVM Passes
• Optimizations are implemented as Passes that traverse

some portion of a program to either collect information
or transform the program
• A Pass receives an LLVM IR and performs analyses and/or

transformations
− Using opt, it is possible to run each Pass

• A Pass can be executed in a middle of compiling process
from source code to binary code

− The pipeline of Passes is arranged by Pass Manager

6
https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://releases.llvm.org/1.2/docs/CommandGuide/llc.html
The llc command compiles LLVM bytecode into assembly language for a specified architecture.
The assembly language output can then be passed through a native assembler and linker to generate native code.

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation
https://releases.llvm.org/1.2/docs/CommandGuide/llc.html

LLVM Passes (cont.)
• Analysis passes: compute info that other passes can use

or for debugging or program visualization purposes
− -memdep: Memory Dependence Analysis

(https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html)

− -instcount: Counts the various types of Instructions
(https://llvm.org/doxygen/InstCount_8cpp_source.html)

− … (https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html)

• Transform passes: can use (or invalidate) the analysis
passes, all mutating the program in some way

− -dce: Dead Code Elimination (https://llvm.org/doxygen/DCE_8cpp_source.html)

− -loop-unroll: Unroll loops (https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html)

− … (https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html)

• Utility passes: provides some utility but don’t otherwise
fit categorization

− -view-cfg: View CFG of function
− …

7
https://www.llvm.org/docs/Passes.html

https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html
https://llvm.org/doxygen/InstCount_8cpp_source.html
https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html
https://llvm.org/doxygen/DCE_8cpp_source.html
https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html
https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html
https://www.llvm.org/docs/Passes.html

Example
• $clang -emit-llvm -S sum.c
• $opt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.ll

• $opt sum.ll -time-passes -mem2reg -o sum-tim.ll

8

$opt sum.ll -debug-pass=Structure -O1 -S -o sum-O1.ll
$opt sum.ll -time-passes -O1 -o sum-tim.ll

Book: Getting Started with LLVM Core Libraries, C5

Target Code Generation[目标代码生成]

• What we have now
− Optimized IR of the source program

p And, symbol table

• Target code
− Binary (machine) code
− Assembly code

• Goals of target code generation
− Correctness: the target program must

preserve the semantic meaning of the
source program

− High-quality: the target program must
make effective use of the available
resources of the target machine

− Fast: the code generator itself must
runs efficiently

9

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

Example
• An example on real machine (x86_64)

− Symbols have to be translated to memory addresses

• A simplified representation

10

gcc -O0 -S test.c

LD R0, y // R0 = y (load y into register R0)
ADD R0, R0, z // R0 = R0 + z (add z to R0)
ST x, R0 // x = R0 (store R0 into x)

x = y + z

Translating IR to Machine Code[翻译]

• Machine code generation is machine ISA dependent*

− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions

11

* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

ISA

https://zhuanlan.zhihu.com/p/363765166

x86 à ARM à RISC-V[进行中的变革]

• The war started in mid 1980’s
− CISC won the high-end commercial war (1990s to today)
− RISC won the embedded computing war

• But now, things are changing …
− Fugaku: ARM-based supercomputer, Apple ARM-based M1 chip

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement

12

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and
early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed
with a similar philosophy which has become known as RISC

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html

Instruction Selection[指令选取]

• Code generation is to map the IR program into a code
sequence that can be executed by the target machine[选
择适当的目标机器指令来实现IR]

− ISA of the target machine
p If there is ‘INC’, then for a = a + 1, ‘INC a’ is better than ‘LD a; ADD a, 1’

− Desired quality of the generated code
p Many different generations, naïve translation is usually correct but very

inefficient

13

TAC code:

a = b + c
d = a + e

Target code:

LD R0, b // R0 = b
ADD R0, R0, c // R0 = R0 + c
ST a, R0 // a = R0
LD R0, a // R0 = a
ADD R0, R0, e // R0 = R0 + e
ST d, R0 // d = R0

Register Allocation & Evaluation Order
• Register allocation: a key problem in code generation is

deciding what values to hold in what registers[寄存器分配]
− Registers are the fastest storage unit but are of limited numbers

p Values not held in registers need to reside in memory
p Insts involving register operands are much shorter and faster

− Finding an optimal assignment of registers to variables is NP-
hard

• Evaluation order: the order in which computations are
performed can affect the efficiency of the target code[执
行顺序]

− Some computation orders require fewer registers to hold
intermediate results than others

− However, picking a best order in the general case is NP-hard

14

Stack Machine[栈式计算机]

• A simple evaluation model[一个简单模型]
− No variables or registers
− A stack of values for intermediate results

• Each instruction[指令任务]
− Takes its operands from the top of the stack[栈顶取操作数]
− Removes those operands from the stack[从栈中移除操作数]
− Computes the required operation on them[计算]
− Pushes the result on the stack[将计算结果入栈]

15

Example
• Consider two instructions

− push i - place the integer i on top of the stack
− add - pop two elements, add them and put the result back on

the stack

• A program to compute 7 + 5
− push 7
− push 5
− add

16

Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called
accumulator)[使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation

17

push 7
push 5
add

From Stack Machine to MIPS
• The compiler generates code for a stack machine with

accumulator
− The accumulator is kept in MIPS register $t0
− Stack machine instructions are implemented using MIPS

instructions and registers
− We want to run the resulting code on the MIPS processor (or

simulator)
• The stack is kept in memory

− The stack grows towards lower addresses (standard convention)
− The address of next stack location is kept in a MIPS register $sp

p The top of the stack is now at address $sp + 4
− A block of stack space, called stack frame, is allocated for each

function call
p A stack frame consists of the memory between $fp which points to the

base of the current stack frame, and the $sp
p Before func returns, it must pop its stack frame, and restore the stack

18
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

MIPS Architecture
• Load/store architecture

− Only load and store instructions can access memory
− All other instructions access only registers

p E.g., all arithmetic and logical operations involve only registers (or constants
that are stored as part of the instructions)

• Word size is 32 bits, all instructions are encoded in a single 32-
bit word format

− Arithmetic
p e.g., add des, src1, src2 // des = src1 + src2

− Comparison
p e.g., sge des, src1, src2 // des ← 1 if src1 ≥ src2, 0 ow

− Branch/jump
p e.g., bge src1, src2, lab // branch to lab if src1 ≥ src2

− Load, store, and data movement
p E.g., lw des, addr // load the word at addr into des
p E.g., move des, src1 // copy the contents of src1 to des

19
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

MIPS Architecture (cont.)
• 32 registers

− 31 of these are general-purpose that can be used in any of the
instructions

− The last one (zero), is to contain the number zero at all times

• While general-purpose, there are guidelines specifying
how each of the registers should be used

− $0 is always zero, $a0,...,$a4 are for arguments
− $sp saves stack pointer, $fp saves frame pointer

20

Example MIPS Instructions
• la reg1 addr

− Load address into reg1
• li reg imm

− reg ← imm
• lw reg1 offset(reg2)

− Load 32-bit word from address reg2 + offset into reg1
• sw reg1 offset(reg2)

− Store 32-bit word in reg1 at address reg2 + offset
• add reg1 reg2 reg3

− reg1 ← reg2 + reg3
• move reg1 reg2

− reg1 <- reg2
• sge reg1 reg2 reg3

− reg1 ← (reg2 >= reg3)

21

Example MIPS Assembly
• The stack-machine code for 7 + 5 in MIPS:

22

Stack-machine MIPS Comment
acc <- 7 li $t0 7 Load constant 7 into $t0
push acc addi $sp $sp -4

sw $t0 0($sp)
Decrement sp to make space
Copy the value to stack

acc <- 5 li $t0 5 Load constant 5 into $t0
acc <- acc + top_of_stack lw $t1 4($sp)

add $t0 $t0 $t1
Load value from $sp+4 into $t1
Add $t0+$t1 = 5 + 7

pop add $sp $sp 4 Pop constant 7 off stack

A Small Language
• A language with integers and integer operations

• Example: program for computing the Fibonacci numbers:

23

P → D; P | D
D → def id(ARGS) = E;
ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else

fib(x - 1) + fib(x – 2)

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

Code Generation Considerations[考虑]

• We used to store values in unlimited temporary variables, but
registers are limited --> must reuse registers[重复使用寄存器]
• Must save/restore registers when reusing them[保存-恢复]

− E.g. suppose you store results of expressions in $t0
− When generating E -> E1 + E2,

p E1 will first store result into $t0
p E2 will next store result into $t0, overwriting E1’s result
p Must save $t0 somewhere before generating E2

• Registers are saved on and restored from the stack
Note: $sp - stack pointer register, pointing to the top of stack

− Saving a register $t0 on the stack:
addiu $sp, $sp, -4 # Allocate (push) a word on the stack
sw $t0, 0($sp) # Store $t0 on the top of the stack

− Restoring a value from stack to register $t0:
lw $t0, 0($sp) # Load word from top of stack to $t0
addiu $sp, $sp, 4 # Free (pop) word from stack

24

Stack Operations[栈操作]

• To push elements onto the stack
− To move stack pointer $sp down to make room for the new data
− Store the elements into the stack

• For example, to push registers $t1 and $t2 onto stack

• Pop elements simply by adjusting the $sp upwards
− Note that the popped data is still present in memory, but data

past the stack pointer is considered invalid

25

sub $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

word 1

word 2$sp
word 1

word 2

$t1

$t2$sp

word 1

word 2

$t1

$t2

$sp

Higher address

Code Generation Strategy
• For each expression e we generate MIPS code that:

− Computes the value of e into $t0
− Preserves $sp and the contents of the stack

• We define a code generation function cgen(e)
− Its result is the code generated for e

• Code generation for constants
− The code to evaluate a constant simply copies it into the

register: cgen(i) = li $t0 i
p Note that this also preserves the stack, as required

26
https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

