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Review Questions
• Q1: what is a Basic Block?

• Q2: how to partition code into BBs?

• Q3: BBs of the listed code?

• Q4: What is a control-flow graph?

• Q5: What is the CFG of the listed code?
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w = 0
y = 0
x = x + y
if x > z: goto L1
y = z
z ++
goto L2

L1: y = x
x ++

L2: w = x + z

w = 0
y = 0
x = x + y
if x > z: goto L1
y = z
z ++
goto L2

L1: y = x
x ++

L2: w = x + z

A straight-line sequence of code with only one
entry point and only one exit.

Identify leader insts; a BB consists of a leader
inst and subsequent insts before next leader.

A directed graph where nodes are BBs, edges
show flow of execution between BBs.
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B1, B2, B3, B4



• O0: no optimization
− Compiles the fastest and generates the most debuggable code 

• O1: somewhere between O0 and O2
• O2: moderate level of optimization enabling most 

optimizations 
• O3: like O2,

− except that it enables opts that take longer to perform or that 
may generate larger code (in an attempt to make the program 
run faster)

• Os: like O2 with exta opts to reduce code size
• Oz: like Os, but reduce code size further
• O4: enables link-time opt Clang has support for O4, but 

not opt
3

Book: Getting Started with LLVM Core Libraries, C5

LLVM Optimization Flags
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https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html#x1-12003r1

• Compare the performance of the benchmark when 
compiled with either GCC or LLVM

− Compile benchmark at six optimization levels
− Each workload was run 3 times with each executable on the 

Intel Core i7-2600 machines

Performance at Varying Flags

https://webdocs.cs.ualberta.ca/~amaral/AlbertaWorkloadsForSPECCPU2017/reports/exchange2_report.html


Combine GCC/LLVM？
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Fuasm 优
化器

LLVM

GCC

IAR

ARMC
C

...

融合的
汇编代码

.bc

clang cc1 llvm-
ld

.c .s .o .out

.i

cpp cc1 as ld

.c .s .o .out

编译器1 (LLVM) 

编译器2 (GCC) 

Fuasm优
化器

llvm-as
llc

•目标同一段代码在不同的编译器上存在性能差异
−不同编译器的优化策略不同
−不同编译器的优化方法实现不同

•多编译器性能优化
− Fuasm:编译基于函数替换的汇编代码融合

https://getianao.github.io/

https://getianao.github.io/


LLVM Passes
• Optimizations are implemented as Passes that traverse 

some portion of a program to either collect information 
or transform the program
• A Pass receives an LLVM IR and performs analyses and/or 

transformations
− Using opt, it is possible to run each Pass

• A Pass can be executed in a middle of compiling process 
from source code to binary code

− The pipeline of Passes is arranged by Pass Manager
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https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation

https://releases.llvm.org/1.2/docs/CommandGuide/llc.html
The llc command compiles LLVM bytecode into assembly language for a specified architecture.
The assembly language output can then be passed through a native assembler and linker to generate native code.

https://www.slideserve.com/quinlan-dominguez/llvm-pass-and-code-instrumentation
https://releases.llvm.org/1.2/docs/CommandGuide/llc.html


LLVM Passes (cont.)
• Analysis passes: compute info that other passes can use 

or for debugging or program visualization purposes
− -memdep: Memory Dependence Analysis 

(https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html)

− -instcount: Counts the various types of Instructions 
(https://llvm.org/doxygen/InstCount_8cpp_source.html)

− … (https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html)

• Transform passes: can use (or invalidate) the analysis 
passes, all mutating the program in some way

− -dce: Dead Code Elimination (https://llvm.org/doxygen/DCE_8cpp_source.html)

− -loop-unroll: Unroll loops (https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html)

− … (https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html) 

• Utility passes: provides some utility but don’t otherwise 
fit categorization

− -view-cfg: View CFG of function
− …
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https://www.llvm.org/docs/Passes.html

https://llvm.org/doxygen/MemDepPrinter_8cpp_source.html
https://llvm.org/doxygen/InstCount_8cpp_source.html
https://llvm.org/doxygen/dir_a25db018342d3ae6c7e6779086c18378.html
https://llvm.org/doxygen/DCE_8cpp_source.html
https://llvm.org/doxygen/LoopUnrollPass_8cpp_source.html
https://llvm.org/doxygen/dir_a72932e0778af28115095468f6286ff8.html
https://www.llvm.org/docs/Passes.html


Example
• $clang -emit-llvm -S sum.c
• $opt sum.ll -debug-pass=Structure -mem2reg -S -o sum-O1.ll

• $opt sum.ll -time-passes -mem2reg -o sum-tim.ll
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$opt sum.ll -debug-pass=Structure -O1 -S -o sum-O1.ll
$opt sum.ll -time-passes -O1 -o sum-tim.ll

Book: Getting Started with LLVM Core Libraries, C5



Target Code Generation[目标代码生成]

• What we have now
− Optimized IR of the source program

p And, symbol table

• Target code
− Binary (machine) code
− Assembly code

• Goals of target code generation
− Correctness: the target program must 

preserve the semantic meaning of the 
source program

− High-quality: the target program must 
make effective use of the available 
resources of the target machine

− Fast: the code generator itself must 
runs efficiently
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Example
• An example on real machine (x86_64)

− Symbols have to be translated to memory addresses

• A simplified representation
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gcc -O0 -S test.c

LD R0, y // R0 = y (load y into register R0)
ADD R0, R0, z // R0 = R0 + z (add z to R0)
ST x, R0 // x = R0 (store R0 into x)

x = y + z



Translating IR to Machine Code[翻译]

• Machine code generation is machine ISA dependent*

− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR 
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions
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* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

ISA

https://zhuanlan.zhihu.com/p/363765166


x86 à ARM à RISC-V[进行中的变革]

• The war started in mid 1980’s
− CISC won the high-end commercial war (1990s to today)
− RISC won the embedded computing war

• But now, things are changing …
− Fugaku: ARM-based supercomputer, Apple ARM-based M1 chip

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans 

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement
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https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html
The first RISC projects came from IBM, Stanford, and UC-Berkeley in the late 70s and 
early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all designed 
with a similar philosophy which has become known as RISC

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/whatis/index.html


Instruction Selection[指令选取]

• Code generation is to map the IR program into a code 
sequence that can be executed by the target machine[选
择适当的目标机器指令来实现IR]

− ISA of the target machine
p If there is ‘INC’, then for a = a + 1, ‘INC a’ is better than ‘LD a; ADD a, 1’

− Desired quality of the generated code
p Many different generations, naïve translation is usually correct but very 

inefficient
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TAC code:

a = b + c
d = a + e

Target code:

LD R0, b // R0 = b
ADD R0, R0, c // R0 = R0 + c
ST a, R0 // a = R0
LD R0, a // R0 = a
ADD R0, R0, e // R0 = R0 + e
ST d, R0 // d = R0



Register Allocation & Evaluation Order
• Register allocation: a key problem in code generation is 

deciding what values to hold in what registers[寄存器分配]
− Registers are the fastest storage unit but are of limited numbers

p Values not held in registers need to reside in memory
p Insts involving register operands are much shorter and faster

− Finding an optimal assignment of registers to variables is NP-
hard

• Evaluation order: the order in which computations are 
performed can affect the efficiency of the target code[执
行顺序]

− Some computation orders require fewer registers to hold 
intermediate results than others

− However, picking a best order in the general case is NP-hard

14



Stack Machine[栈式计算机]

• A simple evaluation model[一个简单模型]
− No variables or registers
− A stack of values for intermediate results

• Each instruction[指令任务]
− Takes its operands from the top of the stack[栈顶取操作数]
− Removes those operands from the stack[从栈中移除操作数]
− Computes the required operation on them[计算]
− Pushes the result on the stack[将计算结果入栈]
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Example
• Consider two instructions

− push i - place the integer i on top of the stack
− add - pop two elements, add them and put the result back on 

the stack

• A program to compute 7 + 5
− push 7
− push 5
− add

16



Optimize the Stack Machine
• The add instruction does 3 memory operations

− Two reads and one write to the stack
− The top of the stack is frequently accessed

• Idea: keep the top of the stack in a register (called 
accumulator)[使用寄存器]

− Register accesses are much faster

• The “add” instruction is now
− acc ← acc + top_of_stack
− Only one memory operation

17

push 7
push 5
add



From Stack Machine to MIPS
• The compiler generates code for a stack machine with 

accumulator
− The accumulator is kept in MIPS register $t0
− Stack machine instructions are implemented using MIPS 

instructions and registers
− We want to run the resulting code on the MIPS processor (or 

simulator)
• The stack is kept in memory

− The stack grows towards lower addresses (standard convention)
− The address of next stack location is kept in a MIPS register $sp

p The top of the stack is now at address $sp + 4
− A block of stack space, called stack frame, is allocated for each 

function call
p A stack frame consists of the memory between $fp which points to the 

base of the current stack frame, and the $sp
p Before func returns, it must pop its stack frame, and restore the stack
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https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf


MIPS Architecture
• Load/store architecture

− Only load and store instructions can access memory
− All other instructions access only registers

p E.g., all arithmetic and logical operations involve only registers (or constants 
that are stored as part of the instructions)

• Word size is 32 bits, all instructions are encoded in a single 32-
bit word format

− Arithmetic
p e.g., add des, src1, src2 // des = src1 + src2

− Comparison
p e.g., sge des, src1, src2 // des ← 1 if src1 ≥ src2, 0 ow

− Branch/jump
p e.g., bge src1, src2, lab // branch to lab if src1 ≥ src2

− Load, store, and data movement
p E.g., lw des, addr // load the word at addr into des
p E.g., move des, src1 // copy the contents of src1 to des
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https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf


MIPS Architecture (cont.)
• 32 registers

− 31 of these are general-purpose that can be used in any of the 
instructions

− The last one (zero), is to contain the number zero at all times

• While general-purpose, there are guidelines specifying 
how each of the registers should be used

− $0 is always zero, $a0,...,$a4 are for arguments
− $sp saves stack pointer, $fp saves frame pointer
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Example MIPS Instructions
• la reg1 addr

− Load address into reg1
• li reg imm

− reg ← imm
• lw reg1 offset(reg2)

− Load 32-bit word from address reg2 + offset into reg1
• sw reg1 offset(reg2)

− Store 32-bit word in reg1 at address reg2 + offset
• add reg1 reg2 reg3

− reg1 ← reg2 + reg3
• move reg1 reg2

− reg1 <- reg2
• sge reg1 reg2 reg3

− reg1 ← (reg2 >= reg3)
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Example MIPS Assembly
• The stack-machine code for 7 + 5 in MIPS:
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Stack-machine MIPS Comment
acc <- 7 li $t0 7 Load constant 7 into $t0
push acc addi $sp $sp -4

sw $t0 0($sp)
Decrement sp to make space
Copy the value to stack

acc <- 5 li $t0 5 Load constant 5 into $t0
acc <- acc + top_of_stack lw $t1 4($sp)

add $t0 $t0 $t1
Load value from $sp+4 into $t1
Add $t0+$t1 = 5 + 7

pop add $sp $sp 4 Pop constant 7 off stack



A Small Language
• A language with integers and integer operations

• Example: program for computing the Fibonacci numbers:
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P → D; P | D
D → def id(ARGS) = E;
ARGS → id, ARGS | id
E → int | id | if E1 = E2 then E3 else E4

| E1 + E2 | E1 – E2 | id(E1,…,En)

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else

fib(x - 1) + fib(x – 2)

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf


Code Generation Considerations[考虑]

• We used to store values in unlimited temporary variables, but
registers are limited --> must reuse registers[重复使用寄存器]
• Must save/restore registers when reusing them[保存-恢复]

− E.g. suppose you store results of expressions in $t0
− When generating E -> E1 + E2, 

p E1 will first store result into $t0
p E2 will next store result into $t0, overwriting E1’s result
p Must save $t0 somewhere before generating E2

• Registers are saved on and restored from the stack
Note: $sp - stack pointer register, pointing to the top of stack 

− Saving a register $t0 on the stack:
addiu $sp, $sp, -4 # Allocate (push) a word on the stack
sw $t0, 0($sp) # Store $t0 on the top of the stack 

− Restoring a value from stack to register $t0:
lw $t0, 0($sp) # Load word from top of stack to $t0
addiu $sp, $sp, 4 # Free (pop) word from stack 
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Stack Operations[栈操作]

• To push elements onto the stack
− To move stack pointer $sp down to make room for the new data
− Store the elements into the stack

• For example, to push registers $t1 and $t2 onto stack

• Pop elements simply by adjusting the $sp upwards
− Note that the popped data is still present in memory, but data 

past the stack pointer is considered invalid
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sub $sp, $sp, 8
sw $t1, 4($sp)
sw $t2, 0($sp)

sw $t1, -4($sp)
sw $t2, -8($sp)
sub $sp, $sp, 8

word 1

word 2$sp
word 1

word 2

$t1

$t2$sp

word 1

word 2

$t1

$t2

$sp

Higher address



Code Generation Strategy
• For each expression e we generate MIPS code that: 

− Computes the value of e into $t0
− Preserves $sp and the contents of the stack

• We define a code generation function cgen(e)
− Its result is the code generated for e

• Code generation for constants
− The code to evaluate a constant simply copies it into the 

register: cgen(i) = li $t0 i
p Note that this also preserves the stack, as required
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https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

https://www.d.umn.edu/~rmaclin/cs5641/Notes/L19_CodeGenerationI.pdf

