
Compilation Principle
编译原理

第23讲：目标代码生成(3)
张献伟

xianweiz.github.io
DCS290, 6/16/2022

https://xianweiz.github.io/


Machine Optimizations[机器相关优化]

• After performing IR optimizations
− We need to further convert the optimized IR into the target 

language (e.g. assembly, machine code)

• Specific machines features are taken into account to 
produce code optimized for the particular architecture[考
虑特定的架构特性]

− E.g., specialized instructions, hardware pipeline abilities, 
register details

• Typical machine optimizations[典型的优化方案]
− Instruction selection and scheduling: select insts to implement 

the operators in IR
− Register allocation: map values to registers and manage
− Peephole optimization: locally improve the target code

2



Instruction Selection[指令选取]

• To find an efficient mapping from the IR of a program to a 
target-specific assembly listing[IR到汇编的映射]

• Instruction selection is particularly important when 
targeting architectures with CISC (e.g., x86)

− In these architectures there are typically several possible 
implementations of the same IR operation, each with different 
properties

− e.g., on x86 an addition of one can be implemented by an inc, 
add, or lea instruction

3

MOV y,R0
ADD z,R0
MOV R0,x

x = y + z

MOV a,R0
ADD #1,R0
MOV R0,a

a = a + 1

MOV a,R0
INC R0
MOV R0,a



Instruction Cost[指令成本]

• Instruction cost = 1 + cost(source-mode) + 
cost(destination-mode)

• Examples

4
https://www.cs.fsu.edu/~engelen/courses/COP562107/Ch9a.pdf

https://www.cs.fsu.edu/~engelen/courses/COP562107/Ch9a.pdf


Instruction Cost (cont.)
• Suppose we translate TAC x:=y+z to:

− MOV y, R0
− ADD z, R0
− MOV R0, x

• a := b + c

• a := a + 1

5

MOV a, R0
ADD #1, R0
MOV R0, a

MOV b, R0
ADD c, R0
MOV R0, a

MOV b, a
ADD c, a

MOV *R1, *R0
ADD *R2, *R0

cost = 6 cost = 6 cost = 2

Assuming R0, R1 and R2 contain 
the addresses of a, b, and c

cost = 6

ADD #1, a

cost = 3

INC a

cost = 2



Instruction Scheduling[指令调度]

• Some facts
− Instructions take clock cycles to execute (latency)
− Modern machines issue several operations per cycle (Out-of-

Order execution)
− Cannot use results until ready, can do something else
− Execution time is order-dependent

• Goal: reorder the operations to minimize execution time
− Minimize wasted cycles
− Avoid spilling registers
− Improve locality

6

A = x * y;
B = A + 1;
C = y; 

A = x * y;
C = y;
B = A + 1; 

(Now C=y; can execute while waiting for A=x*y;) 



Register Allocation[寄存器分配]

• In TAC, there are an unlimited number of variables
− On a physical machine there are a small number of registers

• Register allocation is the process of assigning variables to 
registers and managing data transfer in and out of 
registers

− How to assign variables to finitely many registers?
− What to do when it can't be done?
− How to do so efficiently?

• Using registers intelligently is a critical step in any 
compiler

− Accesses to memory are costly, even with caches 
− A good register allocator can generate code orders of 

magnitude better than a bad register allocator
7



Register Allocation (cont.)
• Goals of register allocation

− Keep frequently accessed variables in registers
− Keep variables in registers only as long as they are live 

• Local register allocation[局部]
− Allocate registers basic block by basic block
− Makes decisions on a per-block basis (hence ‘local’) 

• Global register allocation[全局]
− Makes global decisions about register allocation such that

p Var to reg mappings remain consistent across blocks
p Structure of CFG is taken into account on decisions

• Three well-known register allocation algorithms 
− Graph coloring allocator[图着色]
− Linear scan allocator[线性扫描]
− LP (Integer Linear Programming) allocator[整数线性规划]

8



Graph Coloring[图着色]
• Register interference graph (RIG)[相交图]

− Each node represents a variable
− An edge between two nodes V1 and V2 represents an 

interference in live ranges[活跃期/生存期]

• Based on RIG,
− Two variables can be allocated in the same register if there is no 

edge between them[若无边相连，可使用同一寄存器]
− Otherwise, they cannot be allocated in the same register 

• Problem of register allocation maps to graph coloring
− Once solved, k colors can be mapped back to k registers
− If the graph is k-colorable, it’s k-register-allocatable

9



Register Spilling[寄存器溢出]

• Determining whether a graph is k-colorable is NP-
complete

− Therefore, problem of k-register allocation is NP-complete
− In practice: use heuristic polynomial algorithm that gives close 

to optimal allocations most of the time
− Chaitin’s graph coloring is a popular heuristic algorithm 

p E.g. most backends of GCC use Chaitin’s algorithm 

• What if k-register allocation does not exist?
− Spill a variable to memory to reduce RIG and try again
− Spilled var stays in memory and is not allocated a reg 

• Spilling is slow
− Placed into memory, loaded into register when needed, and 

written back to memory when no longer used

10



Peephole Optimization[窥孔优化]

• Optimization ways
− Usual: produce good code through careful inst selection and 

register allocation
− Alternative: generate naïve target code and then improve

• A simple but effective technique for locally improving the 
target code[很局部的优化，但可能带来性能的极大提升]

− Done by examining a sliding window of target instructions 
(called peephole) and replacing instruction sequences within 
the peephole by a shorter or faster sequence, whenever psbl

− Can also be applied directly after IR generation to improve IR
• Example transformations

− Redundant-instruction elimination
− Flow-of-control optimizations
− Algebraic simplifications
− Use of machine idioms

11

if a < b goto L1
…

L1: goto L2

if a < b goto L2
…

L1: goto L2

Jump to jumps



LLVM
• llc: LLVM static compiler

− Input: .ll or .bc
− Output: assembly language for a specified 

architecture

• End-user options
-march=<arch>: e.g., x86
-mcpu=<cpuname>: e.g., corei7-avx

• Tuning/Configuration Options
--print-after-isel: print generated machine code 
after instruction selection (useful for debugging)
--regalloc=<allocator>: specify the register 
allocator to use, basic/fast/greedy/pdqp
--spiller=<spiller>: simple/local

12
https://www.llvm.org/docs/CommandGuide/llc.html

https://www.llvm.org/docs/CommandGuide/llc.html


Optimizations[总结]
• Code can be optimized at different levels with various 

techniques
− Peephole, local, loop, global
− IR: local, global, common subexpression elimination, constant 

folding and propagation, …
− Target: instruction, register, peephole, …

• Interactions between the various optimization techniques
− Some transformations may expose possibilities for others
− One opt. may obscure or remove possibilities for others

• Affect of compiler opts are intertwined and hard to 
separate

− Finding optimal opt combinations is in itself research 
− Compilers package opts that typically go together into levels 

(e.g -O1, -O2, -O3) 
13



14

Pahrump, Nevada 8/4/2017 5:37pm

The END is Near


