Compilation Principle

i 1% J5 3
§§23L p %ﬁﬁgéi)ﬁﬁ)
TR R

xianweiz.github.io
DCS290, 6/16/2022

Dhtge

https://xianweiz.github.io/

Machine Optimizations[#l 2= 4k]

* After performing IR optimizations

- We need to further convert the optimized IR into the target
language (e.g. assembly, machine code)

e Specific machines features are taken into account to
produce code optimized for the particular architecture[*%
JEFT IE AR]

- E.g., specialized instructions, hardware pipeline abilities,
register details

* Typical machine optimizations[$t 54 i Ak 77 %]
— Instruction selection and scheduling: select insts to implement
the operators in IR
— Register allocation: map values to registers and manage
- Peephole optimization: locally improve the target code

“‘ \‘ \ s

Instruction Selection[#4 &)

* To find an efficient mapping from the IR of a program to a
target-specific assembly listing[IRZ]JL 2) I 5]

* Instruction selection is particularly important when
targeting architectures with CISC (e.g., x86)

- In these architectures there are typically several possible
implementations of the same IR operation, each with different
properties

- e.g., on x86 an addition of one can be implemented by an inc,
add, or lea instruction

X=Yy+z a=a+l

MOV y,RO MOV a,R0 MOV a,R0O
ADD z,RO ADD #1,R0 INC RO
MOV RO,x MOV RO,a MOV RO,a

“‘ : \ s

Instruction Cost[{g4 miA]

* Instruction cost = 1 + cost(source-mode) +
cost(destination-mode)

Mode Form Address Added Cost
Absolute M M 1
Register R R 0
Indexed c(R) c+contents(R) 1
Indirect register *R contents(R) 0
Indirect indexed | *c(R) | contents(c+contents(R)) 1
Literal #c N/A 1
* Examples
Instruction Operation Cost
MOV RO,R1 Store content(RO) into register R1 1
MOV RO,M Store content(RO) into memory location M 2
MOV M, RO Store content(M) into register RO 2
MOV 4 (RO) ,M Store contents(4+contents(R0)) into M 3
MOV *4 (RO) ,M Store contents(contents(4+contents(R0))) into M 3
MOV #1,R0 Store 1 into RO 2
ADD 4 (RO),*12(R1) Add contents(4+contents(R0O))
to contents(12+contents(R1)) 3
4

https://www.cs.fsu.edu/~engelen/courses/COP562107/Ch9a.pdf

https://www.cs.fsu.edu/~engelen/courses/COP562107/Ch9a.pdf

Instruction Cost (cont.)

e Suppose we translate TAC x:=y+z to:

- MOV y, RO
- ADD z, RO
- MOV RO, x

ca:=b+c
MOQV b, RO
ADD c, RO
MOV RO, a

cost=6
*a:=a+l

MOV a, RO
ADD #1, RO

MOV RO, a

cost=6

MOQV b, a
ADDc, a

cost=6

ADD #1, a

cost=3

Mode Form Address Added Cost
Absolute M M 1
Register R R 0
Indexed c(R) c+contents(R) 1

Indirect register *R contents(R) 0
Indirect indexed | *c(R) | contents(c+contents(R)) 1
Literal #c N/A 1

MOV *R1, *RO Assuming RO, R1 and R2 contain

ADD *R2, *RO

cost=2

INC a

cost=2

the addresses of a, b, and ¢

MELZ

Instruction Scheduling[#& 4 &

e Some facts
- Instructions take clock cycles to execute (latency)

- Modern machines issue several operations per cycle (Out-of-
Order execution)

— Cannot use results until ready, can do something else
— Execution time is order-dependent

* Goal: reorder the operations to minimize execution time
- Minimize wasted cycles
— Avoid spilling registers
- Improve locality

A=x"y; A=x"*y;
B=A+1; C=y,
C=vy; B=A+1;

(Now C=y; can execute while waiting for A=x*y;)
@ T1x2 g

Register Allocation[Z 725/ i)

* In TAC, there are an unlimited number of variables
— On a physical machine there are a small number of registers

* Register allocation is the process of assigning variables to
registers and managing data transfer in and out of
registers

— How to assign variables to finitely many registers?
— What to do when it can't be done?
- How to do so efficiently?

* Using registers intelligently is a critical step in any
compiler
— Accesses to memory are costly, even with caches
— A good register allocator can generate code orders of
magnitude better than a bad register allocator

“‘ \‘ \ s

Register Allocation (cont.)

* Goals of register allocation
- Keep frequently accessed variables in registers
— Keep variables in registers only as long as they are live

* Local register allocation[J7]
— Allocate registers basic block by basic block
- Makes decisions on a per-block basis (hence ‘local’)

* Global register allocation[4: 5]

- Makes global decisions about register allocation such that
o Var to reg mappings remain consistent across blocks
o Structure of CFG is taken into account on decisions

* Three well-known register allocation algorithms
— Graph coloring allocator[H% 1]
— Linear scan allocator[g {4 F9F#]
— LP (Integer Linear Programming) allocator[#& %2k 4 5 kil

MGLX

Graph Coloring[&#)

* Register interference graph (RIG)[#H%Z E]
— Each node represents a variable
- An edge between two nodes V, and V, represents an
interference in live ranges[y& ik i1 /4= 73]
* Based on RIG,

— Two variables can be allocated in the same register if there is no
edge between them [L HE, F R — 2747 48]
- Otherwise, they cannot be allocated in the same register

* Problem of register allocation maps to graph coloring
— Once solved, k colors can be mapped back to k registers
— If the graph is k-colorable, it’s k-register-allocatable

a
R2

f = L

e A\ B C

\/R2

R3

Register Spilling[277 28 1)

* Determining whether a graph is k-colorable is NP-
complete
- Therefore, problem of k-register allocation is NP-complete

- In practice: use heuristic polynomial algorithm that gives close
to optimal allocations most of the time

— Chaitin’s graph coloring is a popular heuristic algorithm
o E.g. most backends of GCC use Chaitin’s algorithm

* What if k-register allocation does not exist?
— Spill a variable to memory to reduce RIG and try again
— Spilled var stays in memory and is not allocated a reg

* Spilling is slow
— Placed into memory, loaded into register when needed, and
written back to memory when no longer used

“‘ : \ s

Peephole Optimization[@ifLi4k]

* Optimization ways
— Usual: produce good code through careful inst selection and
register allocation

— Alternative: generate naive target code and then improve
* A simple but effective technique for locally improving the

target code[1R FmEERIPLAL, 1E0] B8+ KM BE IR ORTETH]
— Done by examining a sliding window of target instructions

(called peephole) and replacing instruction sequences within
the peephole by a shorter or faster sequence, whenever psbl

— Can also be applied directly after IR generation to improve IR

* Example transformations ifa<bgotoll

- Redundant-instruction elimination

c e . L1: goto L2
- Flow-of-control optimizations | .
. . o . ump tOJumps

— Algebraic smphﬂcgtmns if a < b goto L2

— Use of machine idioms
@ tuxrs L1: goto L2 B

LLVM

e [lc: LLVM static compiler
- Input: .ll or .bc

— Output: assembly language for a specified
architecture

* End-user options

-march=<arch>: e.g., x86
-mcpu=<cpuname>: e.g., corei7-avx

* Tuning/Configuration Options

--print-after-isel: print generated machine code
after instruction selection (useful for debugging)

--regalloc=<allocator>: specify the register
allocator to use, basic/fast/greedy/pdqp

--spiller=<spiller>: simple/local

12

https://www.llvm.org/docs/CommandGuide/llc.html

-
l

Instruction selection

|
SelectionDAG

v

Instruction scheduling
(Pre-register allocation)

T
MachineInstr

v

Register allocation

|
MachineInstr

v

Instruction scheduling
(Post-register allocation)

I

MachineInstr

v

Code emission

I
MCInst

Object code /
Assembler

https://www.llvm.org/docs/CommandGuide/llc.html

Optimizations[m 4]

* Code can be optimized at different levels with various
techniques
- Peephole, local, loop, global
- |R: local, global, common subexpression elimination, constant
folding and propagation, ...
— Target: instruction, register, peephole, ...

* Interactions between the various optimization techniques
- Some transformations may expose possibilities for others
— One opt. may obscure or remove possibilities for others

» Affect of compiler opts are intertwined and hard to
separate
- Finding optimal opt combinations is in itself research

— Compilers package opts that typically go together into levels
e.g-01, -02,-03
rul#) B

Pahrump, Nevada 8/4/2017 5:37pm

