Compilation Principle

% % JE I8

F139E: 15 X HT(3)
i NGE

xianweiz.github.io
DCS290, 4/13/2021

Dyide

https://xianweiz.github.io/

Review Questions (1)

* What is Syntax Directed Translation?

The parsing process and parse trees are to direct semantic analysis
and the translation of the program (a.k.a., CFG-driven translation)

* How to augment grammar for semantic analysis?
Semantic attributes for symbols, rules/actions for productions

* What are SDD and SDT?
SDD = Syntax Directed Definitions, SDT = SD Translation Schemes

e What are the differences between SDD and SDT?

SDD = attributes + rules, SDT = attributes + actions.
SDT is an executable specification of the SDD.

* What is an synthesized attribute?
Defined by attribute values of node N’s children and N itself

»’vi‘@z

Review Questions (2)

e What is inherited attribute?

Defined only by attribute values of N’s parent, N itself and siblings.

e Can a grammar symbol have both syn and inh attributes?
Non-terminal: yes; Terminal: only synthesized attributes from lexer.

* What'’s the usage of dependence graph?

To decide the evaluation order of attributes.

e Can we always have an evaluation order of the attrs?

NO. There can be circular dependencies (i.e., cycles in graph).
 What are S-Attributed Definitions (S-SDD)?

Every attribute is synthesized.

»‘vi‘@z

S-Attributed Definitions[s-J&: & X

* An SDD is S-attributed if every attribute is synthesized[X
HAE 55 E M)

* If an SDD is S-attributed (S-SDD)

— We can evaluate its attributes in any bottom-up order of the

nodes of the parse-tree[{EAf] H J& [7] _E I 115 & 1]
— Can be implemented during bottom-up parsing [LR73 T #1530]

Production Rules | Semantic Rules
(1)L->E print(E.val)
(2JE->E +T E.val = E,.val + T.val
(3)E->T E.val = T.val
(4)T->T, *F T.val = T,.val x F.val
(5)T->F T.val = F.val

(6) F-> (E) F.val = E.val

(7) F -> digit F.val = digit.lexval

L-Attributed Definitions|L-Jg4: & X

* An SDD is L-attributed (L-SDD) if

- Between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from

right to left [B A4 A e e 2147]

— More precisely: each attribute must be either synthesized, or
inherited but with the rules limited as follows: suppose A ->

X1X,...X,,, the inherited attribute X..a only depends on

. . : : Why not synthesized?
o Inherited attributes associated with A ¢ o x depends on A, A.s depends on X,

o Either syn or inh attributes of X, X,, ..., X._; located to the left of X,

o Either syn or inh attributes of X itself, but no cycles formed by the
attributes of this X;

* Can be implemented during top-down parsing [LL7#TH]

Production Rules | Semantic Rules

S-SDD or L-SDD? |A->BC A.s=B.b Not L-SDD: A.s is syn attr
(B (cohs)
Not S-SDD: B.iisinh ——"¢r — —

Not L-SDD: Cis right to B M’G“‘

Syntax Directed Trans. Impl. [z

* Learnt how to specify translation: SDD and SDT[& X]

— SDT is an executable specification of the SDD
o CFG with semantic actions embedded in production bodies

 SDT can be implemented in two ways[E &Sz
— Using a parse tree or AST[Z& T Tl 5G#4) 2 1) 43 A it]

o First build a parse tree, and then apply rules or actions at each node
while traversing the tree

o All SDDs (without cycles) and SDTs can be implemented
e Since the tree can be traversed freely, implements any ordering
- During parsing, without building a parse tree[i1& 757 HTid FE H]
o Apply rules or actions at each production while parsing

o Only a subset of SDDs and SDTS can be implemented
* Evaluation ordering restricted to parser derivation order

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Syntax Directed Trans. Impl. (cont.)

 Typically, SDD (i.e., semantic analysis) is implemented
during parsing[5 N %]
— Allows compiler to skip parse tree generation
— Saves time and memory

« Two important classes of SDD’s[# > 5 12K

- SDD is S-attributed, the underlying grammar is LR-parsable
- SDD is L-attributed, the underlying grammar is LL-parsable,

— For both classes, semantic rules in an SDD can be converted
into an SDT with actions that are executed at the right time[70

YFSDD2ISDT [#541

o During parsing, an action in a production body is executed as soon as all
the grammar symbols to the left of the action have been matched

() N

== |[mplement S-SDD ==

* Convert S-attributed SDD to SDT by[SDD->SDT [/ %% #4]
~ Placing each action at the end of the production[} & & X 3]
VEER U r= A A B T]

— SDTs with all actions at the right ends of the production bodies
are called postfix SDT’s [J5 4%/ 5SDT]

S-SDD SDT
Production Rules | Semantic Rules CFG with actions
(1)L->E print (E.val) (1) L-> E { print (E.val) }
(2JE->E +T E.val = E,.val + T.val (2) E->E; +T{E.val=E,.val + T.val }
(3)E->T E.val = T.val (3) E->T {E.val =T.val }
(4)T->T, *F T.val = T,.val x F.val (4) T->T, *F{T.val =T,.val x F.val }
(5)T->F T.val = F.val (5) T->F{T.val = Fval }
(6) F-> (E) F.val = E.val (6) F->(E) { F.val = E.val }
(7) F -> digit F.val = digit./lexval (7) F -> digit { F.val = digit./lexval }

»‘vi‘@z

Implement S-SDD (cont.)

* If the underlying grammar of S-SDD is LR parsable
— Then the SDT can be implemented during LR parsing

* Implement the converted SDT by[{&B)I3293CIN]
— Executing the action along with the reduction of head <- body

SDT SLR Automaton

d

CFG with actions

(1) L-> E { print (E.val) }

(2) E->E; +T{E.val=E,.val + T.val }
(3) E->T{E.val =T.val }

(4) T->T, *F{T.val =T,.val x F.val }
(5) T->F{T.val =F.val }

(6) F->(E) { F.val = E.val }

(7) F -> digit { F.val = digit./lexval }

Extend LR Parse Stack[#,

* Save synthesized attributes into the stack[f%F

BREME]

- Place the attributes along with the grammar symbols (or LR

T TR

-

R MF IR

states that associated with these symbols) in records on stack

— If there are multiple attributes

o Make the records large enough or by putting pointers to records on the

stack [fRICRETEK, Bibidx A HHEE]

* Example: A -> XYZ

- X, Y, z are attributes of X, Y, Z respectively
— After the action, A and its attributes are at the top (i.e., m-2)

state = Sp " Sm2 Om1 Sm
symbol » & = X Y !
attribute » - XX Yy 2z
top
@tHx2 10

state
symbol
attribute

0
S

Sy

A

A.a
!

top

Dige

g

Stack Manipulation[kfiE]

* Rewrite the actions to manipulate the parser stack
— The manipulation can be done automatically by the parser

stack[top-2].symbol = A
stack[top-2].val = f(stack[top-2].val, stack[top-1].val, stack[top].val)

A->XYZ{A.a=1(Xx,VY.y, 2.2}
X.X Y.y Z.z

state = Sg ' Sma2 Sma Sh state » Sg S,
symbol > S = X Y Z symbol » $ = A
attribute » - - XX Yy 7z attribute » - - A.0
f !
top top

@ tuxs 11 Diud:

Example

e Rewrite t

ne actions to manipulate the parser stack

— The manipulation can be done automatically by the parser

Productions

Semantic Rules

Semantic Actions

(1) L->E
(2) E-> E,+T

(3)E->T
(4) T ->T,*F

(5)T->F
(6) F->(E)

(7) F -> digit

print (E.val)
E.val = E,.val+T.val

E.val = T.val
T.val = T,.valxF.val

T.val = F.val
F.val = E.val

F.val = digit./lexval

{ print(stack[top].val); }
{ stack[top-2].val = stack[top-2].val + stack[top].val;
top = top -2; }

{ stack[top-2].val = stack[top-2].val x stack[top].val,
top = top -2; }

{ stack[top-2].val = stack[top-1].val,
top = top -2; }

Example

. E

Productions | Semantic Actions 2";_, \E -

(1)L->E { print(stack[top].val); } g: :?T T

(2) E-> E;+T | { stack[top-2].val = stack[top-2].val + stack[top].val; || T—-1*F]
top = top -2; } i:f;.) F

(3)E->T F—-d »

(4) T->T,*F | { stack[top-2].val = stack[top-2].val x stack[top].val; a | é :
top = top -2; } L‘

(5)T->F | g
(6) F->(E) |{ stack[top-2].val = stack[top-1].val; F—a |¢

top =top-2;} (
(7) F -> digit &

Input: 3 *5+4
T

state > Sp 85 S; Sg
symbol > S B ox H
attribute » - 3 - 5

S tuxs 13 IR

Example (cont.)
Productions | Semantic Actions L £
(1)L->E |{print(stack[top].val); } T
(2) E-> E;+T | { stack[top-2].val = stack[top-2].val + stack[top].val; || T—-1*F]
top = top -2; } - L
(3)E->T | F—-d »
| (4) T->T,*F | {stack[top-2].val = stack[top-2].val x stack[top]. val, I d L(i ;
| top=top-2;} |
eOT>F " T~~~ ~"~"~~~~""7"7"7=7="7"=7"7™"7"777 Is: d
(6) F->(E) |{stack[top-2].val = stack[top-1].val; il
top =top -2;} %
(7) F-> digit

Input: 3 *5+4
!

state > Sg 52 S, Sy state > Sg S,
symbol > S T * F symbol > S T
attribute » - 3 - 5 attribute » - 15
f f
top top

©tuxs 1 i

== |[mplement L-SDD ==

* We have examined S-SDD -> SDT -> implementation
— S-SDD can be converted to SDT with actions at production ends

— The SDT can be parsed and translated bottom-up, as long as the
underlying grammar is LR-parsable

* What about the more-general L-attributed SDD?

— Rule for turning L-SDD into an SDT

o Embed the action that computes the inherited attributes for a
nonterminal A immediately before that occurrence of A in the
production body

PRE VSRR 2L SR FT AT AR 2B 1 (1 B 1 df A 217 A A4 3R v R AR AT

ARIA IR I A E 1]

o Place the actions that compute a synthesized attribute for the head of a
production at the end of the body of that production

lifé};rﬁ—/ﬁﬁiﬁﬁb%ﬁﬁ%ﬁ@ zrtr & M AN BE XA 7= A 2 BB Y

KJE]

@tuxs IR

Example

A->BC

- CHIR R M I Al
-AHIZGEE EME: KRB

Production Rules

Semantic Rules

(1) T->FT ,

\~

— =

(2) T’ ->*F’T1'.\

(3)T >g <---
(4) F -> digit « - -

T”.irh = Fval

rT.val =T .syn

"T,".inh = T".inh x F.val

[T.syn=T,.syn
tT.syn=T.inh

+F.val = digit.lexval

SDT

(3) T"->€{T.syn=T.inh }
(4) F -> digit { F.val = digit./exval }

(1) T->F{T.inh=Fval } T {T.val =T'".syn }

(2) T ->*F{T,.inh=T.inhxFval } T, {T.syn=T,".syn }

16

Dhige

Implement the SDT of L-SDD

* If the underlying grammar is LL-parsable, then the SDT

can be implemented during LL or LR parsing [#5 32 LLA]

FEMTIRT, DA LELLBRLRIE VE 23 M3t

2 S

e Semantic translation during LL parsing, using[LL /7 7]
— A recursive-descent parser[i£)3 8 75 73 H7]

o Augment non-terminal functions to

both parse and handle attributes

— A predictive parser[3Fif 31 T 53 #7]

o Extend the parse stack to hold actio
for attribute evaluation

- A LR parser[LRZ31T]

ns and certain data items needed

o Involve marker to rewrite grammars

»’vi‘@z

L-SDD in Recursive Decent Parsing

* A recursive-descent parser has a function A for each
nonterminal A[i% 3 FT #7175 7]
- Non-terminal expansion implemented by a function call
o (Recursive) calls to functions for non-terminals in RHS

. gnthes\ized attributes: evaluate at end of function[ZZ & &
(GRS =RAN-A
— All calls for RHS would have done by then
 Inherited attributes: pass as argument to function[4f & J&

Pk 8T]
- Values may come from parent or sibling

- L-attributed guarantees they have been computed (can only
come from already computed portion of RHS)

() N

Example

* Function arguments and return[=
AR [FE]
- Inherited: arguments
— Synthesized: return

* Use local variables[3#4 1 & #5235 &]
* Embed semantic actions[fx N\iE X

ZN1E]

(1) T->F{T.inh=Fval }T' {T.val =T".syn }

(2) T ->*F{T,.inh=T.inh xFval } T
{T.syn=T,.syn}

(3) T"->e{T'.syn=T.inh }
(4) F -> digit { F.val = digit.lexval }

T’syn T’(token, T’inh) {

D: Fval, T,’inh, T,’syn

if token = “*”, then {
Getnext(token);
Fval = F(token);
T,’inh =T'inh x Fval
Getnext(token);
T,’syn =T,’(token, T,"inh);
T’syn =T,’syn
return T’syn

} else if token = “S”, then {
T’syn = T’inh
return T’syn

} else

Error;

}

»’vi‘@z

L-SDD in LL Parsing[dE:#)3 1]

* Extend the parse stack to hold actions and certain data
items needed for attribute evaluation[§ EiE: 7 #r k]

- Action-record[Z]{E1C.3%]: represent the actions to be executed

— Synthesize-record[Z£ 5 1C. 5%]: hold synthesized attributes for
non-terminals

- Typically, the data items are copies of attributes[/& "E 851771

* Manage attributes on the stack[& & 15 5]

— The inherited attributes of a nonterminal A are placed in the
stack record that represents that terminal [5] 5 {37 i 4% 7K J& 2]

o Action-record to evaluate these attributes are immediately above A

— The synthesized attributes of a nonterminal A are placed in a
separate synthesize-record that is immediately below A[Z£ & J&

P 5 ﬁﬁ&] action| Code
A |Inh Attr.
A.syn Syn Attr. Dhig:

