
Compilation Principle
编译原理

第13讲：语义分析(3)
张献伟

xianweiz.github.io
DCS290, 4/13/2021

https://xianweiz.github.io/

Review Questions (1)
• What is Syntax Directed Translation?

• How to augment grammar for semantic analysis?

• What are SDD and SDT?

• What are the differences between SDD and SDT?

• What is an synthesized attribute?

2

SDD = Syntax Directed Definitions, SDT = SD Translation Schemes

The parsing process and parse trees are to direct semantic analysis
and the translation of the program (a.k.a., CFG-driven translation)

Defined by attribute values of node N’s children and N itself

SDD = attributes + rules, SDT = attributes + actions.
SDT is an executable specification of the SDD.

Semantic attributes for symbols, rules/actions for productions

Review Questions (2)
• What is inherited attribute?

• Can a grammar symbol have both syn and inh attributes?

• What’s the usage of dependence graph?

• Can we always have an evaluation order of the attrs?

• What are S-Attributed Definitions (S-SDD)?

3

NO. There can be circular dependencies (i.e., cycles in graph).

Non-terminal: yes; Terminal: only synthesized attributes from lexer.

To decide the evaluation order of attributes.

Defined only by attribute values of N’s parent, N itself and siblings.

Every attribute is synthesized.

S-Attributed Definitions[S-属性定义]

• An SDD is S-attributed if every attribute is synthesized[只
具有综合属性]

• If an SDD is S-attributed (S-SDD)
− We can evaluate its attributes in any bottom-up order of the

nodes of the parse-tree[任何自底向上的顺序计算属性值]
− Can be implemented during bottom-up parsing [LR分析中实现]

4

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print(E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

L-Attributed Definitions[L-属性定义]
• An SDD is L-attributed (L-SDD) if

− Between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from
right to left [依赖图的边只能从左到右]

− More precisely: each attribute must be either synthesized, or
inherited but with the rules limited as follows: suppose A ->
X1X2…Xn, the inherited attribute Xi.a only depends on

p Inherited attributes associated with A
p Either syn or inh attributes of X1, X2, …, Xi-1 located to the left of Xi

p Either syn or inh attributes of Xi itself, but no cycles formed by the
attributes of this Xi

• Can be implemented during top-down parsing [LL分析中]

5

Production Rules Semantic Rules
A -> B C A.s = B.b

B.i = f(C.c, A.s)
Not S-SDD: B.i is inh

Not L-SDD: C is right to B

Not L-SDD: A.s is syn attrS-SDD or L-SDD?

Why not synthesized?
Cycle: Xi depends on A, A.s depends on Xi

Syntax Directed Trans. Impl.[实现]

• Learnt how to specify translation: SDD and SDT[定义]
− SDT is an executable specification of the SDD

p CFG with semantic actions embedded in production bodies

• SDT can be implemented in two ways[具体实现]
− Using a parse tree or AST[基于预先构建的分析树]

p First build a parse tree, and then apply rules or actions at each node
while traversing the tree

p All SDDs (without cycles) and SDTs can be implemented
• Since the tree can be traversed freely, implements any ordering

− During parsing, without building a parse tree[语法分析过程中]
p Apply rules or actions at each production while parsing
p Only a subset of SDDs and SDTS can be implemented

• Evaluation ordering restricted to parser derivation order

6

Syntax Directed Trans. Impl. (cont.)
• Typically, SDD (i.e., semantic analysis) is implemented

during parsing[更为高效]
− Allows compiler to skip parse tree generation
− Saves time and memory

• Two important classes of SDD’s[两个关键子类]
− SDD is S-attributed, the underlying grammar is LR-parsable
− SDD is L-attributed, the underlying grammar is LL-parsable,
− For both classes, semantic rules in an SDD can be converted

into an SDT with actions that are executed at the right time[允
许SDD到SDT的转换]

p During parsing, an action in a production body is executed as soon as all
the grammar symbols to the left of the action have been matched

7

== Implement S-SDD ==
• Convert S-attributed SDD to SDT by[SDD->SDT的转换]

− Placing each action at the end of the production[将每个语义动
作都放在产生式的最后]

− SDTs with all actions at the right ends of the production bodies
are called postfix SDT’s [后缀/尾部SDT]

8

Production Rules Semantic Rules
(1) L -> E
(2) E -> E1 + T
(3) E -> T
(4) T -> T1 * F
(5) T -> F
(6) F -> (E)
(7) F -> digit

print (E.val)
E.val = E1.val + T.val
E.val = T.val
T.val = T1.val x F.val
T.val = F.val
F.val = E.val
F.val = digit.lexval

S-SDD
CFG with actions
(1) L -> E { print (E.val) }
(2) E -> E1 + T { E.val = E1.val + T.val }
(3) E -> T { E.val = T.val }
(4) T -> T1 * F { T.val = T1.val x F.val }
(5) T -> F { T.val = F.val }
(6) F -> (E) { F.val = E.val }
(7) F -> digit { F.val = digit.lexval }

SDT

Implement S-SDD (cont.)
• If the underlying grammar of S-SDD is LR parsable

− Then the SDT can be implemented during LR parsing

• Implement the converted SDT by[借助归约实现]
− Executing the action along with the reduction of head <- body

9

SLR Automaton
CFG with actions
(1) L -> E { print (E.val) }
(2) E -> E1 + T { E.val = E1.val + T.val }
(3) E -> T { E.val = T.val }
(4) T -> T1 * F { T.val = T1.val x F.val }
(5) T -> F { T.val = F.val }
(6) F -> (E) { F.val = E.val }
(7) F -> digit { F.val = digit.lexval }

SDT

Extend LR Parse Stack[扩展分析栈]

• Save synthesized attributes into the stack[栈中额外存放综
合属性值]

− Place the attributes along with the grammar symbols (or LR
states that associated with these symbols) in records on stack

− If there are multiple attributes
p Make the records large enough or by putting pointers to records on the

stack [栈记录足够大，或栈记录中存放指针]

• Example: A -> XYZ
− x, y, z are attributes of X, Y, Z respectively
− After the action, A and its attributes are at the top (i.e., m-2)

10

state
symbol

S0
$

…
…
…

Sm-2
X
X.x

Sm-1
Y
Y.y

Sm
Z
Z.z

top

attribute -

state
symbol

S0
$

attribute -

…
…
…

Sn
A
A.a

top

Stack Manipulation[栈操作]

• Rewrite the actions to manipulate the parser stack
− The manipulation can be done automatically by the parser

11

state
symbol

S0
$

attribute -

…
…
…

Sm-2
X
X.x

Sm-1
Y
Y.y

Sm
Z
Z.z

top

A -> XYZ { A.a = f(X.x, Y.y, Z.z) }

stack[top-2].symbol = A
stack[top-2].val = f(stack[top-2].val, stack[top-1].val, stack[top].val)
top = top -2

A.a

X.x Y.y Z.z

state
symbol

S0
$

attribute -

…
…
…

Sn
A
A.a

top

Example

12

Productions Semantic Rules Semantic Actions
(1) L -> E
(2) E -> E1+T

(3) E -> T
(4) T -> T1*F

(5) T -> F
(6) F -> (E)

(7) F -> digit

print (E.val)
E.val = E1.val+T.val

E.val = T.val
T.val = T1.valxF.val

T.val = F.val
F.val = E.val

F.val = digit.lexval

{ print(stack[top].val); }
{ stack[top-2].val = stack[top-2].val + stack[top].val;
top = top -2; }

{ stack[top-2].val = stack[top-2].val x stack[top].val;
top = top -2; }

{ stack[top-2].val = stack[top-1].val;
top = top -2; }

• Rewrite the actions to manipulate the parser stack
− The manipulation can be done automatically by the parser

Example

13

Input: 3 * 5 + 4

state
symbol

S0
$

attribute - 3
d
S5
F
S3
T
S2

*
S7

-
d
S5

5
F
S10

5

Example (cont.)

14

Input: 3 * 5 + 4

state
symbol

S0
$

attribute -

T
3

S2
*
S7

-
F
S10

5

top

state
symbol

S0
$

attribute -

S2

15
T

top

== Implement L-SDD ==
• We have examined S-SDD -> SDT -> implementation

− S-SDD can be converted to SDT with actions at production ends
− The SDT can be parsed and translated bottom-up, as long as the

underlying grammar is LR-parsable

• What about the more-general L-attributed SDD?
− Rule for turning L-SDD into an SDT

p Embed the action that computes the inherited attributes for a
nonterminal A immediately before that occurrence of A in the
production body

[将计算某个非终结符A的继承属性的动作插入到产生式右部中紧靠在
A的本次出现之前的位置上]
p Place the actions that compute a synthesized attribute for the head of a

production at the end of the body of that production
将计算一个产生式左部符号的综合属性的动作放在这个产生式右部的
末尾]

15

Example

16

Production Rules Semantic Rules
(1) T -> F T’

(2) T’ -> * F T1’

(3) T’ -> ε
(4) F -> digit

T’.inh = F.val
T.val = T’.syn
T1’.inh = T’.inh x F.val
T’.syn = T1’.syn
T’.syn = T’.inh
F.val = digit.lexval

A -> B C
- C的继承属性：出现之前
- A的综合属性：末尾

SDT
(1) T -> F { T’.inh = F.val } T’ { T.val = T’.syn }

(2) T’ -> * F { T1’.inh = T’.inh x F.val } T1’ { T’.syn = T1’.syn }

(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

Implement the SDT of L-SDD
• If the underlying grammar is LL-parsable, then the SDT

can be implemented during LL or LR parsing [若文法是LL可
解析的，则可在LL或LR语法分析过程中实现]

• Semantic translation during LL parsing, using[LL方式]
− A recursive-descent parser[递归的预测分析]

p Augment non-terminal functions to both parse and handle attributes
− A predictive parser[非递归的预测分析]

p Extend the parse stack to hold actions and certain data items needed
for attribute evaluation

− A LR parser[LR分析]
p Involve marker to rewrite grammars

17

L-SDD in Recursive Decent Parsing

18

• A recursive-descent parser has a function A for each
nonterminal A[递归预测分析方法]

− Non-terminal expansion implemented by a function call
p (Recursive) calls to functions for non-terminals in RHS

• Synthesized attributes: evaluate at end of function[综合属
性: 最后计算]

− All calls for RHS would have done by then
• Inherited attributes: pass as argument to function[继承属
性：参数传递]

− Values may come from parent or sibling
− L-attributed guarantees they have been computed (can only

come from already computed portion of RHS)

Example

19

(1) T -> F { T’.inh = F.val } T’ { T.val = T’.syn }

(2) T’ -> * F { T1’.inh = T’.inh x F.val } T1’
{ T’.syn = T1’.syn }

(3) T’ -> ε { T’.syn = T’.inh }
(4) F -> digit { F.val = digit.lexval }

T’syn T’(token, T’inh) {
D: Fval, T1’inh, T1’syn
if token = “*”, then {

Getnext(token);
Fval = F(token);
T1’inh = T’inh x Fval
Getnext(token);
T1’syn = T1’(token, T1’inh);
T’syn = T1’syn
return T’syn

} else if token = “$”, then {
T’syn = T’inh
return T’syn

} else
Error;

}

• Function arguments and return[参
数和返回值]

− Inherited: arguments
− Synthesized: return

• Use local variables[增加局部变量]
• Embed semantic actions[嵌入语义
动作]

L-SDD in LL Parsing[非递归预测]

• Extend the parse stack to hold actions and certain data
items needed for attribute evaluation[扩展语法分析栈]

− Action-record[动作记录]: represent the actions to be executed
− Synthesize-record[综合记录]: hold synthesized attributes for

non-terminals
− Typically, the data items are copies of attributes[属性备份]

• Manage attributes on the stack[管理属性信息]
− The inherited attributes of a nonterminal A are placed in the

stack record that represents that terminal[符号位放继承属性]
p Action-record to evaluate these attributes are immediately above A

− The synthesized attributes of a nonterminal A are placed in a
separate synthesize-record that is immediately below A[综合属
性另存放]

20

action
A

A.syn
Inh Attr.
Syn Attr.

Code

