

Compilation Principle 编译原理

第13讲: 语义分析(3)

张献伟

<u>xianweiz.github.io</u>

DCS290, 4/13/2021

Review Questions (1)

• What is Syntax Directed Translation?

The parsing process and parse trees are to direct semantic analysis and the translation of the program (a.k.a., CFG-driven translation)

- How to augment grammar for semantic analysis? Semantic attributes for symbols, rules/actions for productions
- What are SDD and SDT? SDD = Syntax Directed Definitions, SDT = SD Translation Schemes
- What are the differences between SDD and SDT?
 SDD = attributes + rules, SDT = attributes + actions.
 SDT is an executable specification of the SDD.
- What is an synthesized attribute? Defined by attribute values of node N's children and N itself

Review Questions (2)

• What is inherited attribute?

Defined only by attribute values of N's parent, N itself and siblings.

- Can a grammar symbol have both *syn* and *inh* attributes? Non-terminal: yes; Terminal: only synthesized attributes from lexer.
- What's the usage of dependence graph? To decide the evaluation order of attributes.
- Can we always have an evaluation order of the attrs? NO. There can be circular dependencies (i.e., cycles in graph).
- What are S-Attributed Definitions (S-SDD)?

Every attribute is synthesized.

S-Attributed Definitions[s-属性定义]

- An SDD is **S-attributed** if every attribute is <u>synthesized</u>[只 具有综合属性]
- If an SDD is S-attributed (S-SDD)
 - We can evaluate its attributes in any bottom-up order of the nodes of the parse-tree[任何自底向上的顺序计算属性值]
 - Can be implemented during <u>bottom-up parsing</u> [LR分析中实现]

Production Rules	Semantic Rules
(1) L -> E	print(E. <i>val</i>)
(2) E -> E ₁ + T	$E.val = E_1.val + T.val$
(3) E -> T	E. <i>val</i> = T. <i>val</i>
(4) T -> T ₁ * F	$T.val = T_1.val \times F.val$
(5) T -> F	T.val = F.val
(6) F -> (E)	F.val = E.val
(7) F -> digit	F. <i>val</i> = digit. <i>lexval</i>

L-Attributed Definitions[L-属性定义]

• An SDD is L-attributed (L-SDD) if

- Between the attributes associated with a production body, dependency-graph edges can go from left to right, but not from right to left [依赖图的边只能从左到右]
- More precisely: each attribute must be either **synthesized**, or **inherited** but with the rules limited as follows: suppose A -> X₁X₂...X_n, the inherited attribute X_i.a only depends on
 Inherited attributes associated with A Why not synthesized?
 Cycle: X_i depends on A, A.s depends on X_i

 - **\square** Either syn or inh attributes of X₁, X₂, ..., X_{i-1} located to the left of X_i
 - Either syn or inh attributes of X_i itself, but no cycles formed by the attributes of this X_i
- Can be implemented during top-down parsing [LL分析中]

	Production Rules	Semantic Rules	
S-SDD or L-SDD	? A -> B C		-SDD: A. <i>s</i> is syn attr
中山大學 SUN YAT-SEN UNIVERSITY	Not S-SDD: B. <i>i</i> is inh	B.i = f(C.c.)(A.s) 5 Not L-SDD: C is	right to B

Syntax Directed Trans. Impl.[实现]

- Learnt how to specify translation: SDD and SDT[定义]
 - SDT is an executable specification of the SDD
 CFG with <u>semantic actions</u> embedded in production bodies
- SDT can be implemented in two ways[具体实现]
 - Using a parse tree or AST[基于预先构建的分析树]
 - First build a parse tree, and then apply rules or actions at each node while traversing the tree
 - All SDDs (without cycles) and SDTs can be implemented
 - Since the tree can be traversed freely, implements any ordering
 - During parsing, without building a parse tree[语法分析过程中]
 - Apply rules or actions at each production while parsing
 - Only a subset of SDDs and SDTS can be implemented
 - Evaluation ordering restricted to parser derivation order

Syntax Directed Trans. Impl. (cont.)

- Typically, SDD (i.e., semantic analysis) is implemented <u>during parsing</u>[更为高效]
 - Allows compiler to skip parse tree generation
 - Saves time and memory
- Two important classes of SDD's[两个关键子类]
 - SDD is *S-attributed*, the underlying grammar is *LR-parsable*
 - SDD is *L-attributed*, the underlying grammar is *LL-parsable*,
 - For both classes, semantic rules in an SDD can be converted into an SDT with actions that are executed at the right time[允 许SDD到SDT的转换]
 - During parsing, an action in a production body is executed as soon as all the grammar symbols to the left of the action have been matched

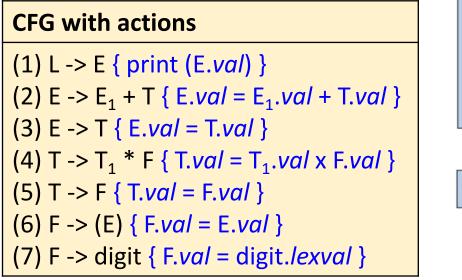
== Implement S-SDD ==

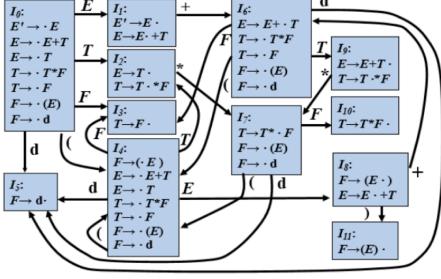
- Convert S-attributed SDD to SDT by[SDD->SDT的转换]
 - Placing each action at the end of the production[将每个语义动 作都放在产生式的最后]
 - SDTs with all actions at the right ends of the production bodies are called **postfix SDT's** [后缀/尾部SDT]

S-SDD

SDT

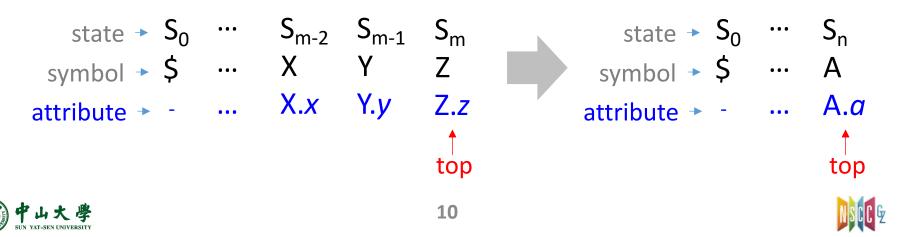
Production Rules	Semantic Rules	CFG with actions
(1) L -> E	print (E. <i>val</i>)	(1) L -> E { print (E. <i>val</i>) }
(2) E -> E ₁ + T	$E.val = E_1.val + T.val$	(2) $E \rightarrow E_1 + T \{ E.val = E_1.val + T.val \}$
(3) E -> T	E.val = T.val	(3) E -> T { E. <i>val</i> = T. <i>val</i> }
(4) T -> T ₁ * F	$T.val = T_1.val \times F.val$	(4) $T \rightarrow T_1 * F \{ T.val = T_1.val \times F.val \}$
(5) T -> F	T. <i>val</i> = F. <i>val</i>	(5) T -> F { T. <i>val</i> = F. <i>val</i> }
(6) F -> (E)	F. <i>val</i> = E. <i>val</i>	(6) F -> (E) { F. <i>val</i> = E. <i>val</i> }
(7) F -> digit	F. <i>val</i> = digit. <i>lexval</i>	(7) F -> digit { F. <i>val</i> = digit. <i>lexval</i> }




Implement S-SDD (cont.)

- If the underlying grammar of S-SDD is <u>LR parsable</u>
 Then the SDT can be implemented during LR parsing
- Implement the converted SDT by[借助归约实现]
 - Executing the action <u>along with the reduction</u> of *head <- body*

SLR Automaton



Extend LR Parse Stack[扩展分析栈]

- Save synthesized attributes into the stack[栈中额外存放综 合属性值]
 - Place the attributes along with the grammar symbols (or LR states that associated with these symbols) in records on stack
 - If there are multiple attributes
 - Make the records large enough or by putting pointers to records on the stack [栈记录足够大,或栈记录中存放指针]
- Example: A -> XYZ
 - x, y, z are attributes of X, Y, Z respectively
 - After the action, A and its attributes are at the top (i.e., m-2)

Stack Manipulation[栈操作]

Rewrite the actions to manipulate the parser stack
 The manipulation can be done automatically by the parser

stack[top-2].*symbol* = A stack[top-2].val = f(stack[top-2].val, stack[top-1].val, stack[top].val) top = top -2 A.a A -> XYZ { A.a = f(X.x, Y.y, Z.z) } Y.y X.X Z.zstate \rightarrow S₀ \cdots S_{m-2} S_{m-1} S_m S_n state \rightarrow S₀ ••• symbol → \$ ··· X Y Z symbol → \$ ···· Α attribute \rightarrow - ... X.x Y.y Z.z A.a attribute → - ··· top top 11

Rewrite the actions to manipulate the parser stack
 The manipulation can be done automatically by the parser

Productions	Semantic Rules	Semantic Actions
(1) L -> E	print (E. <i>val</i>)	{ print(stack[top].val); }
(2) E -> E ₁ +T	$E.val = E_1.val + T.val$	<pre>{ stack[top-2].val = stack[top-2].val + stack[top].val; top = top -2; }</pre>
(3) E -> T	E. <i>val</i> = T. <i>val</i>	
(4) T -> T ₁ *F	$T.val = T_1.valxF.val$	<pre>{ stack[top-2].val = stack[top-2].val x stack[top].val; top = top -2; }</pre>
(5) T -> F	T.val = F.val	
(6) F -> (E)	F.val = E.val	<pre>{ stack[top-2].val = stack[top-1].val; top = top -2; }</pre>
(7) F -> digit	F. <i>val</i> = digit. <i>lexval</i>	

Productions	Semantic Actions	$\begin{bmatrix} I_{\theta}: & E \\ E' \to E \end{bmatrix} \xrightarrow{E' \to E} \begin{bmatrix} I_{1}: & + \\ E' \to E \\ E' \to E \end{bmatrix} \xrightarrow{E' \to E} \begin{bmatrix} + \\ E \\ E \to E^{+} \cdot T \end{bmatrix}$
(1) L -> E	{ print(stack[top].val); }	$\begin{bmatrix} E \to \cdot E + T \\ E \to \cdot E + T \end{bmatrix} T \begin{bmatrix} E \to E \cdot + T \\ I_2 \vdots \end{bmatrix} F \begin{bmatrix} T \to \cdot T^*F \\ T \to \cdot F \end{bmatrix} T \begin{bmatrix} I_9 \vdots \\ T \to \cdot F \end{bmatrix}$
(2) E -> E ₁ +T	<pre>{ stack[top-2].val = stack[top-2].val + stack[top].val; top = top -2; }</pre>	$\begin{bmatrix} T \to \cdot T^*F \\ T \to \cdot F \\ T \to T \to T \cdot F \\ T \to T \to T \to T \\ T \to T \to T \to T \\ T \to T \to$
(3) E -> T		$ F \rightarrow \cdot \mathbf{d} \mathbf{r} \rightarrow F \cdot \mathbf{r} \rightarrow F \cdot \mathbf{r} \rightarrow F \cdot \mathbf{r} \rightarrow T \star F \cdot \mathbf{r} \rightarrow T \to T \star F \cdot \mathbf{r} \rightarrow T \to T$
(4) T -> T ₁ *F	<pre>{ stack[top-2].val = stack[top-2].val x stack[top].val; top = top -2; }</pre>	d (F = I + F + F + F + F + F + F + F + F + F +
(5) T -> F		$ I_{5}: \qquad \mathbf{d} _{E \to T}^{E \to T} _{E} \qquad \mathbf{d} _{T \to T}^{E \to T} _{T} _{T} $
(6) F -> (E)	<pre>{ stack[top-2].val = stack[top-1].val; top = top -2; }</pre>	$\begin{array}{c c} I \to I \stackrel{r}{\to} I \stackrel$
(7) F -> digit		$F \to \cdot \mathbf{d}$

state
$$\rightarrow$$
 S₀ $S_{\underline{3}}$ S₇ $S_{\underline{50}}$
symbol \rightarrow \ddagger $\#$ \ast \nexists
attribute \rightarrow - 3 - 5

Example (cont.)

Productions	Semantic Actions	$ \begin{array}{c c} I_{0}: \\ E' \to \cdot E \end{array} \xrightarrow{E} \begin{array}{c} I_{1}: \\ E' \to E \cdot \end{array} \xrightarrow{+} \begin{array}{c} I_{6}: \\ E \to E + \cdot T \end{array} \xrightarrow{\mathbf{u}} \end{array} $
(1) L -> E	{ print(stack[top].val); }	$\begin{bmatrix} E \to E + T \\ E \to T \end{bmatrix} T \begin{bmatrix} E \to E + T \\ I \end{bmatrix} \begin{bmatrix} F \\ T \to T \end{bmatrix} T \begin{bmatrix} T \to T^*F \\ T \to F \end{bmatrix} T \begin{bmatrix} I_g \\ F \end{bmatrix} T $
(2) E -> E ₁ +T	{ stack[top-2].val = stack[top-2].val + stack[top].val;	$T \to \cdot T^*F \qquad E \to T \cdot E \qquad * \qquad F \to \cdot (E) \qquad * \qquad T \to T \cdot *F$
	top = top -2; }	$F \rightarrow \cdot (E)$ F
(3) E -> T		$T \rightarrow T \circ $
(4) T -> T ₁ *F	{ stack[top-2].val = stack[top-2].val x stack[top].val;	$ d \left[\left(\begin{array}{c} & & \\ & $
	top = top -2; }	$F \rightarrow (\cdot E) \\ E \rightarrow \cdot E + T$ $F \rightarrow \cdot d$ $I_{\delta}:$ $F \rightarrow (E + 1)$ $F \rightarrow \cdot d$ $I_{\delta}:$ $F \rightarrow (E + 1)$
(5) T -> F		$\begin{bmatrix} I_5: \\ E \\ F \\ F$
(6) F -> (E)	{ stack[top-2].val = stack[top-1].val;	$F \rightarrow d \cdot \qquad \qquad$
	top = top -2; }	$(F \rightarrow \cdot (E) $
(7) F -> digit		$F \rightarrow \cdot \mathbf{d}$ $F \rightarrow (E) \cdot$

Input: 3 * 5 + 4 1

state
$$\Rightarrow$$
 S_0 S_2 S_7 S_{10}
symbol \Rightarrow $\$$ T $*$ F
attribute \Rightarrow - 3 - 5
 $for top$
state \Rightarrow S_0 S_2
symbol \Rightarrow $\$$ T
attribute \Rightarrow - 15
 $for top$

== Implement L-SDD ==

- We have examined S-SDD -> SDT -> implementation
 - S-SDD can be converted to SDT with actions at production ends
 - The SDT can be parsed and translated <u>bottom-up</u>, as long as the underlying grammar is LR-parsable
- What about the more-general L-attributed SDD?
 - Rule for turning L-SDD into an SDT
 - Embed the action that computes the inherited attributes for a nonterminal A immediately before that occurrence of A in the production body

[将计算某个非终结符A的继承属性的动作插入到产生式右部中<u>紧靠在</u> A的本次出现之前的位置上]

 Place the actions that compute a synthesized attribute for the head of a production at the end of the body of that production

将计算一个产生式左部符号的<u>综合属性</u>的动作放在这个产生式右部的 <u>末尾</u>]

A -> B C

- C的继承属性:出现之前 - A的综合属性:末尾

	Production Rules	Semantic Rules
	(1) T -> F T'	T'.inh = F.val
		-T.val = T'.syn
υ	(2) T' -> * F T ₁ '	T ₁ '.inh = T'.inh x F.val
	· · · · · · · · · · · · · · · · · · ·	$T'.syn = T_1'.syn$
	(3) T' -> ε ◀ ·	T'.syn = T'.inh
	 (3) T' -> ε (4) F -> digit 	-F. <i>val =</i> digit <i>.lexval</i>

SDT

(1) T -> F { T'.inh = F.val } T' { T.val = T'.syn }

(2) $T' \rightarrow F \{ T_1'.inh = T'.inh \times F.val \} T_1' \{ T'.syn = T_1'.syn \}$

Implement the SDT of L-SDD

- If the underlying grammar is <u>LL-parsable</u>, then the SDT can be implemented during <u>LL or LR parsing</u> [若文法是LL可 解析的,则可在LL或LR语法分析过程中实现]
- Semantic translation during LL parsing, using[LL方式]
 - A recursive-descent parser[递归的预测分析]
 - Augment non-terminal functions to both parse and handle attributes
 - A predictive parser[非递归的预测分析]
 - Extend the parse stack to hold actions and certain data items needed for attribute evaluation
 - A LR parser[LR分析]
 - Involve marker to rewrite grammars

L-SDD in Recursive Decent Parsing

- A recursive-descent parser has a function A for each nonterminal A[递归预测分析方法]
 - Non-terminal expansion implemented by a function call
 - Recursive) calls to functions for non-terminals in RHS
- Synthesized attributes: evaluate at end of function[综合属性: 最后计算]
 - All calls for RHS would have done by then
- Inherited attributes: pass as argument to function[继承属 性: 参数传递]
 - Values may come from parent or sibling
 - L-attributed guarantees they have been computed (can only come from already computed portion of RHS)

- Function arguments and return[参数和返回值]
 - Inherited: arguments
 - Synthesized: return
- Use local variables[增加局部变量]
- Embed semantic actions[嵌入语义 动作]

(1) T -> F { T'.inh = F.val } T' { T.val = T'.syn }

(2) $T' \rightarrow F \{ T_1'.inh = T'.inh \times F.val \} T_1'$ { $T'.syn = T_1'.syn \}$

(3) T' -> ε { T'.syn = T'.inh }
(4) F -> digit { F.val = digit.lexval }

T'syn T'(token, T'inh) { D: Fval, T_1 'inh, T_1 'syn if token = "*", then { Getnext(token); **Fval** = F(token); T_1 'inh = T'inh x Fval Getnext(token); **T₁'syn** = T₁'(token, **T₁'inh**); $T'syn = T_1'syn$ return T'syn } else if token = "\$", then { T'syn = T'inh return T'syn } else Error;

L-SDD in LL Parsing[非递归预测]

- Extend the parse stack to hold **actions** and certain **data items** needed for attribute evaluation[扩展语法分析栈]
 - Action-record[动作记录]: represent the actions to be executed
 - Synthesize-record[综合记录]: hold synthesized attributes for non-terminals
 - Typically, the data items are copies of attributes[属性备份]
- Manage attributes on the stack[管理属性信息]
 - The inherited attributes of a nonterminal A are placed in the <u>stack record</u> that represents that terminal[符号位放继承属性]
 Action-record to evaluate these attributes are immediately <u>above</u> A
 - The synthesized attributes of a nonterminal A are placed in a separate synthesize-record that is immediately <u>below</u> A[综合属 性另存放]

action	Code
Α	Inh Attr.
A.syn	Syn Attr.

