
Compilation Principle
编译原理

第15讲：语义分析(5)
张献伟

xianweiz.github.io
DCS290, 4/20/2021

https://xianweiz.github.io/

Review Questions (1)
• What are S-SDD and L-SDD?

• Why S-SDD is natural to be implemented in LR parsing?

• Why L-SDD is not natural for LR parsing?

• For L-SDD in LL parsing, how to extend the parse stack?

• For L-SDD in LL parsing, we add data-items?

2

Semantic actions can be in anywhere of the production body.

S-SDD: synthesized-SDD (only syn attributes),
L-SDD: left-attributed SDD (only left-to-right dependency).

When popping symbol or syn-record, attr values should be copied.

Action record – symbol (inh) – synthesized record (syn).

Syn attributes: evaluate parent after seeing all children (=reduce).

Review Questions (2)
• At high level, why L-SDD can be implemented in LR?

• Roughly, how do we modify L-SDD for LR parsing?

• What is symbol table?

• Is the symbol table deleted after semantic analysis?

• Why static scoping is better than dynamic?

3

NO. Symbol table is still needed by code generation.

Add non-terminal markers to make all actions at production end.

A structure to record info of each symbol name in a program.

Left-attributed, the needed attribute values must be in the stack.

Fewer programmer errors, more efficient code.

Maintaining Symbol Table[维护]

• Basic idea
int x=0; ... void foo() { int x=0; ... x=x+1; } ... x=x+1 ...

− Before processing foo:
p Add definition of x, overriding old definition of x if any

− After processing foo:
p Remove definition of x, restoring old definition of x if any

• Operations
− enter_scope() start a new scope
− exit_scope() exit current scope

− find_symbol(x) find the information about x
− add_symbol(x) add a symbol x to the symbol table
− check_symbol(x) true if x is defined in current scope

4

Symbol Table Structure[结构]

• Frontend time affected by symbol table access time[符号
表访问时间影响编译前端性能]

− Frontend: lexical, syntax, semantic analyses
− Frequent searches on any large data structure is expensive
− Symbol table design is important for compiler performance

• What data structure to choose?[可选数据结构]
− List[线性表]
− Binary tree[二叉树]
− Hash table[哈希表]

• Tradeoffs: time vs. space[空间和时间的权衡]
− Let us first consider the organization w/o scope

5

Symbol Table Structure (cont.)
• Array: no space wasted, insert/delete: O(n), search: O(n)
• Linked list: extra pointer space, insert/delete: O(1),

search: O(n)
− Optimization: move recently used identifier to the head
− Frequently used identifiers are found more quickly

• Binary tree: use more space than array/list
− But insert/delete/search is O(log n) on balanced tree
− In the worst case, tree may reduce to linked list

p Then insert/delete/search becomes O(n)

6

O(n) O(n)
O(1)

O(n)

O(log n)

Hash Table[哈希表]

• hash(id_name) → index
− A hash function decides mapping from identifier to index
− Conflicts resolved by chaining multiple IDs to same index

• Memory consumption from hash table (N << M)
− M: the size of hash table
− N: the number of stored identifiers

• But insert/delete/search in O(1) time
− Can become O(n) with frequent conflicts and long chains

• Most compilers choose hash table for its quick access
time

7

Adding Scope to Symbol Table
• To handle multiple scopes in a program,[处理多个作用域]

− Conceptually, need an individual table for each scope
p In order to be able to enter and exit scopes

• Sometimes symbols in scope can be discarded on exit:

• Sometimes not:

• How can scoping be enforced without discarding
symbols?

− Keep a stack of active scopes at a given point
− Keep a list of all reachable scopes in the entire program

8

class X { ... void foo() {...} ... } /* class scope */
/* foo() is no longer valid */
X v;
call v.foo(); /* v.foo() is still valid */

if (...) { int v; } /* block scope */
/* v is no longer valid */

Handle Scopes with Stack
• Organize all symbol tables into a scope stack[作用域栈]

− An individual symbol table for each scope
p Scope is defined by nested lexical structure, e.g., {C1 {C2 {C3}} {C4}}

− Stack holds one entry for each open scope
p Innermost scope is stored at the top of the stack

• Stack push/pop happen when entering/exiting a scope

9

C1
C2

C3

C4 C1’s Symbol Table

Parsing here

Symbol tables Scope stack

Handle Scopes with Stack (cont.)
• Operations

− When entering a scope
p Create a new symbol table to hold all variables declared in that scope
p Push a pointer to the symbol table on the stack

− Pop the pointer to the symbol table when exiting scope
− Search from the top of the stack

10

C1
C2

C3

C4 C1’s Symbol Table

Parsing here
C2’s Symbol Table

C3’s Symbol Table

Symbol tables Scope stack

Handle Scopes with Stack (cont.)
• Operations

− When entering a scope
p Create a new symbol table to hold all variables declared in that scope
p Push a pointer to the symbol table on the stack

− Pop the pointer to the symbol table when exiting scope
− Search from the top of the stack

11

C1
C2

C3

C4 C1’s Symbol Table
Parsing here

C2’s Symbol Table

C3’s Symbol Table

C4’s Symbol Table

Symbol tables Scope stack

Handle Scopes using Chaining
• Cons of stacking symbol tables[栈方式的缺点]

− Inefficient searching due to multiple hash table lookups
p All global variables will be at the bottom of the stack

− Inefficient use of memory due to multiple hash tables
p Must size hash tables for max anticipated size of scope

• Solution: single symbol table for all scopes using chaining
− Insert: insert (ID, current nesting level) at front of chain
− Search: fetch ID at the front of chain
− Delete: when exiting level k, remove all symbols with level k

p For efficient deletion, IDs for each level maintained in a list

12

Handle Scopes using Chaining (cont.)
• Note: symbol table only maintains currently active scopes

− All entries with the closing scope are deleted upon exiting

• Note: does not maintain list of all reachable scopes
− Cannot refer back to old scopes that have been exited
− Still useful for block scopes that are discarded on exit

• Usages
− Unsuitable for class scopes (only block scopes)
− Exiting scopes is slightly more expensive

p Requires traversing the entire symbol table
− Lookup requires only a single hash table access
− Savings in memory due to single large hash table

13

Info Stored in Symbol Table
• Entry in symbol table

− String: the name of identifier
− Kind: function, variable, struct type, class type

• Attributes vary with the kind of symbols
− variable: type, address of variable
− function: prototype, address of function body
− struct type: field names, field types
− class type: symbol table for class

14

Attribute List in Symbol Table
• Type info can be arbitrarily complicated

− Type can be an array with multiple dimensions
char arr[20][20];

− Type can be a struct with multiple fields

• Store all type info in an attribute list
− Entry for an array variable with 2 dimensions

− Entry for a struct variable

− Entry for a struct type with 2 fields

15

struct Point {
float x;
float y;

} point;

Use Type Information[类型信息]

• Each variable or function entry contains type info
• Type info is used in later code generation stage[代码生成]

− To calculate how much memory to allot for a variable
− To translate uses of variables to machine instructions

p Should a ’+’ on variable be an integer or a floating point add?
p Should a variable assignment be a 4 byte or 8 byte copy?

− To translate calls to functions to machine instructions
p What are the types of arguments passed to the function?
p What is the type of value returned by the function?

• Also used in later code optimization stage[代码优化]
− To help compiler understand semantics of program

• Also used in semantic analysis stage for Type Checking
− Uses types to check semantic correctness of program

16

Semantic Analysis (5)
Type Checking

17

Type and Type Checking
• Type: a set of values + a set of operations on these values

− int/double: same memory storage
• Type checking: verifying type consistency across program[
类型一致性检查]

− A program is said to be type consistent if all operators are
consistent with the operand value types

− Much of what we do in semantic analysis is type checking
• Some type checking examples:

− Given char *str = “Hello”;
p str[2] is consistent: char* type allows [] operator
p str/2 is not: char* type does not allow / operator

− Given int pi = 3;
p pi/2 is consistent: int type allows / operator
p pi=3.14 is not: = operator not allowed on different types

• Compiler must type convert implicitly to make it consistent

18

Static Type Checking[静态类型检查]

• Static type checking: at compile time[静态：编译时]
− Infers program is type consistent through code analysis

p Collect info via declarations and store in symbol table
p Check the types involved in each operation

− E.g., int a, b, c; a = b + c; can be proven type consistent because
the addition of two ints is an int

• Difficult for a language to only do static type checking
− Some type errors usually cannot be detected at compile time

p E.g., a and b are of type int, a * b may not in the valid range of int
p Typecasting can be pretty risky thing to do (Basically, typecast suspends

type checking)
• unsigned a; (int)a;

19

Dynamic Type Checking[动态检查]

• Dynamic type checking: at execution time[动态：执行时]
− Type consistency by checking types of runtime values
− Include type info for each data location at runtime

p E.g., a variable of type double would contain both the actual double
value and some kind of tag indicating “double type”

p The execution of any operation begins by first checking these type tags
p The operation is performed only if everything checks out (otherwise, a

type error occurs and usually halts execution)
− E.g., C++/Java downcasting to a subclass

p Is dynamic_cast<Child*>(parent); type consistent?
− Array bounds check:

p Is int A[10], i; … A[i] = i; type consistent

• Static type checking is always more desirable. Why?
− Always desirable to catch more errors before runtime
− Dynamic type checking carriers runtime overhead

20

Static vs. Dynamic Typing[静态-动态]

• Static typing: C/C++, Java, …
− Variables have static types → holds only one type of value

p E.g. int x; → x can only hold ints
p E.g. char *x; → x can only hold char pointers

− How are types assigned to variables?
p C/C++, Java: types are explicitly defined
p int x; → explicit assignment of type int to x

• Pros / cons of static typing
− More programmer effort

p Programmer must adhere to strict type rules
p Defining advanced types can be quite complex (e.g. classes)

− Less program bugs and execution time
p Thanks to static type checking

21

Static vs. Dynamic Typing (cont.)
• Dynamic Typing: Python, JavaScript, PHP, ...

− Variables have dynamic types → can hold multiple types
var x; /* var declaration without a static type */
x = 1; /* now x holds an integer value */
x = "one"; /* now x holds a string value */

− How are types assigned to variables?
p Type is a runtime property → type tags stored with values
p Dynamic type checking must be done during runtime

• Pros / cons of dynamic typing
− Less programmer effort

p Flexible type rule means program is more malleable
p Absence of types / classes declarations means shorter code
p Makes it suitable for scripting or prototyping languages

− More program bugs and execution time
p Due to dynamic type checking

22

Type Systems[类型系统]

• Static / dynamic typing are type systems
− Type System: types + type rules of a language

• Static / dynamic type checking are methods
− Methods to enforce the rules of the given type system

• Static type checking is not used exclusively for static
typing

− Static type checking also used for dynamic typing
− If certain types can be inferred and checked at compile time

p Can reduce dynamic type checks inserted into code

• Dynamic type checking is not used only for dynamic
typing

− Some features of statically typed languages require it
p e.g. downcasting requires type check of object type tag

23

Type Systems: Soundness, Completeness
• Static type checking through inference

− Inference: deducing a conclusion[结论] from a set of premises[
前提]

− What are the premises? Type rules in the type system
− What is the conclusion? Accept / reject after applying rules

• A type system is said to be Sound[可靠] if:
− Only correct programs are accepted
− Flipside: all incorrect programs are rejected

• A type system is said to be Complete[完备] if:
− All correct programs are accepted
− Flipside: only incorrect programs are rejected

• A type system strives to be both sound and complete
− The rules of inference (type rules) should reflect that

24

Rules of Inference
• What are rules of inference?

− Inference rules have the form
if Precondition is true, then Conclusion is true

− Below concise notation used to express above statement
Precondition
Conclusion

− For example: Given E3 → E1 + E2, a rule may be:
if E1, E2 are type consistent and int types (Precondition),
then E3 is type consistent and is an int type (Conclusion)

• Recursive type checking via inference
− Start from variable and constant types at bottom of tree

p Serves as initial preconditions for the inference
− Apply rules on operator nodes while working up the tree

p Checks type consistency and assigns type to node

25

考核要求
•编译原理

−课堂参与（10%） -点名、提问、测试
−课程作业（20%）- 4次左右，理论
−期中考查（10%）-课下习题
−期末考试（60%）-闭卷

•编译器构造实验
− Project 1（25%）- Lexical Analysis
− Project 2（25%）- Syntax Analysis
− Project 3（25%）- Semantic Analysis
− Project 4（25%）- Code Generation

26

平时成绩（12%）
- Project 1（22%）
- Project 2（22%）
- Project 3（22%）
- Project 4（22%）

