Compilation Principle

I 1 I
F17UF: HPIEACHS()
SINGE

xianweiz.github.io
DCS290, 5/5/2022

https://xianweiz.github.io/

Quiz Questions QUYZ

—

* Q1: how do CFG, SDD and SDT relate to each other?

CFG + attributes/symbol + rules/production > SDD -2 rules
embedded into the production body (action) = SDT.

* Q2:is C.c an synthesized attribute?

Production | Semantic Rule

NO. It is an inherited attribute, depending

on parent (A.a) and sibling (B.b) A~ BC Cc=Bb+Aa

* Q3: suppose A.a is synthesized, is it S-SDD or L-SDD?
Neither.
Not S-SDD: C.c is inherited; Not L-SDD: A.a is synthesized.

* Q4: for a L-SDD, how to convert it into SDT for LR parse?

Add markers and empty rules to move all semantic actions to the
end of production rule, just likewise S-SDD.

* Q5: briefly explain symbol table.
A compiler data structure to track all symbols in semantic analysis

~ phase, and holds info like name, type, value, scope, etc.

Compilation Phases 4B

l
|
|
|
|
|
|
|
|
\

Source Code

. l N
.

.

1

|

Lexical Analysis

- Token Stream |

Syntax Analysis

Syntax Tree"

Semantic Analysis

._Syntax Tree| + symbol Table"

Intermediate
Code Generation

IR
\ 4

Optimization

IR
Y

y

Code Generation

v

Target Code

\

e Lexical: source code - tokens

 FHA - RE, NFA, DFA, ...
Q/ — Is the program lexically well-formed?

Front End
. (Analysis)

o BE.g., x#y=1
* Syntax: tokens - AST or parse tree

- CFG, LL(1), LALR(1), ...
fﬁgﬁ — |s the input program syntactically well-
7 formed?
(Sthes) o Eg, for(i=1)
* Semantic: AST - AST + symbol table
- SDD, SDT, typing, scoping, ...
— Does the input program has a well-
defined meaning?

o E.g.,intx;y=x(1)
! Dhed:

Modern Compilersi s Fae]

* Compilation flow[Zs ¥R FE]

Fortran

program |

C

program |

C#

program |

— First, translate the source program to some form of
intermediate representation (IR, /a3 /x)

— Then convert from there into machine code[FL#XHE]

* IR provides advantages[IRFIEH]
- Increased abstraction, cleaner separation, and retargeting, etc

Fortran’s
Lexer, Parser,
and Static Checker

///
/

C’s
Lexer, Parser,
and Static Checker

/ Optimization

C#'s
Lexer, Parser, and
Static Checker

R

-
~

Middle-end Back-end

LLVM IR —

m languages
n machines
O(mn) vs. O(m+n)

x86

/ ARM

RISC-V

LLVM IR —1-[LLVM static compiler

\\: MIPS
\)owc rPC

LLVM optimizer

Different IRs for Different Stages

 Modern compilers use different IRs at different stages

 High-Level IR: close to high-level language[#ZiTiE &1
— Examples: Abstract Syntax Tree, Parse Tree
- Language dependent (a high-level IR for each language)
— Purpose: semantic analysis of program

* Low-Level IR: close to assembly[#2iE 4]

- Examples: Three address code[=H}i5], Static Single
Assignment[#{ & FIE]

— Essentially an instruction set[{&§4%£2] for an abstract machine

- Language and machine independent (one common IR)

— Purpose: compiler optimizations to make code efficient

o All optimizations written in this IR is automatically applicable to all
languages and machines

“‘ : . f

Different IRs for Different Stages (cont.)

 Machine-Level IR[#l%5)E 2]
— Examples: x86 IR, ARM IR, MIPS IR, RISC-V IR, ...
— Actual instructions for a concrete machine ISA
- Machine dependent (a machine-level IR for each ISA)

— Purpose: code generation / CPU register allocation
o (Optional) Machine-level optimizations (e.g. strength reduction: x/ 2 >

X » 1)
* Possible to have one IR (AST) — some compilers do

— Generate machine code from AST after semantic analysis[ASTZ]
ML, JTCHRIEE X ERIR]
- Makes sense if compilation time is the primary concern (e.g. JIT)
o Skip the IR generation step

* So why have multiple IRs?

Why Multiple IRs?

* Why multiple IRs?
— Better to have an appropriate IR for the task at hand[£} X} 4]
o Semantic analysis much easier with AST

o Compiler optimizations much easier with low-level IR

o Register allocation only possible with machine-level IR

— Easier to add a new front-end (language) or back-end (ISA)[Z; T
7 RE]
o Front-end: a new AST - low-level IR converter
o Back-end: a new low-level IR - machine IR converter

o Low-level IR acts as a bridge between multiple front-ends and back-
ends, such that they can be reused

* If one IR (AST), and adding a new front-end ...
- Reimplement all compiler optimizations for new AST
— A new AST - machine code converter for each ISA

= Same goes for adding a new back-end

Three-Address Code[= -5

* High-level assembly where each operation has at most
three operands. Generic formis X =Y op Z[& %2 3 1M #/E2(]

- where X, Y, Z can be variables, constants, or compiler-generated
temporaries holding intermediate values

* Characteristics[# 4]
— Assembly code for an ‘abstract machine’
- Long expressions are converted to multiple instructions
— Control flow statements are converted to jumps[#z il ifi->Bk 5]

— Machine independent
o Operations are generic (not tailored to any specific machine)
o Function calls represented as generic call nodes

o Uses symbolic names rather than register names (actual locations of
symbols are yet to be determined)

* Design goal: for easier machine-independent optimization

»'ﬁ‘ﬁ?

Three-Address Code Example

* For example, x * y + x * y is translated to
tl=x*vy;tl,t2, t3 are temporary variables
t2=x*y
t3=t1+1t2
— Can be generated through a depth-first traversal of AST
- Internal nodes in AST are translated to temporary variables

* Notice: repetition of x * y[EH]
— Can be later eliminated through a compiler optimization called
common subexpression elimination (CSE):[i# %14 2L IH]
tl=x*y
t3=t1+1t1
— Using 3-address code rather than AST makes it:
o Easier to spot opportunities (just find matching RHSs)

o Easier to manipulate IR (AST is much more cumbersome)
@ FTuxt ’ g

Three-Address Statements

* Assignment statement[— IR {E]
X=Yyopz
where op is an arithmetic or logical operation (binary operation)
* Assignment statement[— oI {E]
X=0pY
where op is an unary operation such as -, not, shift

 Copy statement[#% Ill]

X=y
* Unconditional jump statement[5 &1 Bk%]
goto L

where L is label

@ FTuxt 10 g

Three-Address Statements (cont.)

* Conditional jump statement[& 14 Bki%]
if (x relopy) goto L
where relop is a relational operator such as =,4, >, <

* Procedural call statement[i &1 H]
param xy, ..., param x,, call F, n
As an example, foo(xy, X,, X3) is translated to
param x,
param X,
param X
call foo, 3

* Procedural call return statement[id 7218 F i [A1]

returny
where y is the return value (if applicable)
OREES 1

MG?

Three-Address Stateme

nts (cont.)

* Indexed assignment statement[x 5

x = y[i]
or
y[i] = x

]

where x is a scalar variable and y is an array variable

« Address and pointer operation statement[HhtA1$5%}]

X =& Yy ; a pointer x is set to address of y
y =*x; vyis set to the value of location

; pointed to by pointer x

*vy = x; location pointed to by y is assigned x

C ’ 1 2
(B) T K
& 77 SUN YAT-SEN UNIVERSITY

Example

i=1
do {
ali] =x * 5;
i ++;
} while (i <= 10);

Source program

13

:t3 = sizeof(int) ! ali]
ity =t ¥ !

if i <=10goto L

Three-address code

Implementation of TAC

3 possible ways (and more)
- quadruples[Yt]
— triples[=t1]
— indirect triples[/a4 =t R
* Trade-offs between, space, speed, ease of manipulation

* Using quadruples[/i]
op argl, arg2, result
— There are four(4) fields at maximum
— argl and arg2 are optional, depending on the op

- Examples:
oX=a+b =>+a, b, x
o X=-Yy =>-Y,,X
o gotoL =>goto, , L

@ FTuxt H g

Using Triples|=t=]

* Triple: quadruple without the result field
— Result field is implicitly index of instruction
— Result referred to by index of instructions computing it
- Example:a=b * (-c) + b * (-c)

Quadruples Triples
op argl | arg2 |result| op argl | arg2
(0) - C t1 _ c
(1) * b t1 t2 * b (0)
(2) - C t3 _ .
(3) * b t3 t4 * b (2)
(4) + t2 t4 t5 + 1) | (3)
(5) = t5 3 = 3 (4)
S)FTuk® 15

ME‘Z

More About Triples

* What if LHS of assignment is not a var but an expression?
— Array location (e.g. x[i] =)
— Pointer location (e.g. *(x+i) = y)
— Struct field location (e.g. x.i = y)

 Compute memory address of LHS location beforehand

* Example: triples for array assignment statement

x[i] =y

- is translated to
(0): [] xi // Compute address of x][i] location
(1):=(0) y // Assign y to that location

— Complex LHS may require more triples to compute address

@) tuxs 16 I

Usi

g Inc

irect Triples[ia#: =R

* Pro

0

em wit

N triples

— Compiler optimizations often involve moving instructions
- Hard to move instructions because numbering will change, even

for instructions not involved in optimization

— See below CSE performed on the second (-c) * b:

Quadruples Triples
op argl | arg2 |result| op argl | arg2
(0) - C tl - C

(1) * b t1 t2 > b (0)
I C2 Attt At cints et ~ 3= =T
“-3)-1-"*-1-b-4-"A3-|-tHA- |~ F- b2y
#)2) + t2 t41t2| t5 + (1) (3)1)
(593)] = t5 a = a (4)X

Using Indirect Triples[ia% =t

* Problem with triples
— Compiler optimizations often involve moving instructions

- Hard to move instructions because numbering will change, even
for instructions not involved in optimization

— See below CSE performed on the second (-c) * b:

Quadruples Triples
op argl | arg2 |result| op argl | arg2
(0) - C t1 - C
(1) * b tl t2 * b (0)
(2) + t2 t2 t5 + (1) (1)
(3) = t5 a = a (4)

Instruction (3) refers to (4) which is no longer there.

18

Using Indirect Triples (cont.)

* Triples are stored in a triple ‘database’

* [Ris a listing of pointers to triples in database

— Can reorder listing without changing numbering in database

* Pointer indirection overhead but allows easy code motion

Listing

(ptr to triple database)

(0)

(1)

0)
1

S

(2)

i/

(3)

&

(4)

4

S

(5)

(
(
(
(
(
(

5)

A
(D) T b K
%))
N SUN YAT-SEN UNIVERSITY

19

Database
op | argl | arg2

(0) C

(1) * b | (0)
(2) c

(3) * b | (2)
(4) + | (1) | (3)
(5) = a | (4)

MG?

After CSE Optimization

» After CSE, empty entries in database can be reused
— Code in triple database becomes non-contiguous over time
— That’s fine since the listing is the code, not the database

Listing
(ptr to triple database)
(0) (0)
(1) (1)
(2) (4)
(3) (5)
¢ Tuxs

20

Database
op | argl | arg2
(0) - C
(1) * b | (0)
(2) empty
(3) empty
(4) + | (1) | (1)
(5) = a | (4)

M[iti

Single Static Assignment [& Bt]

 Every variable is assigned to exactly once statically[{X —X]

— Give variable a different version name on every assighment
o e.8. X = Xy, X,, ..., Xs fOr each static assignment of x

— Now value of each variable guaranteed not to change

— On a control flow merge, ¢p-function combines two versions
o e.8. Xs = P(X3, X4): means xs is either x5 or x,

X=a+Db;
Y=X-C;
X=X-Y,

if (...)

e ise

X=X+D5;

X=X"%4;

\/

»

21

X1 =a + b;
Y1 =X -G,
X2 = X1 - Y1

i

N

X3 = Xo + D;

X4 =X ™ 4,

\\\\\\{/////

X5 = ¢(X3, X4);

Y2 = X5 * 4,

