
Compilation Principle
编译原理

第17讲：中间代码(1)
张献伟

xianweiz.github.io
DCS290, 5/5/2022

https://xianweiz.github.io/

Quiz Questions
• Q1: how do CFG, SDD and SDT relate to each other?

• Q2: is C.c an synthesized attribute?

• Q3: suppose A.a is synthesized, is it S-SDD or L-SDD?

• Q4: for a L-SDD, how to convert it into SDT for LR parse?

• Q5: briefly explain symbol table.

2

Production Semantic Rule

A à BC C.c = B.b + A.a

CFG + attributes/symbol + rules/production à SDD à rules
embedded into the production body (action) à SDT.

NO. It is an inherited attribute, depending
on parent (A.a) and sibling (B.b)

Neither.
Not S-SDD: C.c is inherited; Not L-SDD: A.a is synthesized.

Add markers and empty rules to move all semantic actions to the
end of production rule, just likewise S-SDD.

A compiler data structure to track all symbols in semanOc analysis
phase, and holds info like name, type, value, scope, etc.

Compilation Phases[编译阶段]

3

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Op9miza9on

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree + Symbol Table

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

• Lexical: source code → tokens
− RE, NFA, DFA, …
− Is the program lexically well-formed?

p E.g., x#y = 1

• Syntax: tokens → AST or parse tree
− CFG, LL(1), LALR(1), …
− Is the input program syntactically well-

formed?
p E.g., for(i = 1)

• Semantic: AST → AST + symbol table
− SDD, SDT, typing, scoping, …
− Does the input program has a well-

defined meaning?
p E.g., int x; y = x(1)

正确

效率

Modern Compilers[现代编译器]

• Compilation flow[编译流程]
− First, translate the source program to some form of

intermediate representation (IR, 中间表示)
− Then convert from there into machine code[机器代码]

• IR provides advantages[IR的优势]
− Increased abstraction, cleaner separation, and retargeting, etc

4

m languages
n machines
O(mn) vs. O(m+n)

Different IRs for Different Stages
• Modern compilers use different IRs at different stages

• High-Level IR: close to high-level language[接近语言]
− Examples: Abstract Syntax Tree, Parse Tree
− Language dependent (a high-level IR for each language)
− Purpose: semantic analysis of program

• Low-Level IR: close to assembly[接近汇编]
− Examples: Three address code[三地址码], Static Single

Assignment[静态单赋值]
− Essentially an instruction set[指令集] for an abstract machine
− Language and machine independent (one common IR)
− Purpose: compiler optimizations to make code efficient

p All optimizations written in this IR is automatically applicable to all
languages and machines

5

Different IRs for Different Stages (cont.)
• Machine-Level IR[机器层级]

− Examples: x86 IR, ARM IR, MIPS IR, RISC-V IR, …
− Actual instructions for a concrete machine ISA
− Machine dependent (a machine-level IR for each ISA)
− Purpose: code generation / CPU register allocation

p (Optional) Machine-level optimizations (e.g. strength reduction: x / 2 →
x » 1)

• Possible to have one IR (AST) — some compilers do
− Generate machine code from AST after semantic analysis[AST到
机器代码，无真正意义上的IR]

− Makes sense if compilation time is the primary concern (e.g. JIT)
p Skip the IR generation step

• So why have multiple IRs?

6

Why Multiple IRs?
• Why mulWple IRs?

− Be`er to have an appropriate IR for the task at hand[针对性]
p SemanRc analysis much easier with AST
p Compiler opRmizaRons much easier with low-level IR
p Register allocaRon only possible with machine-level IR

− Easier to add a new front-end (language) or back-end (ISA)[易于
扩展]

p Front-end: a new AST → low-level IR converter
p Back-end: a new low-level IR → machine IR converter
p Low-level IR acts as a bridge between mulRple front-ends and back-

ends, such that they can be reused

• If one IR (AST), and adding a new front-end ...
− Reimplement all compiler opOmizaOons for new AST
− A new AST → machine code converter for each ISA
− Same goes for adding a new back-end

7

Three-Address Code[三地址码]

• High-level assembly where each operation has at most
three operands. Generic form is X = Y op Z[最多3个操作数]

− where X, Y, Z can be variables, constants, or compiler-generated
temporaries holding intermediate values

• Characteristics[特性]
− Assembly code for an ’abstract machine’
− Long expressions are converted to multiple instructions
− Control flow statements are converted to jumps[控制流->跳转]
− Machine independent

p Operations are generic (not tailored to any specific machine)
p Function calls represented as generic call nodes
p Uses symbolic names rather than register names (actual locations of

symbols are yet to be determined)

• Design goal: for easier machine-independent optimization

8

Three-Address Code Example
• For example, x * y + x * y is translated to

t1 = x * y ; t1, t2, t3 are temporary variables
t2 = x * y
t3 = t1 + t2

− Can be generated through a depth-first traversal of AST
− Internal nodes in AST are translated to temporary variables

• Notice: repetition of x * y[重复]
− Can be later eliminated through a compiler optimization called

common subexpression elimination (CSE):[通用子表达式消除]
t1 = x * y
t3 = t1 + t1

− Using 3-address code rather than AST makes it:
p Easier to spot opportunities (just find matching RHSs)
p Easier to manipulate IR (AST is much more cumbersome)

9

Three-Address Statements
• Assignment statement[二元赋值]

x = y op z
where op is an arithmetic or logical operation (binary operation)

• Assignment statement[一元赋值]
x = op y

where op is an unary operation such as -, not, shift

• Copy statement[拷贝]
x = y

• Unconditional jump statement[无条件跳转]
goto L

where L is label

10

Three-Address Statements (cont.)
• CondiWonal jump statement[条件跳转]

if (x relop y) goto L
where relop is a relaOonal operator such as =, ̸=, >, <

• Procedural call statement[过程调用]
param x1, ..., param xn, call Fy, n

As an example, foo(x1, x2, x3) is translated to
param x1
param x2
param x3
call foo, 3

• Procedural call return statement[过程调用返回]
return y

where y is the return value (if applicable)
11

Three-Address Statements (cont.)
• Indexed assignment statement[索引]

x = y[i]
or
y[i] = x

where x is a scalar variable and y is an array variable

• Address and pointer operation statement[地址和指针]
x = & y ; a pointer x is set to address of y
y = * x ; y is set to the value of location

; pointed to by pointer x
*y = x ; location pointed to by y is assigned x

12

Example

i = 1
do {

a[i] = x * 5;
i ++;

} while (i <= 10);

13

i = 1
L: t1 = x * 5

t2 = &a
t3 = sizeof(int)
t4 = t3 * i
t5 = t2 + t4
*t5 = t1
i = i + 1
if i <= 10 goto L

a[i]

Source program Three-address code

ImplementaGon of TAC
• 3 possible ways (and more)

− quadruples[四元式]
− triples[三元式]
− indirect triples[间接三元式]

• Trade-offs between, space, speed, ease of manipulation
• Using quadruples[四元式]

op arg1, arg2, result
− There are four(4) fields at maximum
− arg1 and arg2 are optional, depending on the op
− Examples:

p x = a + b => + a, b, x
p x = - y => - y, , x
p goto L => goto , , L

14

Using Triples[三元式]

• Triple: quadruple without the result field
− Result field is implicitly index of instruction
− Result referred to by index of instructions computing it
− Example: a = b * (-c) + b * (-c)

15

Quadruples
op arg1 arg2 result

(0) - c t1
(1) * b t1 t2
(2) - c t3
(3) * b t3 t4
(4) + t2 t4 t5
(5) = t5 a

Triples
op arg1 arg2
- c
* b (0)
- c
* b (2)
+ (1) (3)
= a (4)

More About Triples
• What if LHS of assignment is not a var but an expression?

− Array location (e.g. x[i] = y)
− Pointer location (e.g. *(x+i) = y)
− Struct field location (e.g. x.i = y)

• Compute memory address of LHS location beforehand
• Example: triples for array assignment statement

x[i] = y
− is translated to

(0): [] x i // Compute address of x[i] location
(1): = (0) y // Assign y to that location

− Complex LHS may require more triples to compute address

16

Using Indirect Triples[间接三元式]

• Problem with triples
− Compiler optimizations often involve moving instructions
− Hard to move instructions because numbering will change, even

for instructions not involved in optimization
− See below CSE performed on the second (-c) * b:

17

Quadruples
op arg1 arg2 result

(0) - c t1
(1) * b t1 t2
(2) - c t3
(3) * b t3 t4
(4) + t2 t4 t5
(5) = t5 a

Triples
op arg1 arg2
- c
* b (0)
- c
* b (2)
+ (1) (3)
= a (4)

t2 (1)(2)
(3) ✗

Using Indirect Triples[间接三元式]

• Problem with triples
− Compiler optimizations often involve moving instructions
− Hard to move instructions because numbering will change, even

for instructions not involved in optimization
− See below CSE performed on the second (-c) * b:

18

Quadruples
op arg1 arg2 result

(0) - c t1
(1) * b t1 t2
(2) + t2 t2 t5
(3) = t5 a

Triples
op arg1 arg2
- c
* b (0)
+ (1) (1)
= a (4)

Instruction (3) refers to (4) which is no longer there.

Using Indirect Triples (cont.)
• Triples are stored in a triple ’database’
• IR is a listing of pointers to triples in database

− Can reorder listing without changing numbering in database

• Pointer indirection overhead but allows easy code motion

19

Database
op arg1 arg2

(0) - c
(1) * b (0)
(2) - c
(3) * b (2)
(4) + (1) (3)
(5) = a (4)

Listing
(ptr to triple database)

(0) (0)
(1) (1)
(2) (2)
(3) (3)
(4) (4)
(5) (5)

After CSE Optimization
• After CSE, empty entries in database can be reused

− Code in triple database becomes non-contiguous over time
− That’s fine since the listing is the code, not the database

20

Database
op arg1 arg2

(0) - c
(1) * b (0)
(2) empty
(3) empty
(4) + (1) (1)
(5) = a (4)

Listing
(ptr to triple database)

(0) (0)
(1) (1)
(2) (4)
(3) (5)

Single Static Assignment[静态单赋值]

• Every variable is assigned to exactly once statically[仅一次]
− Give variable a different version name on every assignment

p e.g. x → x1, x2, ..., x5 for each static assignment of x
− Now value of each variable guaranteed not to change
− On a control flow merge, φ-function combines two versions

p e.g. x5 = φ(x3, x4): means x5 is either x3 or x4

21

