
Compilation Principle
编译原理

第19讲：运行时环境(2)
张献伟

xianweiz.github.io
DCS290, 5/27/2021

https://xianweiz.github.io/


Quiz
• Q1: 中间代码生成阶段的任务?

• Q2: TAC指令：A[j][k], type(A) = array(10, array(20, int))?

• Q3: 对文法规则S -> if (B) S1 else S2的IR翻译而言，指令
goto S.next放置在哪里?

• Q4: 对布尔表达式E而言，E.true和E.false指代什么?

• Q5: 回填（Backpatching）的用途是什么?

2
一遍的方式处理跳转标签（得到标签具体位置后向后回填）

Addr(A[j][k]) = base + j * 80 + k * 4
t1 = j * 80; t2 = k * 4; t3 = t1 + t2; t4 = A[t3]

E为真和假时分别要跳转到的位置标签

S1.code {goto S.next} else: 执行完S1代码段后跳过S2

将语法树转换为中间代码（e.g.，三地址码指令）



Run-Time Environments[运行时环境]

• Compiler responsibilities[编译器职责]
− Accurately implement the semantics of the source program
− Cooperate with OS and other systems to support the execution 

on the target machine

• Thus, compiler creates and manages a run-time 
environment in which it assumes its target programs are 
being executed[运行时环境]

− How to layout and allocate storage locations
− How to access variables
− How to link different procedures?
− How to interact with OS?
− … …

• We’ll focus on memory management
3



Three Types of Memory Management
• Static data management[静态]: static-lifetime data

− Stores data at fixed locations laid out at compile-time
− Laid out data forms an executable image file [可执行映像]

p Contains program code, as well as initial values for vars
p File copied verbatim to memory at program launch [逐字复制]

• Stack data management[栈]: scoped-lifetime data
− Stores data in memory area managed like a stack
− Data pushed/popped when scope entered/exited
− Memory allocated only for the scope where data is valid 
− Compiler generates runtime code to manage stack

• Heap data management[堆]: arbitrary-lifetime data
− Store data in area that allows on-demand allocation/free
− Typically managed by memory management runtime library

4



Example Memory Layout

5

• Code
− the size of the generated 

target code is fixed at 
compile time

• Global/static
− the size of some program 

data objects, e.g., global 
constants, are known at 
compile time

• Stack
− store dynamic data 

structures
• Heap

− manage long-lived data

…
code of g()
code of f()

code of main()
global data 

segment

heap

free memory

stack

code

data

executable
image



Activation[活动]

• Compiler typically allocates memory in the unit of 
procedure[以过程调用为单位]
• Each execution of a procedure is called as its activation[活
动]

− An execution of a procedure starts at the beginning of the 
procedure body

− When the procedure is completed, it returns the control to the 
point immediately after the place where that procedure is 
called

• Activation record (AR) [活动记录] is used to manage the 
information needed by a single execution of a procedure
• Stack is to activation records that get generated during 

procedure calls

6



ARs in Stack Memory[在栈中管理]

• Manage ARs like a stack in memory[AR栈管理]
− On function entry: AR instance allocated at top of stack
− On function return: AR instance removed from top of stack

• Hardware support[硬件支持]
− Stack pointer ($SP) register[栈指针]

p $SP stores address of top of the stack
p Allocation/de-allocation can be done by moving $SP

− Frame pointer ($FP) register[帧指针]
p $FP stores base address of current frame
p Frame: another word for activation record (AR)
p Variable addresses translated to an offset from $FP

− $FP and $SP together delineate the bounds of current AR

7



• Example layout of a function AR

• Registers such as $FP and $IP overwritten by callee → Must be 
saved to/restored from AR on call/return

− Caller’s $IP: where to execute next on function return (a.k.a. return 
address: instruction following function call)

− Caller’s $FP: where $FP should point to on function return
− Saved Caller/Callee Registers: other registers (will discuss)

Contents of ARs

Temporaries 
Local variables 
Saved Caller/Callee Register Values 
Saved Caller’s Instruction Pointer ($IP) 
Saved Caller’s AR Frame Pointer ($FP) 
Parameters 
Return Value 

8

临时变量

局部变量

保存的寄存器值

保存的调用者指令指针

保存的调用者帧指针

参数

返回值



Example Code of g()

Code of f()

Code of main()

Global data segment

heap

y

location (②)

FPf(3)

X=2

(result)

main’s AR
9

int g() {
return 1;

}

int f(int x) {
int y;
if (x==2)

y = 1;
else

y = x + f(x-1);
② ...
return y;

}

int main() {
f(3);
① ...

}

FPmain

tmp=x -1

y

location (①)

FPmain

x=3

(result)

FPf(3)

y

location (②)

FPf(3)

x=2

(result)

FPf(2)



Calling Convention[调用规范]

• Calling convention: rules on how caller/callee interact

• All interactions happen through AR (relevant parts in 
bold):

10

Temporaries 
Local variables 
Saved Caller/Callee Register Values 
Saved Caller’s Instruction Pointer ($IP) 
Saved Caller’s AR Frame Pointer ($FP) 
Parameters 
Return Value 



Calling Convention (cont.)
• Caller’s responsibility[调用者]

Evaluate parameters and save them in callee’s AR
Save $FP in callee’s AR; update $FP to base of callee’s AR
Save $IP in callee’s AR; jump to callee (updating $IP)
Save caller-saved registers in caller’s AR
Restore caller-saved registers in caller’s AR

• Callee’s responsibility[被调用者]
Save callee-saved registers in callee’s AR
Evaluate return value and save it in callee’s AR
Restore caller’s $FP into $FP
Restore caller’s $IP into $IP (jumping to return address)
Restore callee-saved registers in callee’s AR

• Why separate caller-saved and callee-saved registers?

11

Before call

After call

At begin
At end



Caller-/Callee-saved Registers
• Convention

− Allows caller to use callee-saved registers w/o save/restore
− Allows callee to use caller-saved registers w/o save/restore

• Assume R1 is caller-saved and R2 is callee-saved:

• W/o convention, foo() must save R2, bar() must save R1
− Since no guarantee bar() will not overwrite R2
− Since no guarantee foo() will not use R1

• Especially important if foo(), bar() compiled separately
− E.g. foo() and bar() maybe in different libraries
− foo(), bar() cannot look into each other to decide

12

void foo() {
R2 = R2 + 1; // no need to save/restore R2
bar();

}
void bar() {

R1 = R1 + 1; // no need to save/restore R1
}



Calling Convention
• AR layout is also part of calling convention

− Designed for easy access
p Parts of callee’s AR written by caller ($FP, $IP, parameters)
p ⇒ Place them at bottom of AR where caller can find them easily

• (If at top, location will differ depending on number of variables and 
temporaries in callee’s AR, something compiler generating caller doesn’t 
necessarily know)

− Designed for execution speed
p E.g. first 4 arguments in MIPS typically passed in registers (register 

accesses are faster than stack accesses)

• Who decides on the calling convention?
− Entirely up to the compiler writer
− When linking modules generated by different compilers, care 

must be taken that same conventions are followed (e.g. Java 
Native Interface allows calls from Java to C)

13



Heap Memory Management[堆管理]

• Heap data
− Lives beyond the lifetime of the procedure that creates it

− Cannot reclaim memory automatically using a stack

• Problem: when and how do we reclaim that memory?
• Two approaches

− Manual memory management
p Programmer inserts deallocation calls. E.g. “free(p)” 

− Automatic memory management
p Runtime code automatically reclaims memory when it determines that 

data is no longer needed

14

TreeNode* createTREE() { { 
TreeNode* p = (TreeNode*)malloc(sizeof(TreeNode)); 
return p; } 



Why Manual?[人为管理]

• Manual memory management is typically more efficient 
− Programmers know when data is no longer needed

• With automatic management, runtime must somehow 
detect when data is no longer needed and recycle it

− Performance overhead
p Detection code significantly impacts program performance

− Memory overhead
p Detection can be done every so often (Typically only when program runs 

out of memory)
p Runtime may keep around data longer than necessary
p Results in larger memory footprint

− Poor response time
p Program must be paused during detection phase
p Program will be unresponsive during that time

15



Why Automatic?[自动化管理]

• Fewer bugs
− With manual management, programmers may

p forget to free unused memory -> memory leak
p free memory too early -> dangling pointer access
p free memory twice (double free) 

− Memory bugs are extremely hard to find and fix 
p While there are tools (e.g., valgrind), but the tools have limitations and 

may involve much overhead

• More secure system
− Disallowing programmer free() calls is essential for security 
− Automatic management prevents all memory corruption 

16



Implementation: Automatic & Manual
• Common functionality in both automatic and manual

− Runtime code maintains used/unused spaces in heap
p e.g. linked together in the form of a list

− malloc(int size)
p move size bytes from unused to used

− free(void *p)
p move given memory from used to unused

• Only in automatic memory management
− Routines to perform detection of unused memory

• We will focus on automatic memory management
− Because detection often requires involvement of compiler

17



Reachable Objects and Garbage
• Named objects

− Can be global variables in global data segment
− Can be local variables in stack memory or registers
− Also called root objects

p They form the root of the tree of reachable objects

• An object x is reachable iff
− A named object contains a reference to x, or
− A reachable object y contains a reference to x

• Garbage refers to the data that cannot be referenced
− Garbage can no longer be used and its memory can be 

reclaimed 
− This reclamation is process is called garbage collection 

18



Two Garbage Collection Schemes
• Reference counting[引用计数]

− Maintain a reference counter inside each object
p Counts the number of references to object

− When counter becomes 0, the object is no longer usable 
p Garbage collect unreachable object

• Tracing[追踪]
− When the heap runs out of memory to allocate:

p Pause the program
p Trace through all reachable objects
p Garbage collect remaining objects
p Restart the program

19



Reference Counting[引用计数]

• Idea: when reference counter (RC) == 0, collect object
− If collected object has references to other objects

p may trigger recursive collection of other objects

• Implementation
− Compiler generates code to maintain reference counters
− Whenever program modifies a reference

p For object losing reference, decrement RC
p For object gaining reference, increment RC

20

Object x = new Foo(), y = new Bar();
// Now, RC of Foo == 1, RC of Bar == 1
x = y;
// Now, RC of Foo == 0, RC of Bar == 2



Reference Counting (cont.)
• Advantages

− Relatively easy to implement
p Compiler only needs to insert RC manipulation code at reference 

assignments
− Good response time

p Garbage is collected whenever there is opportunity
p No need to pause program for long time ! responsive (Unless freeing a 

long chain of objects!)

• Disadvantages
− Cannot collect circular data structures (Must rely on tracing GC 

for these corner cases)
− Bad performance

p Manipulating RCs at each assignment is high overhead
p RC must be synchronized with multithreading ! even slower

21



Tracing[追踪]

• Start from named objects (also called root objects)
− If object is value: no further action
− If object is reference: follow reference
− If object is struct: go through each field

• Mark all traversed objects as live objects
• All remaining objects can be collected as garbage

22



Tracing (cont.)
• Advantages

− Is guaranteed to collect even cyclic references
− Good performance

p Overhead proportional to traced (live) objects Garbage (dead) objects 
do not incur any overhead!

p Most objects have short lifetimes: dead by the time tracing GC runs

• Disadvantages
− Bad response time: requires pausing program
− Prone to heap thrashing

p Thrashing: frequent GCs to collect small amounts of garbage
p If heap does not have extra ‘headroom’ beyond working set

• GC becomes very frequent
• Most objects are now live (bad performance)

23



Flavors of Tracing Collection
• To move or not to move objects?

− Garbage collection can leave ‘holes’ inside heap
− Objects can be moved during GC to "compress" holes
− Mark-and-Sweep: example of non-moving GC
− Semispace: example of moving GC

• To collect at once or incrementally?
− Tracing entire heap can lead to long pause times
− Possible to collect only a part of the heap at a time
− All-at-once: naive GC with no partitions
− Incremental: divides heap into multiple partitions
− Generational: divides heap into generations

• The two choices are orthogonal to each other

24



Compilation Principle
编译原理

第19讲：目标代码生成(1)
张献伟

xianweiz.github.io
DCS290, 5/27/2021

https://xianweiz.github.io/


Target Code Generation[目标代码生成]

• What we have now
− IR of the source program
− Symbol table

• Goals of target code generation
− Correctness: the target program must 

preserve the semantic meaning of the 
source program

− High-quality: the target program must 
make effective use of the available 
resources of the target machine

− Fast: the code generator itself must 
runs efficiently

26

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate 
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）



Example
• An example on real machine (x86_64)

− Symbols have to be translated to memory addresses

• A simplified representation

27

gcc -O0 -S test.c

LD R0, y // R0 = y (load y into register R0)
ADD R0, R0, z // R0 = R0 + z (add z to R0)
ST x, R0 // x = R0 (store R0 into x)

x = y + z



Translating IR to Machine Code
• Machine code generation is machine ISA dependent*

− Complex instruction set computer (CISC): x86
− Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

• Three primary tasks
− Instruction selection[指令选取]

p Choose appropriate target-machine instructions to implement the IR 
statements

− Register allocation and assignment[寄存器分配]
p Decide what values to keep in which registers

− Instruction ordering[指令排序]
p Decide in what order to schedule the execution of instructions

28

* CPU及指令集演进 (漫画 | 20多年了，为什么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166

