Compilation Principle

Jm 13F 5 B
F20UF: H AR A Hl(2)
GG

xianweiz.github.io
DCS290, 6/3/2021

Dyide

https://xianweiz.github.io/

Review Questions

e What is runtime environment?

The environment where the target program will be executed.

* For the static memory region, what are placed there?

Code, global and static variables. Composing an executable image

e What is activation record?

Each execution of a procedure is called activation, and AR is to
manage the info needed by the execution.

* What are registers SSP and SFP used for?
SSP points to the top of stack; SFP points to the base of current frame

* What are the schemes reference counting and tracing?

Garbage collection to reclaim unused heap space.

»‘vi‘@z

Translating IR to Mach

ine Code

* Mac

nine code generation is mac

nine ISA dependent”

— Complex instruction set computer (CISC): x86
- Reduced instruction set computer (RISC): ARM, MIPS, RISC-V

* Three primary tasks

— Instruction selection[f5 % £ HY]
o Choose appropriate target-machine instructions to implement the IR

statements

— Register allocation and assignment[& 1% a5 77 FiC]

o Decide what values to keep in which

— Instruction ordering[f& % HF 7]
o Decide in what order to schedule the execution of instructions

* CPU M52t

registers

4

https://zhuanlan.zhihu.com/p/363765166

Instruction Selection[#4 &)

* Code generation is to map the IR program into a code
sequence that can be executed by the target machine [i&
P 2 1) H FrbL T 2 R ECHLIR]

— ISA of the target machine
o If thereis INC’, thenfora=a+1, INCa’is better than ‘LD a, ADD a, 1’

— Desired quality of the generated code
o Many different generations, naive translation is usually correct but very

inefficient
Target code:
LD RO, b //RO=Db
LS ADDRO,RO,c //RO=RO+c
a=b+c ST a, RO //a=R0
d=a+e LD RO, a //RO=a
ADD RO, RO, e //RO=RO+e
STd, RO // d=R0O

Register Allocation & Evaluation Order

* Register allocation: a key problem in code generation is
deciding what values to hold in what registers[#F 17#s 7 i

— Registers are the fastest storage unit but are of limited numbers

o Values not held in registers need to reside in memory
o Insts involving register operands are much shorter and faster

- Finding an optimal assignment of registers to variables is NP-
hard

* Evaluation order: the order in which computations are
performed can affect the efficiency of the target code [k
AT MR

- Some computation orders require fewer registers to hold
intermediate results than others

- However, picking a best order in the general case is NP-hard

Stack Machine[# =i+ #1]

* A simple evaluation model[—“~{a] B Y]
— No variables or registers
— A stack of values for intermediate results

* Each instruction[#541F %]
— Takes its operands from the top of the stack [#% Tl H 38/ 2]
— Removes those operands from the stack [MR P A2 R ERAE 4L

— Computes the required operation on them [11 5]
— Pushes the result on the stack [1T 5& 45 5 A K]

i

5 \
7 12
9 9 9

pop add push Diede

Example

* Consider two instructions
— push i - place the integer i on top of the stack

— add - pop two elements, add them and put the result back on
the stack

* A program to compute 7+ 5
- push 7

- push 5
- add

i

5 \
7 12
9 9 9

pop add push m[]tz

Optimize the Stack Machine

* The add instruction does 3 memory operations
— Two reads and one write to the stack
— The top of the stack is frequently accessed

* ldea: keep the top of the stack in a register (called
accumulator) [1# FH & A7 %3]
— Register accesses are much faster

e The “add” instruction is now

— acc €& acc + top_of stack
— Only one memory operation

acc 7 5 ——>®/v 12

annad

stack

acc « 7 acc . 5 acc « acc + top_of_stack
push acc Pop

MELZ

From Stack Machine to MIPS

* The compiler generates code for a stack machine with
accumulator
— The accumulator is kept in MIPS register St0

— Stack machine instructions are implemented using MIPS
instructions and registers

- We want to run the resulting code on the MIPS processor (or
simulator)

* The stack is kept in memory
- The stack grows towards lower addresses (standard convention)
— The address of next stack location is kept in MIPS register Ssp
o The top of the stack is at address Ssp + 4

— A block of stack space, called stack frame, is allocated for each
function call

o A stack frame consists of the memory between Sfp which points to the
base of the current stack frame, and the Ssp

o Before func returns, it must pop its stack frame, and restore the stack

() N

MIPS Architecture

* Load/store architecture
— Only load and store instructions can access memory
— All other instructions access only registers
o E.g., all arithmetic and logical operations involve only registers (or constants
that are stored as part of the instructions)
* Word size is 32 bits, all instructions are encoded in a single 32-
bit word format

— Arithmetic

o e.g., add des, srcl, src2 // des =srcl + src2
— Comparison

o e.g., sge des, srcl,src2 // des & 1ifsrcl >src2, 0 ow
— Branch/jump

o e.g., bgesrcl, src2,lab // branch to lab if src1 > src2

— Load, store, and data movement
o E.g., lw des, addr // load the word at addr into des
o E.g., move des, srcl // copy the contents of srcl to des

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

MIPS Architecture (cont.)

* 32 registers

— 31 of these are general-purpose that can be used in any of the
instructions

- The last one (zero), is to contain the number zero at all times

* While general-purpose, there are guidelines specifying
how each of the registers should be used
— S0 is always zero, Sa0,...,5a4 are for arguments
— Ssp saves stack pointer, Sfp saves frame pointer

Symbolic Name | Number Usage

ZEero 0 Constant 0.

at 1 Reserved for the assembler.
vl - vl 2-3 Result Registers.

al - a3 4-7 Argument Registers 1 --- 4,
t0 - t9 8 - 15, 24 - 25 | Temporary Registers 0 --- 9.
s0 - s7 16 - 23 Saved Registers 0 --- 7.

k0 - k1 26 - 27 Kernel Registers 0 --- 1.

gp 28 Global Data Pointer.

Sp 29 Stack Pointer.

fp 30 Frame Pointer.

ra 31 Return Address QNELZ

Example MIPS Instructions

* la regl addr
— Load address into regl
* liregimm
- reg & imm
Iw reg1 offset(reg2)
- Load 32-bit word from address reg2 + offset into regl
sw regl offset(reg2)
— Store 32-bit word in regl at address reg2 + offset
add regl reg2 reg3
- regl < reg2 +reg3
* move regl reg2
- regl <- reg?2
* sge reglreg2 reg3
- regl & (reg2 >=reg3)

12 i
j: Yﬂahﬁnﬁ JN :

Example MIPS Assembly

 The stack-machine code for 7 + 5 in MIPS:

Stack-machine MIPS Comment

acc<-7 i St0 7 Load constant 7 into S$t0

push acc addi Ssp Ssp -4 | Decrement sp to make space
sw St0 O(Ssp) Copy the value to stack

acc<-5 i St0 5 Load constant 5 into St0

acc <- acc + top_of stack | lw St1 4(Ssp) Load value from Ssp+4 into St1
add St0 St0 St1 | Add St0O+St1=5+7

pop add Ssp Ssp4 | Pop constant 7 off stack

13 Dhige

A Small Language

* A language with integers and integer operations

P>D;P|D

D - def id(ARGS) = E;

ARGS - id, ARGS | id

E—>int|id | if El=E2then E3 else E4
| E1+E2 | E1—E2 | id(E1,...,En)

* Example: program for computing the Fibonacci numbers:

def fib(x) = if x =1 then O else
if x=2then 1 else
fib(x - 1) + fib(x — 2)

»‘vi‘@z

Code Generation Considerations

* We used to store values in unlimited temporary variables, but
registers are limited --> must reuse registers[E & ff H & 17 #5]

* Must save/restore registers when reusing them [{&1#- k]
— E.g. suppose you store results of expressions in St0
- When generating E->E; + E,,
o E, will first store result into S$tO

o E, will next store result into $t0, overwriting E,’s result
o Must save $t0 somewhere before generating E,

* Registers are saved on and restored from the stack

Note: Ssp - stack pointer register, pointing to the top of stack

— Saving a register St0 on the stack:
addiu Ssp, Ssp, -4 # Allocate (push) a word on the stack

sw St0, 0(Ssp) # Store StO on the top of the stack
— Restoring a value from stack to register StO:
lw St0, 0(Ssp) # Load word from top of stack to StO

addiu Ssp, Ssp, 4 # Free (pop) word from stack
@tuxs IR

Stack Operations[##/E)

* To push elements onto the stack
— To move stack pointer Ssp down to make room for the new data
— Store the elements into the stack

* For example, to push registers St1 and St2 onto stack
sub Ssp, Ssp, 8 sw St1, -4(Ssp)
sw St1, 4(Ssp) sw St2, -8(Ssp)
sw St2, 0(Ssp) sub Ssp, Ssp, 8
* Pop elements simply by adjusting the Ssp upwards
— Note that the popped data is still present in memory, but data
past the stack pointer is considered invalid

word 1 word 1 word 1
Ssp word 2 word 2 word 2
$t1 Ssp $t1
Ssp $t2 $t2
& *"‘X % »‘.i‘@?

Code Generation Strategy

* For each expression e we generate MIPS code that:
— Computes the value of e into 5t0
— Preserves Ssp and the contents of the stack

* We define a code generation function cgen(e)
— Its result is the code generated for e

* Code generation for constants

— The code to evaluate a constant simply copies it into the
register: cgen(i) = li StO i
o Note that this also preserves the stack, as required

»»L'G“Z

Code Generation for ALU

e Default
cgen(el + e2): cgen(el + e2):
cgen(el) cgen(el)
addiu Ssp Ssp -4 move St1 St0
sw St0 O(Ssp)
cgen(e2)
cgen(e2)
add St0 St1 St0
lw St1 4(Ssp)

addiu Ssp Ssp 4

add $t0 St1 St0
* Possible optimization: put the result of el directly in register

»‘vi‘@z

Code Generation for Conditional

* We need flow control
instructions

* New instruction: beqg reg1l
reg2 label

— Branch to label if reg1 ==
reg2

* New instruction: b label
- Unconditional jump to label

cgen(if el == e2 then e3 else e4):

cgen(el)

addiu Ssp Ssp -4
sw St0 O(Ssp)

cgen(e?)

lw St1 4(Ssp)
addiu Ssp Ssp 4

beq St0 St1

cgen(ed)
b end if

cgen(e3)
end_if:

ma?

Caller/Callee Conventions

* Important registers should be saved across function calls
— Otherwise, values might be overwritten

* But, who should take the responsibility?
— The caller knows which registers are important to it and should
be saved

- The callee knows exactly which registers it will use and
potentially overwrite

- However, in the typical “block box” programming, caller and
callee don’t know anything about each other’s implementation

e Potential solutions

- Sol1: caller to save any important registers that it needs before
calling a func, and to restore them after (but not all will be
overwritten)

- Sol2: callee saves and restores any registers it might overwrite
(but not all are important to caller)

Ca

ler/Ca

lee Conventions (cont.)

* Ca

ler and ca

lee should cooperate

 Caller: save and restore any of the following caller-saved

registers that it cares about
St0-St9 Sa0-Sa3 Sv0-Svl

— The callee may freely modify these registers, under the
assumption that the caller already saved them

 Callee: save and restore any of the following callee-saved

registers that it uses
Ss0-Ss7 Sra
— The caller may assume these registers are not changed by the

callee

»’vi‘@z

Detailed Calling Steps

* The caller sets up for the call via these steps[ifi FH #]
- 1) Make space on stack for and save any caller-saved registers

- 2) Pass arguments by pushing them on the stack, one by one,
right to left

- 3) Execute a jump to the function (saves the next inst in Sra)

* The callee takes over and does the following[# i F 3]
— 4) Make space on stack for and save values of Sfp and Sra
— 5) Configure frame pointer by setting Sfp to base of frame

- 6) Allocate space for stack frame (total space required for all
local and temporary variables)

- 7) Execute function body, code can access params at positive
offset from Sfp, locals/temps at negative offsets from Sfp

A P
[2 z)) l '] K
3.@ %) of
SUN YAT-SEN UNIVERSITY ‘ ' ‘

Detailed Calling Steps (cont.)

* When ready to exit, the callee does following[ii FHiE Hi]
— 8) Assign the return value (if any) to SvO
— 9) Pop stack frame off the stack (locals/temps/saved regs)
— 10) Restore the value of Sfp and Sra
— 11) Jump to the address saved in Sra

* When control returns to the caller, it cleans up from the
call with the steps[ii Fiz [a]]
- 12) Pop the parameters from the stack

- 13) Restore value of any caller-saved registers, pops spill space
from stack

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Code Generation for Function Call

* The calling sequence is ~ enlflel, .. en)):

the instructions (of both o
caller and callee) to set addiu Ssp Ssp -4
up a function invocation sw 520 0(5sp)
;éen(el)
* New instruction: jal label sj,ds'gos ;F()Si;g *
- Jump to label, after
saving address of next addiu Ssp $Ssp -4
instruction in Sra sw Sfp 0(Ssp)

addiu Ssp, Ssp, -4
sw Sra, 0(Ssp)

move Sfp, Ssp

Code Generation for Function Definition

* New instruction: jr reg
— Jump to address in register reg

cgen(def f(x1,...,xn) = e):
f entry: cgen(e)
move Ssp Sfp

sw Sra 0(Ssp)
addiu Ssp Ssp 4

lw $fp 0(Ssp)
addiu Ssp Ssp 4

jr Sra

25 G
/ i Yﬂnl\;ﬁuﬁ } ' ih L{

Code Generation for Variables

* The “variables” of a function are just its ‘parameters’
- They are all in the AR
— Pushed by the caller

* Problem: because the stack grows when intermediate
results are saved, the variables are not at a fixed offset
from Ssp

— Thus, access to locations in the stack frame cannot use Ssp-
relative addressing

* Solution: use the frame pointer Sfp instead
— Always points to the return address on the stack
— Since it does not move, it can be used to find the variables

Example

* Local variables are referenced from an offset from Sfp
— Sfp is pointing to old Sip (return address)

* For a function def f(x,y) = e the activation and frame
pointer are set up as follows:

y
X X: +8(Sfp)
Old FP y: +12(Sfp)
$fp old IP First local variable: -4(Sfp)

Local variables

$sp Temporaries

The parameters are pushed right to left by the caller
The locals are pushed left to right by the callee

() 7 | G
J s;tmgs‘mvﬁnﬁ 2 ‘& ih LZ

Example

double funi(int p1, double p2, int p3) {
inti, j;
res = fun2(pl*p2,j);
return res;

}

double fun2(double ar, int ib) {
inti, rl;
double res;

return res;

A

(@) Fw*k # 28
%@j

s/ SUN YAT-SEN UNIVERSITY

Sfp

Ssp

Sfp

Ssp

ar

Old FP

Old IP

rl

res

»m?

