
Compilation Principle
编译原理

第21讲：目标代码生成(2)
张献伟

xianweiz.github.io
DCS290, 6/10/2021

https://xianweiz.github.io/

Quiz
右图是函数调用过程中的栈空间：

• Q1:确定$fp和$sp的位置。从(a)(b)(c)中选择。

• Q2: 在右图x/y/z三者中，哪些是函数参数？
哪些是局部变量?

• Q3:栈元素Old_IP存放什么信息？

• Q4: 以下目标代码在做什么?
add $sp $sp -4; sw $t0 0($sp)

• Q5: 以下指令是否正确？请简述理由。（假
设针对MIPS架构）

add 0($sp) $t0
2

y
x

Old_FP
Old_IP

z
…

(a)

(b)

(c)

Higher address

Quiz Solutions
右图是函数调用产生的栈空间：

• Q1:确定$fp和$sp的位置。从(a)(b)(c)中选择。

• Q2: 在右图x/y/z三者中，哪些是函数参数？
哪些是局部变量?

• Q3:栈元素Old_IP存放什么信息？

• Q4: 以下目标代码在做什么?
add $sp $sp -4; sw $t0 0($sp)

• Q5: 以下指令是否正确？请简述理由。（假
设针对MIPS架构）

add 0($sp) $t0
3

y
x

Old_FP
Old_IP

z
…

(a)

(b)

(c)

Higher address

$fp: (b), $sp: (c)

参数：x, y 局部变量：z

返回地址，也即函数调用处的下一条指令的地址

分配4字节栈空间，然后将t0寄存器中的值放入栈顶

错误：只有load/store可以操作内存，
其他指令只能从寄存器中取操作数

Code Generation for OO
• Objects are like structures in C

− Objects are laid out in contiguous memory
− Each member variable is stored at a fixed offset in object

• Unlike structures, objects have member methods
• Two types of member methods:

− Nonvirtual member methods: cannot be overridden
Parent obj = new Child();
obj.nonvirtual(); // Parent::nonvirtual() called
Method called depends on (static) reference type
Compiler can decide call targets statically

− Virtual member methods: can be overridden by child class
Parent obj = new Child();
obj.virtual(); // Child::virtual() called
Method called depends on (runtime) type of object
Need to call different targets depending on runtime type

4

Static and Dynamic Dispatch
• Dispatch: to send to a particular place for a purpose

− I.e., to jump to a (particular) function
• Static Dispatch: selects call target at compile time

− Nonvirtual methods implemented using static dispatch
− Implication for code generation:

p Can hard code function address into binary

• Dynamic Dispatch: selects call target at runtime
− Virtual methods implemented using dynamic dispatch
− Implication for code generation:

p Must generate code to select correct call target

• How?
− At compile time, generate a dispatch table for each class,

containing call targets for all virtual methods of that class
− At runtime, each object has a pointer to its dispatch table,

which is indexed into to find call target for its runtime type
5

Typical Object Layout

• Class tag is used for dynamic type checking
• Dispatch ptr is a pointer to the dispatch table
• Compiler translates member accesses to offset accesses

if(...) obj = new Parent()
else obj = new Child();
obj.x = 10; // move 10, x_offset(obj)
obj.f2(); // call f2_offset(obj.dispatch_ptr)

• Offsets must remain identical regardless of object type
− How to layout object and dispatch table to make it so?

6

Inheritance and Subclasses
• Invariant: the offset of a member variable or member

method is the same in a class and all of its subclasses

7

class A1 {
int x;
virtual void f1() { ... }
virtual void f2() { ... }

}
class A2 inherits A1 {

int y;
virtual void f2() { ... }

}
class A3 inherits A2 {

int z;
virtual void f3() { ... }

}

Inheritance and Subclasses (cont.)
• Member variable access

− Generate code using offset for reference type (class)
− Object may be of child type, but will still have same offset

• Member method call
− Generate code to load call target from dispatch table using

offset for reference type
− Again, object may be of child type, but still same offset

• No inheritance in our project
− No dynamic dispatching
− Statically bind a function call to its address

8

A Question …
• What is the output?

− 24 (on my 64-bit
MBA)

• How come?
− Fields (12B)

p char a: 1 --> 4
p int x: 4
p int y: 4

− Functions (8B)
p virtual: 8B

− Alignment
p 12+8 --> 24

9

[1] Determining the Size of a Class Object
[2] sizeof class in C++

https://www.cprogramming.com/tutorial/size_of_class_object.html
https://stackoverflow.com/questions/9439240/sizeof-class-with-int-function-virtual-function-in-c

Compilation Principle
编译原理

第21讲：代码优化(1)
张献伟

xianweiz.github.io
DCS290, 6/10/2021

https://xianweiz.github.io/

Optimization[代码优化]

• What we have now
− IR of the source program (+symbol table)

• Goal of optimization[优化目标]
− Improve the IR generated by the previous

step to take better advantage of resources

• A very active area of research[研究热点]
− Front end phases are well understood
− Unoptimized code generation is relatively

straightforward
− Many optimizations are NP-complete

p Thus usually rely on heuristics and
approximations

11

Lexical Analysis

Source Code

Syntax Analysis

Semantic Analysis

Intermediate
Code Generation

Optimization

Code Generation

Target Code

Token Stream

Syntax Tree

Syntax Tree

IR

IR

Front End
（Analysis）

Back End
（Synthesis）

To Optimize: Who, When, Where?
• Manual: source code

− Select appropriate algorithms and data structures
− Write code that the compiler can effectively optimize

p Need to understand the capabilities and limitations of compiler opts.

• Compiler: intermediate representation
− To generate more efficient TAC instructions

• Compiler: final code generation
− E.g., selecting effective instructions to emit, allocating registers

in a better way

• Assembler/Linker: after final code generation
− Attempting to re-work the assembly code itself into something

more efficient (e.g., link-time optimization)

12

Focus

Example

13

void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = a[0]; max = a[0];
for (int i = 0; i < len; i++) {
if (a[i] < min) { min = a[i]; }
if (a[i] > max) { max = a[i]; }

}
...

}

int find_min(const int* array, const int len) {
int min = a[0];
for (int i = 1; i < len; i++) {
if (a[i] < min) { min = a[i]; }

}
return min;

}
int find_max(const int* array, const int len) {
int max = a[0];
for (int i = 1; i < len; i++) {
if (a[i] > max) { max = a[i]; }

}
return min;

}
void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = find_min(array, len);
max = find_max(array, len);
...

} Link Time Optimizations: New Way to Do Compiler Optimizations

Inline

Loop merge

https://johnysswlab.com/link-time-optimizations-new-way-to-do-compiler-optimizations/

Overview of Optimizations
• Goal of optimization is to generate better code[更好的代码]

− Impossible to generate optimal code (so, it is improvement, actually)
p Factors beyond control of compiler (user input, OS design, HW design) all

affect what is optimal
p Even discounting above, it’s still an NP-complete problem

• Better one or more of the following (in the average case)
− Execution time [运行时间]
− Memory usage [内存使用]
− Energy consumption [能耗]

p To reduce energy bill in a data center
p To improve the lifetime of battery powered devices

− Binary executable size [可执行文件大小]
p If binary needs to be sent over the network
p If binary must fit inside small device with limited storage

− Other criteria [其他]
• Should never change program semantics[正确性是前提]

14

Types of Optimizations
• Compiler optimization is essentially a transformation[转换]

− Delete / Add / Move / Modify something

• Layout-related transformations[布局相关]
− Optimizes where in memory code and data is placed
− Goal: maximize spatial locality [空间局部性]

p Spatial locality: on an access, likelihood that nearby locations will also be
accessed soon

p Increases likelihood subsequent accesses will be faster
• E.g. If access fetches cache line, later access can reuse
• E.g. If access page faults, later access can reuse page

• Code-related transformations[代码相关]
− Optimizes what code is generated
− Goal: execute least number of most costly instructions

15

Focus

Layout-Related Opt.: Code
• Two ways to layout code for the below example

16

code of f()
code of g()
code of h()

f() {
…
h();
…

}
g() {

...
}
h() {
…

}

code of f()
code of h()
code of g()

OR

Layout-Related Opt.: Code (cont.)
• Which code layout is better?
• Assume

− data cache has one N-word line
− the size of each function is N/2-word long
− access sequence is “g, f, h, f, h, f, h”

17

Layout-Related Opt.: Data
• Change the variable declaration order

• Improved spatial locality
− Now x1 and x3 likely reside in same cache line
− Access to x3 will always hit in the cache

18

struct S {
int x1;
int x2[200];
int x3;

} obj[100];

for(...) {
... = obj[i].x1 + obj[i].x3;

}

struct S {
int x1;
int x3;
int x2[200];

} obj[100];

for(...) {
... = obj[i].x1 + obj[i].x3;

}

Layout-Related Opt.: Data (cont.)
• Change AOS (array of structs) to SOA (struct of arrays)

• Improved spatial locality for accesses to ‘x’s and ‘y’s

19

struct S {
int x;
int y;

} points[100];

for(...) {
... = points[i].x * 2;

}
for(...) {

... = points[i].y * 2;
}

struct S {
int x[100];
int y[100];

} points;

for(...) {
... = points.x[i] * 2;

}
for(...) {

... = points.y[i] * 2;
}

Code-Related Optimizations
• Modifying code e.g. strength reduction

A=2*a; ≡ A=a«1;
• Deleting code e.g. dead code elimination

A=2; A=y; ≡ A=y;
• Moving code e.g. code scheduling

A=x*y; B=A+1; C=y; ≡ A=x*y; C=y; B=A+1;
(Now C=y; can execute while waiting for A=x*y;)

• Inserting code e.g. data prefetching[数据预取]
while (p!=NULL)
{ process(p); p=p->next; }
≡
while (p!=NULL)
{ prefetch(p->next); process(p); p=p->next; }
(Now access to p->next is likely to hit in cache)

20

Control-Flow Analysis[控制流分析]

• The compiling process has done lots of analysis
− Lexical
− Syntax
− Semantic
− IR

• But, it still doesn’t really know how the program does
what it does
• Control-flow analysis helps compiler to figure out more

info about how the program does its work
− First construct a control-flow graph, which is a graph of the

different possible paths program flow could take through a
function

p To build the graph, we first divide the code into basic blocks

21

Basic Block[基本块]

• A basic block is a maximal sequence of instructions that
− Except the first instruction, there are no other labels
− Except the last instruction, there are no jumps

• Therefore, [进出口唯一]
− Can only jump into the beginning of a block
− Can only jump out at the end of a block

• Are units of control flow that cannot be divided further
− All instructions in basic block execute or none at all

• Local optimizations are limited to scope of a basic block
• Global optimizations are across basic blocks

22

Control Flow Graph[控制流图]

• A control flow graph is a directed graph in which
− Nodes are basic blocks
− Edges represent flow of execution between basic blocks

p Flow from end of one basic block to beginning of another
p Flow can be result of a control flow divergence
p Flow can be result of a control flow merge

− Control statements introduce control flow edges
p e.g. if-then-else, for-loop, while-loop, ...

• CFG is widely used to represent a function
• CFG is widely used for program analysis, especially for

global analysis/optimization

23

Example

24

L1:
t:= 2 * x;
w:= t + y;
if (w<0) goto L3

L2:
...

L3:
w:= -w
...

L1:
t:= 2 * x;
w:= t + y;
if (w<0) goto L3

L2:
…

L3:
w:= -w;
…

yes

no

Construct CFG
• Step 1: partition code into basic blocks[分解为基本块]

− Identify leader instructions that are
p the first instruction of a program, or
p target instructions of jump instructions, or
p instructions immediately following jump instructions

− A basic block consists of a leader instruction and subsequent
instructions before the next leader

• Step 2: add an edge between basic blocks B1 and B2 if[连接基
本块]

− B2 follows B1, and B1 may “fall through” to B2[相邻]
p B1 ends with a conditional jump to another basic block[若条件假，到达B2]
p B1 ends with a non-jump instruction (B2 is a target of a jump)[无跳转，B1
顺序执行到达B2]

p Note: if B1 ends in an unconditional jump, cannot fall through[B1无条件跳
转，会绕开B2]

− B2 doesn’t follow B1, but B1 ends with a jump to B2 [不相邻，但B2
是B1的跳转目标]

25

Example
• Partition code into basic blocks

− Identify leader instructions

• Add edges between basic blocks

26

01: A=4
02: T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt

01: A=4
02: T1=A*B
03. L1: T2=T1/C
04: if (T2<W) goto L2
05: M=T1*K
06: T3=M+1
07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3
10: goto L1
11: L3: halt

01: A=4
02: T1=A*B

03. L1: T2=T1/C
04: if (T2<W) goto L2

05: M=T1*K
06: T3=M+1

07: L2: H=I
08: M=T3-H
09: if (T3>0) goto L3

10: goto L1

11: L3: halt

