Compilation Principle

i 1% J5 3
§§21L p *Zlvfﬁﬁg EEF\Z(Z)
TR R

xianweiz.github.io
DCS290, 6/10/2021

Dyide

https://xianweiz.github.io/

Quiz

A B2 BR ZOR F R AP B AR =S T Higher address
e Q1: fESTpFISspHIfI E . M(a)(b)(c) ik, Y
g (a)| oOld_FP
Gl weane [
(c)

e Q3: ¥R L EOId_IPTEBUT 4E B2

* Q4: LA HAMUASEM AT A2

add Ssp Ssp -4; sw St0 0(Ssp)

/

* Q5 DL Ne 2B IEm? Ehd#Eh. (&
%ﬁdlvlws 7f’])

add 0(Ssp) StO
@ tuxt 2 ICE

Quiz Solutions

A V] A2 pR R FH = AR R R 2 [Higher address
e Q1: i ESTpMSspHINI E . M (a)(b)(c) ik, y
>fp: (b), sp: (c) (a) Ok:FP
e Q2: TEABx/y/z=F, WL R KBS ? -
B L i o2l
ZH: x,y JRAERE: z ’
. Q3: IOl T 4 15 8.2 L
R A HhE, R RGBT — 25T 2 B LR
« Q4: UL~ H AU A2
add Ssp Ssp -4; sw St0 0(Ssp)
STECAE RS], A8 R RO B A7 A% H BB TN AR T

* Q5 UF%B/%%ELE%? %f?ﬁ AEH. (F
e STMIPSZEM) EE . H A load/store T LLE:AE N 17,

~ m%dd 0($sp) $t0 o554 P AL 77 28 L 2 »

Code Generation for OO

* Objects are like structures in C
— Objects are laid out in contiguous memory
— Each member variable is stored at a fixed offset in object

* Unlike structures, objects have member methods

* Two types of member methods:

— Nonvirtual member methods: cannot be overridden

Parent obj = new Child();
obj.nonvirtual(); // Parent::nonvirtual() called

Method called depends on (static) reference type
Compiler can decide call targets statically

- Virtual member methods: can be overridden by child class

Parent obj = new Child();
obj.virtual(); // Child::virtual() called

Method called depends on (runtime) type of object
Need to call different targets depending on runtime type

4

’Gli

Static and Dynamic Dispatch

 Dispatch: to send to a particular place for a purpose
- |.e., to jump to a (particular) function

 Static Dispatch: selects call target at compile time
- Nonvirtual methods implemented using static dispatch

— Implication for code generation:
o Can hard code function address into binary

* Dynamic Dispatch: selects call target at runtime
- Virtual methods implemented using dynamic dispatch

— Implication for code generation:
o Must generate code to select correct call target

* How?
— At compile time, generate a dispatch table for each class,
containing call targets for all virtual methods of that class

— At runtime, each object has a pointer to its dispatch table,

~ which isindexed into to find call target for its runtime type
(@) TmX %

»‘vi‘@z

Typical Object Layout

class tag (A) - class A’s Table
dispatch ptr L -7 addr of 1()

X addr of f2()

y addr of 3()

z

* Class tag is used for dynamic type checking
 Dispatch ptr is a pointer to the dispatch table

* Compiler translates member accesses to offset accesses
if(...) obj = new Parent()
else obj = new Child();
obj.x = 10; // move 10, x_offset(obj)
obj.f2(); // call f2_offset(obj.dispatch_ptr)
e Offsets must remain identical regardless of object type

- How to layout object and dispatch table to make it so?
@tuxt 6 IR

Inheritance and Subclasses

e |nvariant: the offset of a member variable or member
method is the same in a class and all of its subclasses

class A1 { class tag (A1) A1’s table
int x; dispatch ptr L - - f1()
virtual void f1() { ... } X f2()
virtual void f2() { ... }

} class tag (A2) A2's table

class A2 inherits A1 { dispatch ptr | ---+ f1()
inty; X f2°()
virtual void f2() { ... } y

}

class A3 inherits A2 { gliz::tgg ;{?3) | /;‘?8 table
int z; . 20
virtual void f3() { ... } 30

} :

Y Dhige

Inheritance and Subclasses (cont.)

* Member variable access
- Generate code using offset for reference type (class)
— Object may be of child type, but will still have same offset

e Member method call

— Generate code to load call target from dispatch table using
offset for reference type

— Again, object may be of child type, but still same offset

* No inheritance in our project
— No dynamic dispatching
— Statically bind a function call to its address

4

’ELZ

A Question ...

#include <iostream> ¢ What iS the OUtpUt?

' A; { e — 24 (on my 64-bit

"~ public: MBA)
virtual void f1() { cout << "base.fl\n"; }
ord 130) 1 coot << vpase tamy 3o * How come?

Pl har a: — Fields (12B)

int y; o chara:1-->4

}; e o intx:4

nt main(int argc, char* argv[]) { ointy:4

Cout s< "sizeof(al) = * << sizeof(al) << "\n"; — Functions (8B)

} return @; o virtual: 8B

— Alignment
o 12+8 --> 24

[1] Determining the Size of a Class Object
[2] sizeof class in C++

https://www.cprogramming.com/tutorial/size_of_class_object.html
https://stackoverflow.com/questions/9439240/sizeof-class-with-int-function-virtual-function-in-c

Compilation Principle

% % JE I8

3Kk

xianweiz.github.io
DCS290, 6/10/2021

Dyide

https://xianweiz.github.io/

Optimizationftig ik

* What we have now

- IR of the source program (+symbol table) Source Code
T \ 5 e R
* Goal of optimization[ftft B #7] " [texical Analysis_] °
— Improve the IR generated by the previous T°ke”5itr:::‘/;nalysis Front End
step to take better advantage of resources e - (Analysis)
Semantic Analysis
* A very active area of research[HF /L # 5] | | qheaneciae
- Front end phases are well understood | Ry |
L . . . § Optimization . Back End
— Unoptimized code generation is relatively Al - (Synthesis
straightforward | Code Generation |
— Many optimizations are NP-complete " Target Code

o Thus usually rely on heuristics and
approximations

(&) T X2 11 Dud:

To Optimize: Who, When, Where?

* Manual: source code

— Select appropriate algorithms and data structures

— Write code that the compiler can effectively optimize
o Need to understand the capabilities and limitations of compiler opts.

* Compiler: intermediate representation Focus
— To generate more efficient TAC instructions

* Compiler: final code generation

- E.g., selecting effective instructions to emit, allocating registers
in a better way

* Assembler/Linker: after final code generation

- Attempting to re-work the assembly code itself into something
more efficient (e.g., link-time optimization)

»‘vi‘@z

Example

int find_min(const int* array, const int len) {
int min = a[0];
for (inti=1;i<len;i++){
if (ali] < min) { min =alil; }
}

return min;

}

int find_max(const int* array, const int len) {
int max = al0];
for (inti=1;i<len;i++){

if (ali] > max) { max = alil; }

}
return min;

}

void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = find_min(array, len);
max = find_max(array, len);

void main() {
int* array, len, min, max;
initialize _array(array, &len);
min = a[0]; max = a|0];
for (inti=0;i<len;i++){
if (ali] < min) { min =alil; }
if (ali] > max) { max = alil; }

}

Inline

Loop merge

Link Time Optimizations: New Way to Do Compiler Optimizations

13 B

https://johnysswlab.com/link-time-optimizations-new-way-to-do-compiler-optimizations/

Overview of Optimizations

* Goal of optimization is to generate better code[5 {F ({1 G]

— Impossible to generate optimal code (so, it is improvement, actually)

o Factors beyond control of compiler (user input, OS design, HW design) all
affect what is optimal

o Even discounting above, it’s still an NP-complete problem

* Better one or more of the following (in the average case)
— Execution time [z {70 [H]]
— Memory usage [N 713]
— Energy consumption [BE#E]
o To reduce energy bill in a data center
o To improve the lifetime of battery powered devices

— Binary executable size [F] 04T A K /MN
o If binary needs to be sent over the network
o If binary must fit inside small device with limited storage

— Other criteria [JA{f1]
e Should never change program semantics[1FE AT /& AT $2]

»’vi‘ﬂtﬁ

Types of Optimizations

* Compiler optimization is essentially a transformation[#%##t]
— Delete / Add / Move / Modify something

* Layout-related transformations[#i /& #H %]

— Optimizes where in memory code and data is placed
- Goal: maximize spatial locality [% 5] 5 &5 4]

o Spatial locality: on an access, likelihood that nearby locations will also be
accessed soon

o Increases likelihood subsequent accesses will be faster
e E.g. If access fetches cache line, later access can reuse
* E.g. If access page faults, later access can reuse page

* Code-related transformations[{CgAH %]
— Optimizes what code is generated
— Goal: execute least number of most costly instructions

Focus

»‘vi‘@z

Layout-Related Opt.: Code

* Two ways to layout code for the below example

f() {
-H.();

}
g() {

16

code of f()

code of g()

code of h()

OR

code of f()

code of h()

code of g()

Dhige

Layout-Related Opt.: Code (cont.)

 Which code layout is better?

e Assume

— data cache has one N-word line
— the size of each function is N/2-word long
— access sequence is “g, f, h, f, h, f, h”

cache

code of ()

code of g()

code of h()

code of f()

code of h()

code of g()

;Scachevmisiesv .y
g,f,h,f,h,f,h
A A

2 cache misses

17

ME?

Layout-Related Opt.: Data

* Change the variable declaration order

struct S { struct S {
int x1; int x1;
int x2[200]; int x3;
int x3; int x2[200];
} 0bj[100]; } obj[100];
for(...) { for(...) {
... = 0obj[i].x1 + obj[i].x3; ... = 0bj[i].x1 + obj[i].x3;
} }

* Improved spatial locality

— Now x1 and x3 likely reside in same cache line
— Access to x3 will always hit in the cache

»‘vi‘@z

Layout-Related Opt.: Data (cont.)

* Change AOS (array of structs) to SOA (struct of arrays)

struct S { struct S {

int x; int x[100];

inty; int y[100];
} points[100]; } points;
for(...) { for(...) {

... = points[i].x * 2; ... = points.x[i] * 2;
} }
for(...) { for(...) {

... = pointsl[il.y * 2; ... = points.y[i] * 2;
} }

* Improved spatial locality for accesses to ‘x’s and ‘y’s

Code-Related Optimizations

* Modifying code e.g. strength reduction
A=2*a; A=a«l;

* Deleting code e.g. dead code elimination
A=2; A=y; = A=y;

* Moving code e.g. code scheduling

A=x*y; B=A+1; C=y; = A=x*y; C=y; B=A+1,
(Now C=y; can execute while waiting for A=x*y;)
* Inserting code e.g. data prefetching[%3 T

while (p!=NULL)
{ process(p); p=p->next; }

while (p!=NULL)
{ prefetch(p->next); process(p); p=p->next; }

(Now access to p->next is likely to hit in cache)

@ tuxs 20 Diud:

Control-Flow Analysis{#z s #r]

* The compiling process has done lots of analysis
- Lexical
- Syntax
- Semantic
- IR

* But, it still doesn’t really know how the program does
what it does

* Control-flow analysis helps compiler to figure out more
info about how the program does its work
— First construct a control-flow graph, which is a graph of the
different possible paths program flow could take through a
function
o To build the graph, we first divide the code into basic blocks

() N

Basic Block[3: A<t

* A basic block is a maximal sequence of instructions that
— Except the first instruction, there are no other labels
— Except the last instruction, there are no jumps

* Therefore, [} HHE—]
— Can only jump into the beginning of a block
— Can only jump out at the end of a block

e Are units of control flow that cannot be divided further
— All instructions in basic block execute or none at all

* Local optimizations are limited to scope of a basic block

* Global optimizations are across basic blocks

4

’ELZ

Control Flow Graph{#zsii &)

* A control flow graph is a directed graph in which
— Nodes are basic blocks

- Edges represent flow of execution between basic blocks
o Flow from end of one basic block to beginning of another
o Flow can be result of a control flow divergence
o Flow can be result of a control flow merge

— Control statements introduce control flow edges
o e.g. if-then-else, for-loop, while-loop, ...

* CFG is widely used to represent a function

* CFG is widely used for program analysis, especially for
global analysis/optimization

»‘vi‘@z

Example

L1:
t:i=2 *x;
w=t+y,

L1:
if (w<0) goto L3

t:i=2 *x;

wi=t+y; \

if (w<0) goto L3
12: L2:

yes ses

L3:

W:= -W \

L3:

W:= -W;

() ek
@ tuxs 24 Dhige

Construct CFG

e Step 1: partition code into basic blocks[7)fi# Ay 3& Ax]

— ldentify leader instructions that are
o the first instruction of a program, or
o target instructions of jump instructions, or
o instructions immediately following jump instructions

— A basic block consists of a leader instruction and subsequent
instructions before the next leader

. %E? 2: add an edge between basic blocks B1 and B2 if[i& 23
]
— B2 follows B1, and B1 may “fall through” to B2[#H%F]
o B1 ends with a conditional jump to another basic block[# 2541, FiAB2]
o B1 ends with a non-jump instruction (B2 is a target of a jump)[JCBk#%, B1
I 7 $ AT 2115 B2]
o Note: if B1 ends in an unconditional jump, cannot fall through[B1 75254k
e, 2254F1B2]
- B2 doesn’t follow B1, but B1 ends with a jump to B2 [~ #H2E, {HB2
7B EkEE H]

‘\/‘ iv:i‘mﬁnﬁ " ‘FG li

Example

* Partition code into basic blocks 4. a4

- |ldentify leader instructions 02: T1=A*B
- .
* Add edges between basic blocks J
03. L1: T2=T1/C
01: A=4 04: if (T2<W) goto L2
02: T1=A*B 1
03. L1: T2=T1/C 05 Ry—
04. if (T2<W) goto L2 06: T3=M+1
05: M=T1*K |
06: T3=M+1 v
07: L2: H=l 07: L2: H=l
08: M=T3-H 08: M=T3-H
09: if (T3>0) goto L3 09: if (T3>0) goto L3
10: goto L1 i
11: L3: halt 10: goto L1 _
}

26 11: L3: halt ISCE

