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Quiz
右图是函数调用过程中的栈空间：

• Q1:确定$fp和$sp的位置。从(a)(b)(c)中选择。

• Q2: 在右图x/y/z三者中，哪些是函数参数？
哪些是局部变量?

• Q3:栈元素Old_IP存放什么信息？

• Q4: 以下目标代码在做什么?
add $sp $sp -4; sw $t0 0($sp)

• Q5: 以下指令是否正确？请简述理由。（假
设针对MIPS架构）

add 0($sp) $t0
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Quiz Solutions
右图是函数调用产生的栈空间：

• Q1:确定$fp和$sp的位置。从(a)(b)(c)中选择。

• Q2: 在右图x/y/z三者中，哪些是函数参数？
哪些是局部变量?

• Q3:栈元素Old_IP存放什么信息？

• Q4: 以下目标代码在做什么?
add $sp $sp -4; sw $t0 0($sp)

• Q5: 以下指令是否正确？请简述理由。（假
设针对MIPS架构）

add 0($sp) $t0
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$fp: (b), $sp: (c)

参数：x, y 局部变量：z

返回地址，也即函数调用处的下一条指令的地址

分配4字节栈空间，然后将t0寄存器中的值放入栈顶

错误：只有load/store可以操作内存，
其他指令只能从寄存器中取操作数



Code Generation for OO
• Objects are like structures in C

− Objects are laid out in contiguous memory
− Each member variable is stored at a fixed offset in object

• Unlike structures, objects have member methods
• Two types of member methods:

− Nonvirtual member methods: cannot be overridden
Parent obj = new Child();
obj.nonvirtual(); // Parent::nonvirtual() called
Method called depends on (static) reference type
Compiler can decide call targets statically

− Virtual member methods: can be overridden by child class 
Parent obj = new Child();
obj.virtual(); // Child::virtual() called
Method called depends on (runtime) type of object
Need to call different targets depending on runtime type
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Static and Dynamic Dispatch
• Dispatch: to send to a particular place for a purpose

− I.e., to jump to a (particular) function 
• Static Dispatch: selects call target at compile time 

− Nonvirtual methods implemented using static dispatch 
− Implication for code generation: 

p Can hard code function address into binary 

• Dynamic Dispatch: selects call target at runtime 
− Virtual methods implemented using dynamic dispatch 
− Implication for code generation: 

p Must generate code to select correct call target 

• How? 
− At compile time, generate a dispatch table for each class, 

containing call targets for all virtual methods of that class
− At runtime, each object has a pointer to its dispatch table, 

which is indexed into to find call target for its runtime type 
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Typical Object Layout

• Class tag is used for dynamic type checking 
• Dispatch ptr is a pointer to the dispatch table 
• Compiler translates member accesses to offset accesses

if(...) obj = new Parent()
else  obj = new Child();
obj.x = 10; // move 10, x_offset(obj)
obj.f2(); // call f2_offset(obj.dispatch_ptr) 

• Offsets must remain identical regardless of object type
− How to layout object and dispatch table to make it so? 
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Inheritance and Subclasses
• Invariant: the offset of a member variable or member 

method is the same in a class and all of its subclasses 
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class A1 {
int x; 
virtual void f1() { ... } 
virtual void f2() { ... }

} 
class A2 inherits A1 {

int y; 
virtual void f2() { ... }

} 
class A3 inherits A2 {

int z; 
virtual void f3() { ... }

} 



Inheritance and Subclasses (cont.)
• Member variable access

− Generate code using offset for reference type (class)
− Object may be of child type, but will still have same offset 

• Member method call 
− Generate code to load call target from dispatch table using 

offset for reference type 
− Again, object may be of child type, but still same offset 

• No inheritance in our project 
− No dynamic dispatching
− Statically bind a function call to its address 
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A Question …
• What is the output?

− 24 (on my 64-bit 
MBA)

• How come?
− Fields (12B)

p char a: 1 --> 4
p int x: 4
p int y: 4

− Functions (8B)
p virtual: 8B

− Alignment
p 12+8 --> 24
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[1] Determining the Size of a Class Object
[2] sizeof class in C++

https://www.cprogramming.com/tutorial/size_of_class_object.html
https://stackoverflow.com/questions/9439240/sizeof-class-with-int-function-virtual-function-in-c
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Optimization[代码优化]

• What we have now
− IR of the source program (+symbol table)

• Goal of optimization[优化目标]
− Improve the IR generated by the previous 

step to take better advantage of resources

• A very active area of research[研究热点]
− Front end phases are well understood
− Unoptimized code generation is relatively 

straightforward
− Many optimizations are NP-complete

p Thus usually rely on heuristics and 
approximations 
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To Optimize: Who, When, Where?
• Manual: source code

− Select appropriate algorithms and data structures
− Write code that the compiler can effectively optimize

p Need to understand the capabilities and limitations of compiler opts.

• Compiler: intermediate representation
− To generate more efficient TAC instructions

• Compiler: final code generation
− E.g., selecting effective instructions to emit, allocating registers 

in a better way

• Assembler/Linker: after final code generation
− Attempting to re-work the assembly code itself into something 

more efficient (e.g., link-time optimization)
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Focus



Example
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void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = a[0]; max = a[0];
for (int i = 0; i < len; i++) {
if (a[i] < min) { min = a[i]; }
if (a[i] > max) { max = a[i]; }

}
...

}

int find_min(const int* array, const int len) {
int min = a[0]; 
for (int i = 1; i < len; i++) {
if (a[i] < min) { min = a[i]; }

}
return min;

}
int find_max(const int* array, const int len) {
int max = a[0]; 
for (int i = 1; i < len; i++) {
if (a[i] > max) { max = a[i]; }

}
return min;

}
void main() {
int* array, len, min, max;
initialize_array(array, &len);
min = find_min(array, len);
max = find_max(array, len);
...

} Link Time Optimizations: New Way to Do Compiler Optimizations

Inline

Loop merge

https://johnysswlab.com/link-time-optimizations-new-way-to-do-compiler-optimizations/


Overview of Optimizations
• Goal of optimization is to generate better code[更好的代码]

− Impossible to generate optimal code (so, it is improvement, actually)
p Factors beyond control of compiler (user input, OS design, HW design) all 

affect what is optimal
p Even discounting above, it’s still an NP-complete problem 

• Better one or more of the following (in the average case) 
− Execution time [运行时间]
− Memory usage [内存使用]
− Energy consumption [能耗]

p To reduce energy bill in a data center 
p To improve the lifetime of battery powered devices

− Binary executable size [可执行文件大小]
p If binary needs to be sent over the network
p If binary must fit inside small device with limited storage 

− Other criteria [其他]
• Should never change program semantics[正确性是前提]
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Types of Optimizations
• Compiler optimization is essentially a transformation[转换]

− Delete / Add / Move / Modify something 

• Layout-related transformations[布局相关]
− Optimizes where in memory code and data is placed
− Goal: maximize spatial locality [空间局部性]

p Spatial locality: on an access, likelihood that nearby locations will also be 
accessed soon

p Increases likelihood subsequent accesses will be faster
• E.g. If access fetches cache line, later access can reuse
• E.g. If access page faults, later access can reuse page 

• Code-related transformations[代码相关]
− Optimizes what code is generated
− Goal: execute least number of most costly instructions
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Layout-Related Opt.: Code
• Two ways to layout code for the below example
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code of f()
code of g()
code of h()

f() {
…
h();
…

} 
g() {

...
} 
h() {
…

} 

code of f()
code of h()
code of g()

OR



Layout-Related Opt.: Code (cont.)
• Which code layout is better?
• Assume

− data cache has one N-word line 
− the size of each function is N/2-word long
− access sequence is “g, f, h, f, h, f, h” 
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Layout-Related Opt.: Data
• Change the variable declaration order

• Improved spatial locality 
− Now x1 and x3 likely reside in same cache line
− Access to x3 will always hit in the cache  

18

struct S {
int x1; 
int x2[200]; 
int x3;

} obj[100]; 

for(...) {
... = obj[i].x1 + obj[i].x3; 

} 

struct S {
int x1; 
int x3;
int x2[200];

} obj[100]; 

for(...) {
... = obj[i].x1 + obj[i].x3; 

} 



Layout-Related Opt.: Data (cont.)
• Change AOS (array of structs) to SOA (struct of arrays) 

• Improved spatial locality for accesses to ‘x’s and ‘y’s
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struct S {
int x; 
int y; 

} points[100]; 

for(...) {
... = points[i].x * 2; 

}
for(...) {

... = points[i].y * 2; 
} 

struct S {
int x[100]; 
int y[100]; 

} points; 

for(...) {
... = points.x[i] * 2; 

}
for(...) {

... = points.y[i] * 2; 
} 



Code-Related Optimizations
• Modifying code e.g. strength reduction 

A=2*a;      ≡ A=a«1; 
• Deleting code e.g. dead code elimination

A=2; A=y; ≡ A=y;
• Moving code e.g. code scheduling

A=x*y; B=A+1; C=y;   ≡ A=x*y; C=y; B=A+1; 
(Now C=y; can execute while waiting for A=x*y;) 

• Inserting code e.g. data prefetching[数据预取]
while (p!=NULL) 
{ process(p); p=p->next; } 
≡ 
while (p!=NULL)
{ prefetch(p->next); process(p); p=p->next; } 
(Now access to p->next is likely to hit in cache) 
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Control-Flow Analysis[控制流分析]

• The compiling process has done lots of analysis
− Lexical
− Syntax
− Semantic
− IR

• But, it still doesn’t really know how the program does 
what it does
• Control-flow analysis helps compiler to figure out more 

info about how the program does its work
− First construct a control-flow graph, which is a graph of the 

different possible paths program flow could take through a 
function

p To build the graph, we first divide the code into basic blocks
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Basic Block[基本块]

• A basic block is a maximal sequence of instructions that 
− Except the first instruction, there are no other labels
− Except the last instruction, there are no jumps

• Therefore, [进出口唯一]
− Can only jump into the beginning of a block
− Can only jump out at the end of a block 

• Are units of control flow that cannot be divided further
− All instructions in basic block execute or none at all 

• Local optimizations are limited to scope of a basic block
• Global optimizations are across basic blocks 
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Control Flow Graph[控制流图]

• A control flow graph is a directed graph in which 
− Nodes are basic blocks
− Edges represent flow of execution between basic blocks 

p Flow from end of one basic block to beginning of another
p Flow can be result of a control flow divergence
p Flow can be result of a control flow merge 

− Control statements introduce control flow edges
p e.g. if-then-else, for-loop, while-loop, ...

• CFG is widely used to represent a function 
• CFG is widely used for program analysis, especially for 

global analysis/optimization 
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Example
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L1:
t:= 2 * x;
w:= t + y; 
if (w<0) goto L3

L2:
... 

L3:
w:= -w 
... 

L1:
t:= 2 * x;
w:= t + y; 
if (w<0) goto L3

L2:
…

L3:
w:= -w; 
…

yes

no



Construct CFG
• Step 1: partition code into basic blocks[分解为基本块]

− Identify leader instructions that are 
p the first instruction of a program, or
p target instructions of jump instructions, or
p instructions immediately following jump instructions 

− A basic block consists of a leader instruction and subsequent 
instructions before the next leader 

• Step 2: add an edge between basic blocks B1 and B2 if[连接基
本块]

− B2 follows B1, and B1 may “fall through” to B2[相邻]
p B1 ends with a conditional jump to another basic block[若条件假，到达B2]
p B1 ends with a non-jump instruction (B2 is a target of a jump)[无跳转，B1
顺序执行到达B2]

p Note: if B1 ends in an unconditional jump, cannot fall through[B1无条件跳
转，会绕开B2]

− B2 doesn’t follow B1, but B1 ends with a jump to B2 [不相邻，但B2
是B1的跳转目标]
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Example
• Partition code into basic blocks

− Identify leader instructions

• Add edges between basic blocks
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01: A=4
02: T1=A*B 
03.  L1: T2=T1/C 
04: if (T2<W) goto L2 
05: M=T1*K 
06: T3=M+1 
07: L2: H=I 
08: M=T3-H 
09: if (T3>0) goto L3 
10: goto L1 
11: L3: halt 

01: A=4
02: T1=A*B 
03.  L1: T2=T1/C 
04: if (T2<W) goto L2 
05: M=T1*K 
06: T3=M+1 
07: L2: H=I 
08: M=T3-H 
09: if (T3>0) goto L3 
10: goto L1 
11: L3: halt 

01: A=4
02: T1=A*B 

03.  L1: T2=T1/C 
04: if (T2<W) goto L2 

05: M=T1*K 
06: T3=M+1 

07: L2: H=I 
08: M=T3-H 
09: if (T3>0) goto L3

10: goto L1 

11: L3: halt 


