
Compilation Principle
编译原理

第3讲：词法分析(3)
张献伟

xianweiz.github.io
DCS290, 3/9/2021

https://xianweiz.github.io/


Review Questions

2

Q1: Can we have multiple start/accepting states in FA?

NFA: non-deterministic FA, DFA: deterministic FA
ε-move or multiple transitions per input per state

NFA, multiple transitions for state ‘0’ on input ‘a’

L(RE) ≡ L(NFA) ≡ L(DFA)

(a|b)*abb

start: only one, accepting: multiple

Q2: what are NFA and DFA? How to differentiate?

Q3: how do RE, NFA, DFA relate to each other?

Q4: the state graph is a NFA or DFA?

Q5: what’s the language it recognizes ?



Specification to Implementation
• Outline: RE à NFA à DFA à Table-driven 

Implementation
− Converting DFAs to table-driven implementations
− Converting REs to NFAs
− Converting NFAs to DFAs

3

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic



NFA à DFA: Idea
• Subset construction[子集构建]

− Each state of the constructed DFA corresponds to a set of NFA 
states

− After reading input a1a2…an, the DFA is in that state which 
corresponds to the set of states that the NFA can reach, from its 
start state, following paths labeled a1a2…an

• Algorithm to convert[转换算法]
− Input: an NFA N
− Output: a DFA D accepting the same language as N

4



NFA à DFA: Algorithm

• Operations on NFA states:
− ε-closure(s): set of NFA states reachable from NFA state s on ε-

transitions alone
− ε-closure(T): set of NFA states reachable from some NFA state s

in set T on ε-transitions alone; = ∪s in Tε-closure(s)
− move(T, a): set of NFA states to which there is a transition on 

input symbol a from some state s in T

5



NFA à DFA: Example
• Start by constructing ε-closure of the start state

− ε-closure(A) = A

• Keep getting ε-closure(move(T, a))
• Stop, when there are no more new states

6

0 1

A

alphabet

state

A BC
BC AC BC
AC AC BC



NFA à DFA: Example (cont.)
• Mark the final states of the DFA

− The accepting states of D are all those sets of N’s states that 
include at least one accepting state of N

7

0 1

A

alphabet

state

A BC
BC AC BC
AC AC BC• Is the DFA minimal?

− As few states as possible



NFA à DFA: Minimization[最小化]

• Any DFA can be converted to its minimum-state 
equivalent DFA

− Partitioning the states of a DFA into groups of states that cannot 
be distinguished

− Each groups of states is then merged into a single state of the 
min-state DFA

8

Initial: {A}, {BC, AC}
For {BC, AC}

− BC on ‘0’ à AC, AC on ‘0’ à AC
− BC on ‘1’ à BC, AC on ‘1’ à BC
− No way to distinguish BC from AC on 

any string starting with ‘0’ or ‘1’

Final: {A}, {BCAC}



NFA à DFA: Minimization (cont.)
• States BC and AC do not need differentiation

− Should be merged into one

9

Minimized



NFA à DFA: More Example

• Start state of the equivalent DFA
− ε-closure(A) = {A, B, C, E, H} = A’

• ε-closure(move(A’, a)) = ε-closure({D, J}) = {B, C, D, E, H, G, 
J} = B’
• ε-closure(move(A’, b)) = ε-closure({F}) = {B, C, E , F, G, H} = 

C’
• … …

10



Step 1: Construct the NFA Table

11

ε a b
A BH
B CE
C D
D G
E F
F G
G BH
H J
I
J K
K M
M



Step 2: Update ε Column to ε-closure

12

ε a b
A ABHCE
B BCE
C D
D DBHCE
E F
F FGBHCE
G GBHCE
H J
I
J K
K M
M



Step 3: Update other Cols based on  ε-closure

13

ε a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F FGBHCE DJ F
G GBHCE DJ F
H J
I
J K
K M
M



Step 4: Construct the DFA Table 

14

ε a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F FGBHCE DJ F
G GBHCE DJ F
H J
I
J K
K M
M

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F



Step 4: Construct the DFA Table(cont.) 

15

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

• Is the DFA minimal?
- States A and F should be merged

• Should we merge states A and 
FM?

- NO. A and FM are in different sets 
from the very beginning (FM is 
accepting, A is not).



Step 5: (Optional) Minimize DFA

16

• Original DFA: before merging A and F

• Minimized DFA: Do you see the original RE (a|b)*abb



NFA à DFA: Space Complexity[空间复杂度]

• NFA may be in many states at any time

• How many different possible states in DFA?
− If there are N states in NFA, the DFA must be in some subset of 

those N states
− How many non-empty subsets are there?

• The resulting DFA has space complexity, where N is 
number of original states in NFA

− For real languages, the NFA and DFA have about same #states

17

- 2N-1

O(2N)



NFA à DFA: Time Complexity[时间复杂度]

• DFA execution
− Requires O(|X|) steps, where |X| is the input length
− Each step takes constant time

p If current state is S and input is c, then read T[S, c]
p Update current state to state T[S, c]

− Time complexity = O(X)

• NFA execution
− Requires O(|X|) steps, where |X| is the input length
− Each step takes O(N2) time, where N is the number of states

p Current state is a set of potential states, up to N
p On input c, must union all T[Spotential ,c], up to N times
p Each union operation takes O(N) time

− Time complexity = O(|X|*N2)

18



Implementation in Practice
• Lex: RE à NFA à DFA à Table

− Converts regular expressions to NFA
− Converts NFA to DFA
− Performs DFA state minimization to reduce space
− Generate the transition table from DFA
− Performs table compression to further reduce space

• Most other automated lexers also choose DFA over NFA
− Trade off space for speed

19



Lexical Analyzer Generated by Lex
• A Lex program is turned into a transition table and 

actions, which are used by a finite-automaton simulator
• Automaton recognizes matching any of the patterns

20



Lex: Example
• Three patterns, three NFAs
• Combine three NFAs into a single NFA

− Add start state 0 and ε-transitions

21



Lex: Example (cont.)
• NFA’s for lexical analyzer
• Input: aaba

− ε-closure(0) = {0, 1, 3, 7}
− Empty states after reading the fourth input symbol

p There are no transitions out of state 8
p Back up, looking for a set of states  that include an accepting state

− State 8: a*b+ has been matched
p Select aab as the lexeme, execute action A3

p Return to parser indicating that token w/ pattern p3=a*b+ has been found

22



Lex: Example (cont.)
• DFA’s for lexical analyzer
• Input: abba

− Sequence of states entered: 0137 à 247 à 58 à 68
− At the final a, there is no transition out of state 68

p 68 itself is an accepting state that reports pattern p2 = abb

23



How Much Should We Match?
• In general, find the longest match possible

− We have seen examples
− One more example: input string aabbb …

p Have many prefixes that match the third pattern
p Continue reading b’s until another a is met
p Report the lexeme to be the intial a’s followed by as many b’s as there 

are

• If same length, rule appearing first takes precedence
− String abb matches both the second and third
− We consider it as a lexeme for p2, since that pattern listed first

24



How to Match Keywords?
• Example: to recognize the following tokens

− Identifiers: letter(letter|digit)*
− Keywords: if, then, else

• Approach 1: Make REs for keywords and place them 
before REs for identifiers so that they will take 
precedence

− Will result in more bloated finite state machine

• Approach 2: Recognize keywords and identifiers using 
same RE but differentiate using special keyword table

− Will result in more streamlined finite state machine 
− But extra table lookup is required

• Usually approach 2 is more efficient than 1, but you can 
implement approach 1 in your projects for simplicity

25



Conversion Flow[转换流程]

• Outline: RE à NFA à DFA à Table-driven 
Implementation

− Converting DFAs to table-driven implementations
− Converting REs to NFAs
− Converting NFAs to DFAs

26

Regular Expression

NFA

DFA Table-driven Impl.
of automata

Lexical Specification

manual

automatic



Beyond Regular Languages
• Regular languages are expressive enough for tokens

− Can express identifiers, strings, comments, etc.

• However, it is the weakest (least expressive) language
− Many languages are not regular
− C programming language is not

p The language matching braces “{{{...}}}” is also not
− Finite automata cannot count # of times char encountered

p L = {anbn | n ≥ 1}
p Crucial for analyzing languages with nested structures (e.g. nested for 

loop in C language)

• We need a more powerful language for parsing
− Later, we will discuss context-free languages (CFGs)

27


