Compilation Principle

Im 17 5 B
3k EEAHT(3)
NG

xianweiz.github.io
DCS290, 3/9/2021

Dyid:

https://xianweiz.github.io/

Review Questions

Q1: Can we have multiple start/accepting states in FA?
start: only one, accepting: multiple
Q2: what are NFA and DFA? How to differentiate?

NFA: non-deterministic FA, DFA: deterministic FA
e-move or multiple transitions per input per state

Q3: how do RE, NFA, DFA relate to each other?
L(RE) = L(NFA) = L(DFA)

Q4: the state graph is a NFA or DFA?
NFA, multiple transitions for state ‘O’ on input ‘@’

Q5: what’s the language it recognizes ? g : : ‘

(a|b)*abb

@ FTuxt Dl

Specification to Implementation

e Outline: RE > NFA - DFA - Table-driven
Implementation
— Converting DFAs to table-driven implementations
— Converting REs to NFAs
— Converting NFAs to DFAs

Lexical Specification

/

Table-driven Impl.
of automata

[
|
/
Regular Expression

automatic

NFA = DFA: Idea

* Subset construction[1 £ {4 £]

— Each state of the constructed DFA corresponds to a set of NFA
states

— After reading input g,a....a,, the DFA is in that state which
corresponds to the set of states that the NFA can reach, from its
start state, following paths labeled a,a....a,

e Algorithm to convert[¥;#t 5 7%]
— Input: an NFA N
— Output: a DFA D accepting the same language as N

@ T1x2 Dl

NFA = DFA: Algorithm

Initially, €-closure(s,) is the only state in Dstates and it 1s unmarked
while there is an unmarked state 7 in Dstates do
mark T
for each input symbol ¢ € X do
U := e-closure(move(T,a))
if U is not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran|T,a] = U
end do
end do

* Operations on NFA states:

— e-closure(s): set of NFA states reachable from NFA state s on &-
transitions alone

— e-closure(T): set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = U, te-closure(s)

- move(T, a): set of NFA states to which there is a transition on
input symbol a from some statesin T

(: s (
(@) TuX % g Dhtge

NFA = DFA: Example

e Start by constructing e-closure of the start state
— e-closure(A) = A

» Keep getting e-closure(move(T, a))
e Stop, when there are no more new states

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

MELX

NFA = DFA: Example (cont.)

* Mark the final states of the DFA

- The accepting states of D are all those sets of N’s states that
include at least one accepting state of N

’ 0 state |
:
* |s the DFA minimal?

— As few states as possible

alphabet
0 1
A A BC
BC AC | BC
AC AC BC

MELX

NFA = DFA: Minimization{&/Mk]

* Any DFA can be converted to its minimum-state
equivalent DFA

— Partitioning the states of a DFA into groups of states that cannot
be distinguished

— Each groups of states is then merged into a single state of the
min-state DFA

Initial: {A}, {BC, AC}

For {BC, AC}
-~ BCon ‘0" 2 AC, ACon ‘0’ 2 AC
- BCon ‘1’ 2 BC, ACon ‘1’ = BC

— No way to distinguish BC from AC on
any string starting with ‘0" or ‘1’

»‘:G%

NFA = DFA: Minimization (cont.)

e States BC and AC do not need differentiation
— Should be merged into one

2“ N) | \
(@) T X% ? Dhtge

NFA = DFA: More Example

(o

e Start state of the equivalent DFA
— e-closure(A) ={A, B, C, E, H} = A

* e-closure(move(A’, a)) = e-closure({D, J}) ={B, C, D, E, H, G,
J}=PB
e e-closure(move(A’, b)) = e-closure({F}) ={B, C, E, F, G, H} =

10 Dhige

Step 1: Construct the NFA Table

5 a b
A BH
B CE
C D
D G
E F
F G
G BH
H J
|
J K
K M
M

= Dhtge

Step 2: Update € Column to e-closure

e

5 b
A ABHCE
B BCE
C
D DBHCE
E F
F FGBHCE
G GBHCE
H
|
J K
K M
M

12

ub@@?

Step 3: Update other Cols based on e-closure

e

5 a b
A ABHCE DJ
B BCE D F
C D
D DBHCE DJ F
E F
F FGBHCE DJ F
G GBHCE DJ F
H J
|
J K
K M
M

13 ub@@?

Step 4: Construct the DFA Table

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

5 a b
A ABHCE DJ F
B BCE D F
C D
D DBHCE DJ F
E F
F FGBHCE DJ F
G GBHCE DJ F
H J
|
J K
K M
M

14

MELX

Step 4: Construct the DFA Table(cont.)

a b
A DJ F
DJ DJ FK
F DJ F
FK DJ FM
FM DJ F

* |s the DFA minimal?
- States A and F should be merged

* Should we merge states A and
FM?
- NO. A and FM are in different sets

from the very beginning (FM is
accepting, A is not).

ub@@?

Step 5: (Optional) Minimize DFA

* Original DFA: before merging A and F

Dyid:

NFA = DFA: Space Complexity[4s[a] & 44]

* NFA may be in many states at any time

* How many different possible states in DFA?
— If there are N states in NFA, the DFA must be in some subset of
those N states
- How many non-empty subsets are there?

- 2N-1

* The resulting DFA has O(2") space complexity, where N is

number of original states in NFA
— For real languages, the NFA and DFA have about same #states

@ T1x2 Dl

NFA = DFA: Time Complexity[it & & 4%)

* DFA execution
— Requires O(|X]|) steps, where |X| is the input length
— Each step takes constant time

o If current state is S and input is ¢, then read TI[S, c]
o Update current state to state TI[S, c]

- Time complexity = O(X)

* NFA execution
— Requires O(|X]|) steps, where |X| is the input length
— Each step takes O(N?) time, where N is the number of states

o Current state is a set of potential states, upto N
o Oninput ¢, must union all T[S, yentiar ,Cl, Up to N times
o Each union operation takes O(N) time

— Time complexity = O(|X|*N?)

@ T1x2 Dl

Implementation in Practice

* Lex: RE 2 NFA - DFA = Table

— Converts regular expressions to NFA

— Converts NFA to DFA

— Performs DFA state minimization to reduce space

— Generate the transition table from DFA

— Performs table compression to further reduce space

* Most other automated lexers also choose DFA over NFA
— Trade off space for speed

Lex

. - . . l
|| Regular "V NFA L+ DFA Minima i

expressions | | DFA

19 8
j: Yﬂahﬁnﬁ ‘N :

Lexical Analyzer Generated by Lex

* A Lex program is turned into a transition table and
actions, which are used by a finite-automaton simulator

* Automaton recognizes matching any of the patterns

Input buffer

lexeme "

e ——— __.‘.,__7- e —

lexemeBegin \ | forward

N\
N\

| Automaton
| simulator |

‘ |

|
B g ¥ s

Lex . Lex | Transition |

iy e — " table |

program | compiler l

Actions
_‘—/_1_ -

20 Dhige

Lex: Example

* Three patterns, three NFAs

* Combine three NFAs into a single NFA
— Add start state O and s-transitions

start >‘m a >@
a { action, }

abb { action, } - >O_>@_>O_>@

a*b+ { action,)
start

O—>®

\“n><\\>®a>o >Ob>@

GREES = IR

Lex: Example (cont.)

* NFA’s for lexical analyzer

* Input: aaba
— e-closure(0) ={0, 1, 3, 7}
- Empty states after reading the fourth input symbol
o There are no transitions out of state 8
o Back up, looking for a set of states that include an accepting state
— State 8: a*b+ has been matched

o Select aab as the lexeme, execute action A;
o Return to parser indicating that token w/ pattern p;=a*b+ has been found

- /i~
- ¥ a Y
AD——2)
/ ~— &« ht
e / a - a b a*b a
/, f— . e -) — - - -
/ U)2 | | 7 bl
LS l ' none
tart / : [: T N
€ 7N a g b P b 7\
—-"'(D—- —l] Jre———{ 4 } —--*?]’r ; -".".(1\' L 4
~ 5 p o \;.:// B { - _"
N\
\ "‘ | 7 |
\ L]
N 7 |
£\ . -
\ -
\/\ b ,-/"/"\ \
O—{®))
) X
\)

g Aok 22 MG“X

Lex: Example (cont.)

e DFA’s for lexical analyzer

* Input: abba
— Sequence of states entered: 0137 - 247 - 58 - 68

— At the final a, there is no transition out of state 68
o 68 itself is an accepting state that reports pattern p, = abb

e S ——__

»
)
\

~ !
R b /7N b 7
b (@)~ ®
N g —
a*h abb a*h’
TX % LE

Dyid:

How Much Should We Match?

* In general, find the longest match possible
— We have seen examples

— One more example: input string aabbb ...
o Have many prefixes that match the third pattern
o Continue reading b’s until another a is met

o Report the lexeme to be the intial a’s followed by as many b’s as there
are

* If same length, rule appearing first takes precedence
— String abb matches both the second and third
— We consider it as a lexeme for p,, since that pattern listed first

a { action,)
abb |{ action, }
a*b+ { action,)

@tuxt 24 Dl

How to Match Keywords?

* Example: to recognize the following tokens
- ldentifiers: letter(letter | digit)*
- Keywords: if, then, else

* Approach 1: Make REs for keywords and place them
before REs for identifiers so that they will take
precedence

— Will result in more bloated finite state machine

e Approach 2: Recognize keywords and identifiers using
same RE but differentiate using special keyword table
— Will result in more streamlined finite state machine
— But extra table lookup is required

e Usually approach 2 is more efficient than 1, but you can
|mplement approach 1 in your projects for simplicity
INE

Conversion Flow[#s #3772

e Outline: RE > NFA - DFA - Table-driven
Implementation
— Converting DFAs to table-driven implementations
— Converting REs to NFAs
— Converting NFAs to DFAs

Lexical Specification

/

Table-driven Impl.
of automata

[
|
/
Regular Expression

automatic

Tuxs 26 W

Beyond Regular Languages

* Regular languages are expressive enough for tokens
— Can express identifiers, strings, comments, etc.

* However, it is the weakest (least expressive) language
- Many languages are not regular
— C programming language is not
o The language matching braces “{{{...}}}” is also not
- Finite automata cannot count # of times char encountered
a L={a"b" | n>1}

o Crucial for analyzing languages with nested structures (e.g. nested for
loop in C language)

* We need a more powerful language for parsing
— Later, we will discuss context-free languages (CFGs)

(&) F b X % ‘p
SN / SUN YAT-SEN UNIVERSITY

‘GL{

