
Compilation Principle
编译原理

第5讲：语法分析(2)
张献伟

xianweiz.github.io
DCS290, 3/16/2021

https://xianweiz.github.io/

Review Questions (1)
• Why don’t we keep using RE in syntax parsing?

• Formal definition of Grammar?

• What is CFG?

• Language classification based on grammar rules?

• What is derivation? What is parse tree?

2

RE is not powerful enough, it cannot express nested structures

(T, N, s, 𝜎): T – terminals; N – non-terminals, s – start, 𝜎 – productions

Context free grammar

0 - unrestricted, 1 - context sensitive, 2 - context free, 3 - regular

Derivation is the sequence of applying production rules.
Parse tree is a graphical representation of the derivation.

Review Questions (2)
• What is leftmost derivation?

• Grammar G: E→E*E | E+E | (E) | id

• Is id + E * E an sentence of grammar G?

• Is id + id * id an sentence of grammar G?

3

Always replace the leftmost non-terminal in each derivation step.

T = {*, +, (,), id}
N = {E}
s = E
𝜎 = E→E*E | E+E | (E) | id

NO. It is a sentential form (句型), as E is non-terminal symbol.

YES. It can be derived using the production rules.

Derivation Example
• Grammar: E→E*E | E+E | (E) | id

• Leftmost derivation
⇒ E + E
⇒ id + E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

4

E

E+E

id

id id

E E*

E

Derivation Example (cont.)
• Grammar E→E*E | E+E | (E) | id

• Leftmost derivation
⇒ E * E
⇒ E + E * E
⇒ id + E * E
⇒ id + id * E
⇒ id + id * id

5

E

id id

E E+

E

E * E

id

Derivation Example (cont.)
• Two distinct leftmost derivations

for the sentence id + id * id
− Above: id + (id * id)
− Below: (id + id) * id

• How to evaluate a + b * c ?
− a + (b * c) ?
− (a + b) * c ?

• Grammar E→E*E | E+E | (E) | id is
ambiguous

6

id id

E E+

E

E * E

id

Ambiguity[二义性]

• grammar G is ambiguous if
− It produces more than one parse tree some sentence
− i.e., there exist a string str ∈ L(G) such that
− more than one parse tree derives str

≡ more than one leftmost derivation derives str
≡ more than one rightmost derivation derives str

• Unambiguous grammars are preferred for most parsers
− If not, we cannot uniquely determine which parse tree to select

for a sentence
− In minor cases, it is convenient to use carefully chosen

ambiguous grammars, together with disambiguating rules that
“throw away” undesirable parse trees, leaving only one tree for
each sentence

7

Ambiguity (cont.)
• Ambiguity is the property of the grammar, not the

language
− Just because G is ambiguous, does not mean L(G) is inherently

ambiguous
− A Gʹ can exist where Gʹ is unambiguous and L(Gʹ) ≡ L(G)

• Impossible to convert ambiguous to unambiguous
grammar automatically

− It is (often) possible to rewrite grammar to remove ambiguity
− Or, use ambiguous grammar, along with disambiguating rules

8

Precedence and Associativity
• Two characteristics of operators that determine the

evaluation order of sub-expressions w/o brackets
• Operator precedence[优先级]

− Determines which operator is performed first in an expression
with more than one operators with different precedence.

− 10 + 20 * 30

• Operator associativity[结合性]
− Is used when two operators of same precedence appear in an

expression. Associativity can be either Left to Right or Right to
Left.

− 100 / 10 * 10 -> (100 / 10) * 10 //left associativity
− a = b = 1 -> a = (b = 1) //right associativity

9

How to Remove Ambiguity?
• Step I: Specify precedence[指定优先级]

− Build precedence into grammar by recursion on a different non-
terminal for each precedence level. Insight:

p Lower precedence — tend to be higher in tree (close to root)
p Higher precedence — tend to be lower in tree (far from root)

− Place lower precedence non-terminals higher up in the tree

• Rewrite E→E*E | E+E | (E) | id to:
E à E + E | T //lowest precedence +
T à T * T | F //middle precedence *
F à (E) | id //highest precedence ()

10

How to Remove Ambiguity (cont.)
• Step II: Specify associativity[指定结合性]

− Allow recursion only on either left or right non-terminal
p Left associative — recursion on left non-terminal
p Right associative — recursion on right non-terminal

• Even after step 1, ambiguous due to associativity
− E → E + E ; allows both left/right associativity

• Rewrite:
E à E + E | T //lowest precedence +
T à T * T | F //middle precedence *
F à (E) | id //highest precedence ()
to
E à E + T | T // + is left-associative
T à T * F | F // * is left-associative
F à (E) | id

11

The Example
• Grammar E→E*E | E+E | (E) | id

was ambiguous
− Rewrite to

E à E + T | T
T à T * F | F
F à (E) | id

• The id + id * id has only one parse
tree now

E ⇒ E + T
⇒ T + T
⇒ F + T
⇒ id + T * F
⇒ id + F * F
⇒ id + id * F
⇒ id + id * id

12

E

T+E

F F

T F*

id id

T

F

id

Grammar à Parser
• What exactly is parsing, or syntax analysis?

− To process an input string for a given grammar,
− and compose the derivation if the string is in the language
− Two subtasks

p determine if string can be derived from grammar or not
p build a representation of derivation and pass to next phase

• What is the best representation of the derivation?
− Can be a parse tree or an abstract syntax tree

• An abstract syntax tree is[抽象语法树]
− Abbreviated representation of a parse tree
− Drops some details without compromising meaning

p some terminal symbols that no longer contribute to semantics are
dropped (e.g. parentheses)

p internal nodes may contain terminal symbols
13

Example: Abstract Syntax Tree

14

Summary
• Compilers specify program structure using CFG

− Most programming languages are not context free
− Context sensitive analysis can easily be separated out to

semantic analysis phase

• A parser uses CFG to
− ... answer if an input str ∈ L(G)
− ... and build a parse tree
− ... or build an AST instead
− ... and pass it to the rest of compiler

15

Parser Types[分析器类型]

• Most compilers use either top-down or bottom-up
parsers

• Top-down parsing[自顶向下分析]
− Starts from root and expands into leaves

p Tries to expand start symbol to input string
p Finds leftmost derivation[最左推导]

− In each step
p Which non-terminal to replace?
p Which production of the non-terminal to use?

− Parser code structure closely mimics grammar
p Amenable to implementation by hand
p Automated tools exist to convert to code (e.g. ANTLR)

16

Parser Types (cont.)
• Top-down parsing[自顶向下分析]

− Starts from root and expands into leaves

• Bottom-up parser[自底向上分析]
− Starts at leaves and builds up to root

p Tries to reduce the input string to the start symbol
p Finds reverse order of the rightmost derivation[最右推导的逆à最左
归约, 也称为规范归约]

− Parser code structure nothing like grammar
p Very difficult to implement by hand
p Automated tools exist to convert to code (e.g. Yacc, Bison)
p LL ⊂ LR (Bottom-up works for a larger class of grammars)

17

Example
• Consider a CFG grammar G

S→AB A→aC B→bD D→d C→c

• This language has only one sentence: L(G) = {acbd}
Top-down (Leftmost Derivation)

S ⇒ AB (1)
⇒ aCB (2)
⇒ acB (3)
⇒ acbD (4)
⇒ acbd (5)

18

Bottom-up (reverse of
rightmost derivation)
S ⇒ AB (5)
⇒ AbD (4)
⇒ Abd (3)
⇒ aCbD (2)
⇒ acbd (1)

a c b d

C D
A B

SS

c da

C

b

D
A B

Top-down Parsers[自顶向下]

• Recursive descent parser (RDP, 递归下降分析) with
backtracking[回溯]

− Implemented using recursive calls to functions that implement
the expansion of each non-terminal

− Goes through all possible expansions by trial-and-error until
match with input; backtracks when mismatch detected

− Simple to implement, but may take exponential time

• Predictive parser[预测分析]
− Recursive descent parser with prediction (no backtracking)
− Predict next rule by looking ahead k number of symbols
− Restrictions on the grammar to avoid backtracking

p Only works for a class of grammars called LL(k)

19

RDP with Backtracking
• Approach: for a non-terminal in the derivation,

productions are tried in some order until
− A production is found that generates a portion of the input, or
− No production is found that generates a portion of the input, in

which case backtrack to previous non-terminal

• Terminals of the derivation are compared against input
− Match: advance input, continue parsing
− Mismatch: backtrack, or fail

• Parsing fails if no derivation generates the entire input

20

Recursive Decent Example
• Consider the grammar

S à cAd A à ab | a

• To construct a parse tree top-down for input string w=cad
− Begin with a tree consisting of a single node labeled S
− The input pointer pointing to c, the first symbol of w
− S has only one production, so we use it to expand S and obtain

the tree

21

dAc

S

Recursive Decent Example (cont.)
• Consider the grammar

S à cAd A à ab | a

• To construct a parse tree top-down for input string w=cad
− The leftmost leaf, labeled c, matches the first symbol of w

p So we advance the input pointer to a (i.e., the 2nd symbol of w) and
consider the next leaf A

− Next, expand A using A à ab
p Have a match for the 2nd input symbol, a, so advance the input pointer

to d, the 3rd input symbol

22

dAc

S

a b

dAc

S

Recursive Decent Example (cont.)
• Consider the grammar

S à cAd A à ab | a

• To construct a parse tree top-down for input string w=cad
− b does not match d, report failure and go back to A

p See whether there is another alternative for A that has not been tried
p In going back to A, we must reset the input pointer as well

− Leaf a matches the 2nd symbol of w, and leaf d matches the 3rd
− We have produced a parse tree for w, we halt and announce

successful completion of parsing

23

dAc

S

a b

dAc

S

dAc

S

a

Left Recursion Problem[左递归]

• Recursive descent doesn’t work with left recursion
− Right recursion is OK

• Why is left recursion[左递归] a problem?
− For left recursive grammar

A→Ab|c
− We may repeatedly choose to apply A b

A ⇒ A b ⇒ A b b ...
− Sentence can grow indefinitely w/o consuming input
− How do you know when to stop recursion and choose c?

• Rewrite the grammar so that it is right recursive[改为右递
归]

− Which expresses the same language

24

Left Recursion
• A grammar is left recursive if

− It has a nonterminal A such that there is a derivation A ⇒+ A⍺
for some string ⍺

• Recursion types [直接和间接左递归]
− Immediate left recursion, where there is a production A à A⍺
− Non-immediate: left recursion involving derivation of 2+ steps

S à Aa | b
A à Sd | ε

− S ⇒ Aa ⇒ Sda

• Algorithm to systematically eliminates left recursion from
a grammar

25

Remove Left Recursion[消除左递归]

• Grammar: A à A⍺ | β (⍺≠β, β doesn’t start with A)
A ⇒ A⍺
⇒ A⍺⍺
…
⇒ A⍺…⍺⍺
⇒ β⍺…⍺⍺

r= β⍺*

• Rewrite to:
A à βA’ //begins with β (A’ is a new non-terminal)
A’ à ⍺A’|ε //A’ is to produce a sequence of ⍺
⇒ ⍺⍺A’
…
⇒ ⍺…⍺A’ ⇒ ⍺…⍺

26

Remove Left Recursion (cont.)
• Grammar:

A à A⍺ | β
to

A à βA’
A’ à ⍺A’|ε

• E à E + T | T

• T à T * F | F

• F à (E) | id

27

⍺ β

⍺ β

E à TE’
E’ à +TE’ | ε

T à FT’
T’ à *FT’ | ε

F à (E) | id

Summary of Recursive Descent
• Recursive descent is a simple and general parsing strategy

− Left-recursion must be eliminated first
p Can be eliminated automatically using some algorithm

− L(Recursive_descent) ≡ L(CFG) ≡ CFL

• However it is not popular because of backtracking
− Backtracking requires re-parsing the same string
− Which is inefficient (can take exponential time)
− Also undoing semantic actions may be difficult

p E.g. removing already added nodes in parse tree

• Real world parsers do no (or minimal) backtracking ...
− At the cost of restricting the class of grammar

28

