Compilation Principle

gm VE I
5V WEIRIT(2)
HNUINGE

xianweiz.github.io
DCS290, 3/16/2021

Dyid:

https://xianweiz.github.io/

Review Questions (1)

 Why don’t we keep using RE in syntax parsing?
RE is not powerful enough, it cannot express nested structures

* Formal definition of Grammar?
(T, N, s,): T—terminals; N — non-terminals, s — start, 0 — productions

e What is CFG?

Context free grammar

e Language classification based on grammar rules?
O - unrestricted, 1 - context sensitive, 2 - context free, 3 - regular

* What is derivation? What is parse tree?
Derivation is the sequence of applying production rules.
Parse tree is a graphical representation of the derivation.

Review Questions (2)

* What is leftmost derivation?
Always replace the leftmost non-terminal in each derivation step.

* Grammar G: E>E*E | E+E | (E) | id

T={*+1(), id}
N = {E}
s=E
o =E->E*E | E+E | (E) | id
e Isid + E * E an sentence of grammar G?

NO. It is a sentential form (#)7), as E is non-terminal symbol.

 Isid +id * id an sentence of grammar G?
YES. It can be derived using the production rules.

Derivation Example

e Grammar: EE*E | E+E | (E) | id

e Leftmost derivation /
E=>E+E E + E

=id+E ‘ /
=>id+E*E :
=>id+id *E

= id +id * id ‘ ‘

‘ s (

Derivation Example (cont.)

e Grammar E->E*E | E+E | (E) | id

E
e Leftmost derivation / \
E=>E*E E * E
S E+E*E / \ ‘
=>id+E*E
= id +id * E E + E d
= id +id * id ‘ ‘

iyjs‘mvﬁlﬁﬁ u& Hh UZ

Derivation Example (cont.)

 Two distinct leftmost derivations E
for the sentence id + id * id / \
— Above: id + (id * id) .
— Below: (id +id) * id .L / \
| E * E
e How to evaluatea+b * ¢ ? i(|i iL
—a+(b*c)? E
- (a+b)*c? / ‘ \
E * E
o SN
e Grammar E->E*E | E+E | (E) | id is E + E id

ambiguous ‘ ‘

© Dhtge

Ambiguity[=]

e grammar G is ambiguous if
- It produces more than one parse tree some sentence
- i.e., there exist a string str € L(G) such that
— more than one parse tree derives str
= more than one leftmost derivation derives str
= more than one rightmost derivation derives str

* Unambiguous grammars are preferred for most parsers

- If not, we cannot uniquely determine which parse tree to select
for a sentence

— In minor cases, it is convenient to use carefully chosen
ambiguous grammars, together with disambiguating rules that
“throw away” undesirable parse trees, leaving only one tree for
each sentence

@ FTuxt Dl

Ambiguity (cont.)

* Ambiguity is the property of the grammar, not the
language
- Just because G is ambiguous, does not mean L(G) is inherently
ambiguous

— A G’ can exist where G’ is unambiguous and L(G’) = L(G)

* Impossible to convert ambiguous to unambiguous
grammar automatically

- It is (often) possible to rewrite grammar to remove ambiguity
— Or, use ambiguous grammar, along with disambiguating rules

@ T1x2 Dl

Precedence and Associativity

* Two characteristics of operators that determine the
evaluation order of sub-expressions w/o brackets

« Operator precedence[{2544

— Determines which operator is performed first in an expression
with more than one operators with different precedence.

-10+20 * 30

« Operator associativity[45 & 1]

- Is used when two operators of same precedence appearin an
expression. Associativity can be either Left to Right or Right to

Left.
- 100/10* 10-> (100 / 10) * 10 //left associativity
—a=b=1->a=(b=1) //right associativity

@ Tux% IR

How to Remove Ambiguity?

* Step |: Specify precedence[15 & 2: 2]
— Build precedence into grammar by recursion on a different non-
terminal for each precedence level. Insight:
o Lower precedence — tend to be higher in tree (close to root)
o Higher precedence — tend to be lower in tree (far from root)

— Place lower precedence non-terminals higher up in the tree

* Rewrite E>E*E | E+E | (E) | id to:
E2>E+E|T //lowest precedence +
T2>T*T|F //middle precedence *
F->(E) | id //highest precedence ()

@ FTuxt Dl

How to Remove Ambiguity (cont.)

* Step Il: Specify associativity[{5 & 45 & 1]
— Allow recursion only on either left or right non-terminal
o Left associative — recursion on left non-terminal
o Right associative — recursion on right non-terminal
e Even after step 1, ambiguous due to associativity
- E—>E+E...; allows both left/right associativity

* Rewrite:
E2>E+E|T
TOT*T|F
F—-> (E) | id
to
E2E+T|T
T>T*F|F
F—->(E) | id

//lowest precedence +
//middle precedence *
//highest precedence ()

// + is left-associative
// * is left-associative

»‘:G%

The Example

e Grammar E->E*E | E+E | (E) | id
was ambiguous
- Rewrite to
E2E+T|T
T>T*F|F
F > (E) | id

* Theid + id * id has only one parse
tree now
E=>E+T
=>T+T
=>F+T
=>id+T*F
=>id+F*F
=>id+id*F
= id+id *id
@Fuxs 12

E + T
AN
T T * F
\
FoF F
d id id

Mﬂ?

Grammar = Parser

* What exactly is parsing, or syntax analysis?
— To process an input string for a given grammar,
- and compose the derivation if the string is in the language

— Two subtasks
o determine if string can be derived from grammar or not
o build a representation of derivation and pass to next phase

* What is the best representation of the derivation?
— Can be a parse tree or an abstract syntax tree

 An abstract syntax tree is[#i 5 i
— Abbreviated representation of a parse tree

— Drops some details without compromising meaning

o some terminal symbols that no longer contribute to semantics are
dropped (e.g. parentheses)

o internal nodes may contain terminal symbols
(&) Tk #

4

‘GL{

Example: Abstract Syntax Tree

E
T
E + T
| |
1~ A
F (E) —> id +
I N
id lll + { id id
T F
| |
F id
|
id
parse tree AST

14 Dyid:

Summary

 Compilers specify program structure using CFG
— Most programming languages are not context free

— Context sensitive analysis can easily be separated out to
semantic analysis phase

* A parser uses CFG to
- ... answer if an input str € L(G)
— ... and build a parse tree
— ... or build an AST instead
— ... and pass it to the rest of compiler

@ FTuxt Dl

Parser Types[s#rasds iy

* Most compilers use either top-down or bottom-up
parsers

* Top-down parsing[B Tii[a] | 45 #7]
— Starts from root and expands into leaves

o Tries to expand start symbol to input string
o Finds leftmost derivation[# & 1 5]

- |In each step
o Which non-terminal to replace?
o Which production of the non-terminal to use?

— Parser code structure closely mimics grammar
o Amenable to implementation by hand
o Automated tools exist to convert to code (e.g. ANTLR)

@ FTuxt Dl

Parser Types (cont.)

* Top-down parsing[B Tii[a] | 45 #7]

— Starts from root and expands into leaves

* Bottom-up parser[H & A F#7]

— Starts at leaves and builds up to root

o Tries to reduce the input string to the start symbol

o Finds reverse order of the rightmost derivation[fx /5 S5 i 2> A
12, HRR TR IH)]
— Parser code structure nothing like grammar

o Very difficult to implement by hand
o Automated tools exist to convert to code (e.g. Yacc, Bison)
o LL € LR (Bottom-up works for a larger class of grammars)

@tuxt Y Dl

Example

e Consider a CFG grammar G

S—>AB A—>aC B—>bD D->d C—c
* This language has only one sentence: L(G) = {acbd}
Top-down (Leftmost Derivation) Bottom-up (reverse of
rightmost derivation)

S= AB (1) S = AB (5)

= aCB (2) = AbD (4)

= acB (3) = Abd (3)

= acbD (4) = aCbD (2)

= acbd (5) = acbd (1)

S
/\
A B
AN |
/C/D
a ¢ b d

Mﬂ?

Top-down Parsers[T R

* Recursive descent parser (RDP, i#:/H T B&%#7) with
backtracking|[a]]

- Implemented using recursive calls to functions that implement
the expansion of each non-terminal

— Goes through all possible expansions by trial-and-error until
match with input; backtracks when mismatch detected

- Simple to implement, but may take exponential time

* Predictive parser[Till /> #7]
— Recursive descent parser with prediction (no backtracking)
— Predict next rule by looking ahead kK number of symbols

— Restrictions on the grammar to avoid backtracking
o Only works for a class of grammars called LL(k)

‘ ,‘ \ F
(&) F b X % ‘p
SN / SUN YAT-SEN UNIVERSITY ‘

RDP with Backtracking

e Approach: for a non-terminal in the derivation,
productions are tried in some order until

— A production is found that generates a portion of the input, or

- No production is found that generates a portion of the input, in
which case backtrack to previous non-terminal

* Terminals of the derivation are compared against input
- Match: advance input, continue parsing
— Mismatch: backtrack, or fail

 Parsing fails if no derivation generates the entire input

MGLZ

Recursive Decent Example

* Consider the grammar
S=>cAd A—>ab]|a

* To construct a parse tree top-down for input string w=cad
— Begin with a tree consisting of a single node labeled S
— The input pointer pointing to ¢, the first symbol of w
— S has only one production, so we use it to expand S and obtain

the tree
/] \
C A d

@tuxt 2 Dl

Recursive Decent Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

 To construct a parse tree top-down for input string w=cad

- The leftmost leaf, labeled ¢, matches the first symbol of w

o So we advance the input pointer to a (i.e., the 2" symbol of w) and
consider the next leaf A

— Next, expand A using A 2 ab

o Have a match for the 2" input symbol, a, so advance the input pointer
to d, the 3 input symbol

AN 2N

/

a b
22 Dhge

Recursive Decent Example (cont.)

* Consider the grammar
S=>cAd A—>ab]|a

 To construct a parse tree top-down for input string w=cad

— b does not match d, report failure and go backto A

o See whether there is another alternative for A that has not been tried
o In going back to A, we must reset the input pointer as well

— Leaf a matches the 2" symbol of w, and leaf d matches the 3rd

- We have produced a parse tree for w, we halt and announce
successful completion of parsing

C/ SA \d C/ ,SA\ \d C/ i\d

/

a b z‘;\
»‘:G%

Left Recursion Problem /3% 1A)

e Recursive descent doesn’t work with left recursion
— Right recursion is OK

* Why is left recursion[/£i£] a problem?
— For left recursive grammar
A->Ab|c
— We may repeatedly choose to apply A b
A=>Ab=>Abb..
— Sentence can grow indefinitely w/o consuming input
- How do you know when to stop recursion and choose ¢?

.)Rewrite the grammar so that it is right recursive[47 i3
9]

— Which expresses the same language

@) tmx s 24 Dde

Left Recursion

A grammar is left recursive if

— |t has a nonterminal A such that there is a derivation A =+ Ax
for some string a

* Recursion types [B #Ha) 4% 2 i3)]
- Immediate left recursion, where there is a production A 2 Ax
- Non-immediate: left recursion involving derivation of 2+ steps
S2>Aa|b
A—>Sd| e
- S = Aa = Sda

* Algorithm to systematically eliminates left recursion from
a grammar

»‘:G%

Remove Left Recursion(iy & A i M)

e Grammar: A 2 Aa | B (a#pB, B doesn’t start with A)
A= Aa
= Ao

= Ad...0x
= Ba...ax

r=pBa*

* Rewrite to:
A > BA //begins with B (A’ is a new non-terminal)

A 2 oA’ |e //A is to produce a sequence of a
= aoA’

= ...00A" = A...(

‘ im:l:mﬁnﬁ 26 ‘& GG UZ

Remove Left Recursion (cont.)

* Grammar:
A->Aa| B
to
A BA
A =2 oA |e
" EDE+T|T E->TE
x B E' 2> +TE | €
a B T =2 *FT' | ¢
« F- () | id F-> (E) | id

27 Dhige

Summary of Recursive Descent

* Recursive descent is a simple and general parsing strategy

— Left-recursion must be eliminated first
o Can be eliminated automatically using some algorithm

- L(Recursive _descent) = L(CFG) = CFL

 However it is not popular because of backtracking
— Backtracking requires re-parsing the same string
- Which is inefficient (can take exponential time)

— Also undoing semantic actions may be difficult
o E.g. removing already added nodes in parse tree

* Real world parsers do no (or minimal) backtracking ...
— At the cost of restricting the class of grammar

@ Tux% IR

