

# Compilation Principle 编译原理



#### 张献伟

<u>xianweiz.github.io</u>

DCS290, 3/30/2021





### Review Questions (1)

- What does LR(k) mean?

   L: scan the input from left to right
   R: construct a rightmost derivation in reverse
   k: use k input symbols of lookahead
- What are the parts of a LR parser?

Input buffer, stack, parse table, driver

- What are held in the stack of a LR parser?
   A sequence of states, and each has an associated grammar symbol
- The LR parsing table is split into two, what are they? Action table for terminals, Goto table for non-terminals
- What are the possible actions in Action table?

Shift, reduce, accept, error







### Review Questions (2)

- Action table entries can be si and rj, what are i and j? si: shift the input symbol and move to state I
   rj: reduce by production numbered j
- Item/Configuration: what does  $A \rightarrow XYZ$  mean?

We have seen the body XYZ and it is time to reduce XYZ to A

- State: why we put the items into a configuration set? We hope to see one symbol in First(Y)  $Y \rightarrow u | w$  $X \rightarrow X \cdot YZ$  $Y \rightarrow u | w$
- What is augmented grammar? Add one extra rule S'  $\rightarrow$  S to guarantee only one 'acc' in the table
- What are the possible items of  $S' \rightarrow S$ ?
  - $S' \rightarrow .S$ : initial item, haven't seen any input symbol
  - $S' \rightarrow S$ .: accept item, have reduced the input string to start symbol



#### Example

| (0) $S' \rightarrow S$                                                    | (1) $S \rightarrow BB$                                  | (2) B → aB                                            | (3) $B \rightarrow b$                           |             |
|---------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------|
| Initial item                                                              | $S \rightarrow \cdot BB$                                | $B \rightarrow \cdot aB$<br>$B \rightarrow a \cdot B$ | $D \setminus h$                                 | Reduce item |
| $\begin{array}{c} S' \rightarrow \cdot S \\ S' \rightarrow S \end{array}$ | $S \rightarrow B \cdot B$<br>$S \rightarrow BB \cdot B$ | $B \rightarrow aB \cdot$                              | $B \rightarrow \cdot b$ $B \rightarrow b \cdot$ |             |
| Accept item                                                               |                                                         |                                                       |                                                 | -           |

- **Closure**: the action of adding equivalent items to a set – Example:  $S' \rightarrow \cdot S$   $S \rightarrow \cdot BB$   $B \rightarrow \cdot aB$   $B \rightarrow \cdot b$
- Intuitively, A → α·Bβ means that we might next see a substring derivable from Bβ (\_sub) as input. The \_sub will have a prefix derivable from B by applying one of the B-productions.
  - Thus, we add items for all the B-productions, i.e., if  $B \rightarrow \gamma$  is a production, we add  $B \rightarrow \cdot \gamma$  in the closure





#### Example

Grammar: (0)  $S' \rightarrow S$ (1)  $S \rightarrow BB$ 

(2)  $B \rightarrow aB$ 

(3)  $B \rightarrow b$ 





### Example (cont.)

IB → .aBI

B → .b

山大學 YAT-SEN UNIVERSITY а

| Grammar:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stata                |    | ACTION |     | GO | ТО |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|--------|-----|----|----|
| (0) $S' \rightarrow S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | State<br>0<br>1<br>2 | а  | b      | \$  | S  | В  |
| (1) $S \rightarrow BB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                    | s3 | s4     |     | 1  | 2  |
| (2) B → aB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                    |    |        | acc |    |    |
| (3) $B \rightarrow b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                    | s3 | s4     | 1   |    | 5  |
| $I_0$ : S $I_1$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                    | s3 | s4     |     |    | 6  |
| $S' \rightarrow .S$ $S' \rightarrow S.$<br>$S \rightarrow .BB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                    | r3 | r3     | r3  |    |    |
| $\begin{array}{c c} B \rightarrow .aB \\ B \rightarrow b \end{array} \begin{array}{c} B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B \\ B \\ B \\ B \end{array} \begin{array}{c} B \\ B $ | 5                    | r1 | r1     | r1  |    |    |
| $B \rightarrow .aB$<br>$B \rightarrow b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                    | r2 | r2     | r2  |    |    |
| b<br>$I_4:$<br>$B \rightarrow b.$<br>$I_5$<br>$I_6:$<br>$B \rightarrow aB$<br>$B \rightarrow aB$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |    |        |     |    |    |



### CLOSURE()[闭包]

- Closure of item sets: if I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:
  - Initially, add every item in I to CLOSURE(I)
  - If  $A \rightarrow \alpha \cdot B\beta$  is in *CLOSURE(I)* and  $B \rightarrow \gamma$  is a production, then add item  $B \rightarrow \cdot \gamma$  to *CLOSURE(I)*, if it is not already there

Apply this rule until no more new items can be added to CLOSURE(I)

Grammar: $S' \rightarrow \cdot S$ (0)  $S' \rightarrow S$  $S' \rightarrow \cdot S$ (1)  $S \rightarrow BB$  $S' \rightarrow \cdot S$ (2)  $B \rightarrow aB$  $B \rightarrow \cdot aB$ (3)  $B \rightarrow b$  $B \rightarrow \cdot b$ 



### GOTO()[跳转]

- GOTO(*I*, *X*): returns state (set of items) that can be reached by advancing X
  - Where I is a set of items and X is a grammar symbol
  - The closure of the set of all items  $[A \rightarrow \alpha X \cdot \beta]$  such that  $[A \rightarrow \alpha X \cdot \beta]$  is in *I*
  - Used to define the transitions in the LR(0) automaton
    - The states of the automaton correspond to sets of items, and GOTO(I, X) specifies the transition from the state for I under input X





#### Construct LR(0) States

- Create augmented grammar G' for G
  - Given G:  $S \rightarrow \alpha \mid \beta$ , create G': S'  $\rightarrow$  S  $\rightarrow \alpha \mid \beta$
  - Creates a single rule S'  $\rightarrow$  S that when reduced, signals acceptance
- Create 1<sup>st</sup> state by performing a closure on initial item  $S' \rightarrow \cdot S$ 
  - Closure(I): creates state from an initial set of items I
  - Closure( $\{S' \rightarrow \cdot S\}$ ) =  $\{S' \rightarrow \cdot S, S \rightarrow \cdot \alpha, S \rightarrow \cdot \beta\}$
- Create additional states by performing a goto on each symbol
  - Goto(I, X): creates state that can be reached from I by advancing X
  - If  $\alpha$  was single symbol, the following new state would be created: Goto({S' $\rightarrow$  ·S, S  $\rightarrow$  · $\alpha$ , S  $\rightarrow$  · $\beta$ },  $\alpha$ ) = Closure({S  $\rightarrow \alpha$ ·}) = {S  $\rightarrow \alpha$ ·}
- Repeatedly perform gotos until there are no more states to add





#### Construct DFA

- Compute canonical LR(0) collection[规范LR(0)项集族, C], i.e., set of all states in DFA
  - One collection of sets of LR(0) items provides the basis for constructing a DFA that is used to make parsing decisions
  - Such an automaton is called an LR(0) automaton
     Each state of the LR(0) automaton represents a set of items in the C
- All new states are added through goto(I, X)
  - State transitions are done on symbol X

```
void items(G') {

C = \{ CLOSURE(\{[S' \rightarrow \cdot S]\}) \};

repeat

for ( each state I in C )

for ( each grammar symbol X )

if ( GOTO(I, X) is not empty and not in C)

add GOTO(I, X) to C;

until no new states are added to C
```





### LR(0) Automaton[自动机]

- The LR(0) automaton: each time we perform a shift we are following a transition to a new state
  - States: the sets of items in C
    - □ Start state:  $CLOSURE(\{[S' \rightarrow \cdot S]\})$
    - □ State *j* refers to the state corresponding to the set of items *l<sub>j</sub>*
  - Transitions are given by the GOTO function
- How can the automaton help with shift-reduce decisions?
  - Suppose that the string γ of grammar symbols takes the LR(0) automaton from the start state 0 to some state j
  - Then, shift on next input symbol *a* if state *j* has a transition on *a*
  - Otherwise, we choose to reduce
    - The items in state *j* tell us which production to use



#### The Example

Grammar: (0)  $S' \rightarrow S$ (1)  $S \rightarrow BB$ (2)  $B \rightarrow aB$ (3)  $B \rightarrow b$ 

- $S_0 = Closure(\{S' \rightarrow .S\})$ =  $\{S' \rightarrow .S, S \rightarrow .BB, B \rightarrow .aB, B \rightarrow .b\}$
- Goto(S<sub>0</sub>, B) = closure({S  $\rightarrow$  B.B}) S<sub>2</sub> = {S  $\rightarrow$  B.B, B  $\rightarrow$  .aB, B  $\rightarrow$  .b}
- Goto(S<sub>0</sub>, a) = closure({ $B \rightarrow a.B$ }) S<sub>3</sub> = { $B \rightarrow a.B, B \rightarrow .aB, B \rightarrow .b$ }
- Goto(S<sub>0</sub>, b) = closure({ $B \rightarrow b$ .}) S<sub>4</sub> = { $B \rightarrow b$ .}





### Build Parse Table from DFA

- ACTION [state, terminal symbol]
- GOTO [state, non-terminal symbol]
- ACTION:
  - If  $[A \rightarrow \alpha \cdot a\beta]$  is in S<sub>i</sub> and goto(S<sub>i</sub>, a) = S<sub>j</sub>, where "a" is a terminal then ACTION[S<sub>i</sub>, a] = shift j (sj)
  - If  $[A \rightarrow \alpha \cdot]$  is in S<sub>i</sub> and  $A \rightarrow \alpha$  is rule number j then ACTION[S<sub>i</sub>, a] = reduce j (rj)
  - If  $[S' \rightarrow S_0 \cdot]$  is in  $S_i$  then ACTION $[S_i, \$]$  = accept
  - If no conflicts among 'shift' and 'reduce' (the first two 'if's) then this parser is able to parse the given grammar
- GOTO
  - if  $goto(S_i, A) = S_j$  then  $GOTO[S_i, A] = j$
- All entries not filled are rejects



### The Example

| Grammar:                                                                                                                                                                        | Stata | ACTION |    |     | GOTO |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|----|-----|------|---|
| (0) $S' \rightarrow S$                                                                                                                                                          | Slale | а      | b  | \$  | S    | В |
| (1) $S \rightarrow BB$                                                                                                                                                          | 0     | s3     | s4 |     | 1    | 2 |
| (2) B → aB                                                                                                                                                                      | 1     |        |    | асс |      |   |
| (3) $B \rightarrow b$                                                                                                                                                           | 2     | s3     | s4 |     |      | 5 |
| $I_{0}: S   I_{1}:$ $S' \rightarrow .S S' \rightarrow S.$ $S \rightarrow .BB$ $B \rightarrow .aB   I_{2}: B   I_{5}:$ $B \rightarrow .BB   S \rightarrow B.B S \rightarrow BB.$ | 3     | s3     | s4 |     |      | 6 |
|                                                                                                                                                                                 | 4     | r3     | r3 | r3  |      |   |
|                                                                                                                                                                                 | 5     | r1     | r1 | r1  |      |   |
| $B \rightarrow .aB$<br>$B \rightarrow h$                                                                                                                                        | 6     | r2     | r2 | r2  |      |   |
| b b a                                                                                                                                                                           |       |        |    |     |      |   |



а

 $I_4$ :

 $B \rightarrow b.$ b

I<sub>6</sub>: B → aB.

а



# LR(0) Parsing

- Construct LR(0) automaton from the Grammar
- Idea: assume
  - Input buffer contains  $\alpha$
  - Next input is **t**
  - DFA on input  $\alpha$  terminates in state s
- Reduce by  $X \rightarrow \beta$  if
  - s contains item  $X \rightarrow \beta$ .
- Shift if
  - s contains item  $X \rightarrow \beta \cdot t \omega$
  - Equivalent to saying s has a transition labeled t





# LR(0) Parsing (cont.)

- The parser must be able to determine what action to take in each state without looking at any further input symbols
  - i.e. by only considering what the parsing stack contains so far
  - This is the '0' in the parser name
- In an LR(0) table, each state must only shift or reduce
  - Thus an LR(0) configurating set can only have exactly one reduce item
    - cannot have both shift and reduce items
  - E.g., if the grammar contains the production A → ε, then the item A → ·ε will create a shift reduce conflict if there is any other nonnull production for A
    - **α** ε-rules are fairly common programming language grammars





### LR(0) Conflicts

- LR(0) has a reduce/reduce conflict if:
  - Any state has two reduce items:
  - $X \rightarrow \beta \cdot \text{ and } Y \rightarrow \omega \cdot$
- LR(0) has a shift/reduce conflict if:
  - Any state has a reduce item and a shift item:
  - $X \rightarrow \beta \cdot \text{ and } Y \rightarrow \omega \cdot t\sigma$



# LR(0) Summary

- LR(0) is the simplest LR parsing
  - Table-driven shift-reduce parser
    - Action table[s, a] + Goto table[s, X]
  - Weakest, not used much in practice
  - Parses without using any lookahead
- Adding just one token of lookahead vastly increases the parsing power
  - LR(1)
  - SLR(1)
  - LALR(1)



# SLR(1) Parsing

- LR(0) conflicts are generally caused by **reduce** actions
  - If the item is complete, the parser must choose to reduce
     Is this always appropriate?
    - The next upcoming token may tells us something different
  - What tokens may tell the reduction is not appropriate?
    - Perhaps Follow(A) could be useful here
- **SLR** = Simple LR
  - Use the same LR(0) configurating sets and have the same table structure and parser operation
  - The difference comes in assigning table actions
    - Use one token of lookahead to help arbitrate among the conflicts
    - Reduce only if the next input token is a member of the follow set of the nonterminal being reduced





## SLR(1) Parsing (cont.)

- In the SLR(1) parser, it is allowable for there to be both shift and reduce items in the same state as well as multiple reduce items
  - The SLR(1) parser will be able to determine which action to take as long as the follow sets are disjoint.





#### Example

- First two LR(0) configurating sets entered if *id* is the first token of the input
  - LR(0) parser: the set on the right side has a shift-reduce conflict
  - SLR(1) parser:
    - Compute Follow(T) = { +, ), ], \$ }, i.e., only reduce on those tokens
      - Follow(T) = Follow(E) = {+, ), ], \$}
    - The input [ will shift and there is no conflict





## Example (cont.)

- The first two LR(0) configurating sets entered if *id* is the first token of the input
  - LR(0) parser: the right set has a reduce-reduce conflict
  - SLR(1) parser:
    - Capable to distinguish which reduction to apply depending on the next input token
    - **\square** Compute Follow(T) = { +, ), \$ } and Follow(V) = { = }





### SLR(1) Grammars

- A grammar is SLR(1) if the following two conditions hold for each configurating set
- (1) For any item A → u·xv in the set, with terminal x, there is no complete item B → w· in that set with x in Follow(B)
   In the tables, this translates no shift-reduce conflict on any state
- (2) For any two complete items A → u· and B → v· in the set, the follow sets must be disjoint, e.g. Follow(A) ∩
   Follow(B) is empty
  - This translates to no reduce-reduce conflict on any state
  - If more than one nonterminal could be reduced from this set, it must be possible to uniquely determine which using only one token of lookahead



# SLR(1) Limitations

- SLR(1) vs. LR(0)
  - Adding just one token of lookahead and using the Follow set greatly expands the class of grammars that can be parsed without conflict
- When we have a completed configuration (i.e., dot at the end) such as X -> u·, we know that it is reducible
  - We allow such a reduction whenever the next symbol is in Follow(X).
  - However, it may be that we should not reduce for every symbol in Follow(X), because the symbols below u on the stack preclude u being a handle for reduction in this case
  - In other words, SLR(1) states only tell us about the sequence on top of the stack, not what is below it on the stack
  - We may need to divide an SLR(1) state into separate states to differentiate the possible means by which that sequence has appeared on the stack





#### References

- Bottom-up Parsing, <u>https://web.stanford.edu/class/archive/cs/cs143/cs143.1</u> <u>128/handouts/100%20Bottom-Up%20Parsing.pdf</u>
- SLR and LR(1) Parsing, <u>https://web.stanford.edu/class/archive/cs/cs143/cs143.1</u> <u>128/handouts/110%20LR%20and%20SLR%20Parsing.pdf</u>
- MOOC-编译原理, https://www.icourse163.org/course/HIT-1002123007



