Compilation Principle

gm VE I
FIVF: IR (6)
HNUINGE

xianweiz.github.io
DCS290, 3/30/2021

Dyid:

https://xianweiz.github.io/

Review Questions (1)

 What does LR(k) mean?
L: scan the input from left to right

R: construct a rightmost derivation in reverse

k: use k input symbols of lookahead sack e T o]
i
* What are the parts of a LR parser? = oo
Input buffer, stack, parse table, driver S"' - Acion | GoTo | TE0I®

* What are held in the stack of a LR parser?
A sequence of states, and each has an associated grammar symbol

* The LR parsing table is split into two, what are they?
Action table for terminals, Goto table for non-terminals

* What are the possible actions in Action table?

Shift, reduce, accept, error
@tuxs Dl

Review Questions (2)

e Action table entries can be si and rj, what are i and j?
si: shift the input symbol and move to state |

rj: reduce by production numbered j
* [tem/Configuration: what does A > XYZ:- mean?

We have seen the body XYZ and it is time to reduce XYZ to A

e State: why we put the items into a configuration set?

We hope to see one symbol in First(Y) YSulw APXYZ
Y- u
* What is augmented grammar? Y > w

Add one extra rule S = S to guarantee only one ‘acc’ in the table

* What are the possible items of S" - S?

S" = .S:initial item, haven’t seen any input symbol
S” = S.: accept item, have reduced the input string to start symbol

@ T1x2 Dl

Example

(0)S">S (1)S - BB (2) B> aB (3)B—>b

Initial item S - ‘BB B—>-aB |
SI 9 'S S 9 B'B B 9 a.B B 9 'b Reduce item
S"=>S- S - BB-: B - aB- B b
Accept item

* Closure: the action of adding equivalent items to a set
- Example: S’ - S S— ‘BB B> -aB B->-b

* Intuitively, A - o-Bp means that we might next see a
substring derivable from BB (_sub) as input. The _sub will
have a prefix derivable from B by applying one of the B-
productions.

— Thus, we add items for all the B-productions, i.e., if B> yisa
production, we add B - -y in the closure

@ T1x2 Dl

Example

Grammar:
(0)S" > S
(1) S - BB
(2) B—> aB
(3)B—>Db

lo: S i
S->-S S->S
S - -BB \/
B> -aB |22 —B’IS:
B b B S->BB S - BB-:
B—>-aB
B->-b
b b]
|4: \/
d B> b

I3:Tb 3 lg: \/

B—>aB " B- aB:
B— -aB
B—>:b

Dyid:

Example (cont.)

Grammar:
(0)S" > S
(1) S - BB
(2) B> aB
(3)B—>Db

it :
e ly:
|S -2 .51 S - S.
1S .BBI ..__..‘ —
|Be.aB|i2: l 5° I
Ig p _B_J5->B.BI Is > BB,
=507 B > .aB! -
. B=2b]
bl
n--" 12
.|4 l

a lB->bl

l———-l I_ls__-l
).Bea B.'BeaB,
IB > .aBI -7
B->.b I

State ACTION GOTO

a b S

o [3 | s

1 acc

3 I s3 s4

a { 3 | 3 | 3

5 | ril rl 1

6 | 2 | 2 | r
6

CLOSURE() (4]

* Closure of item sets: if / is a set of items for a grammar G,
then closure(l) is the set of items constructed from [by
the two rules:

— Initially, add every item in / to CLOSURE(|)

- If A= a-BB is in CLOSURE(I) and B = vy is a production, then add
item B - -y to CLOSURE(l), if it is not already there

o Apply this rule until no more new items can be added to CLOSURE(I)

Grammar: ,

0)S =S Z:BSB
(1) S —> BB "> S B .aB
(2) B> aB 8B5S b
(3) B> Db

/ Dhtge

GOTO() Bk

 GOTO(/, X): returns state (set of items) that can be
reached by advancing X

— Where |/ is a set of items and X is a grammar symbol

— The closure of the set of all items [A - aX:B] such that [A &
a-XB]isin/

- Used to define the transitions in the LR(0) automaton

o The states of the automaton correspond to sets of items, and GOTO(|, X)
specifies the transition from the state for / under input X

Grammar: ly: :
(0)S"=>S S = .S B

(1)S—>BB S - BB B> -aB
(2) B> aB B> -aB B->b
(3)B—>b B> b

8 Dhtge

Construct LR(O) States

* Create augmented grammar G’ for G
- GivenG:S> a | B,createG:S" >SS S>a |
— Creates a single rule S - S that when reduced, signals acceptance

* Create 15t state by performing a closure on initial item S’ -S

— Closure(l): creates state from an initial set of items |
— Closure({S’> -S}) ={S'>S,S > -a, S > -B}
* Create additional states by performing a goto on each symbol

— Goto(l, X): creates state that can be reached from | by advancing X
- If o was single symbol, the following new state would be created:

Goto({S'> :S5,S—> a, S > B}, a) =
Closure({S - a:}) ={S = a-}

* Repeatedly perform gotos until there are no more states to
add

»NG?

Construct DFA

« Compute canonical LR(0) collection[J{7ELR(0) i EETER, C],
i.e., set of all states in DFA

— One collection of sets of LR(0) items provides the basis for
constructing a DFA that is used to make parsing decisions

— Such an automaton is called an LR(0) automaton
o Each state of the LR(0) automaton represents a set of items in the C

* All new states are added through goto(l, X)
— State transitions are done on symbol X

void items(G’) {
C = { CLOSURE({[S’ = ‘S]}) };
repeat
for (each state lin C)
for (each grammar symbol X))
if (GOTO(I, X) is not empty and not in C)
add GOTO(l, X) to C;
until no new states are added to C

LR(0) Automaton[& zh#l]

* The LR(0) automaton: each time we perform a shift we
are following a transition to a new state

— States: the sets of items in C

o Start state: CLOSURE({[S’ = -S]})
o State j refers to the state corresponding to the set of items /;

— Transitions are given by the GOTO function

* How can the automaton help with shift-reduce decisions?

— Suppose that the string y of grammar symbols takes the LR(0)
automaton from the start state O to some state

— Then, shift on next input symbol a if state j has a transition on a

— Otherwise, we choose to reduce
o The items in state j tell us which production to use

@ Tux% IR

The Example

Grammar: - < I
(0)S" > S S5 5>
(1) S -> BB e I 5 m
(2) B> aB B::Eises.s S > BB,
(3) B->b B> .aB
> b
+ S, = Closure({s’ = .S)) b T
={S’ >.5,S >.BB, B> .aB, B > .b} . &Iéz%
* Goto(S,, B) = closure({S = B.B}) Db
S, ={S >B.B, B> .aB, B > .b} R
* Goto(S,, a) = closure({B = a.B}) ~~ Ej:g Bk
S; ={B 2>a.B, B> .aB, B > .b} B>.b
* Goto(S,, b) = closure({B - b.})
S, ={B—>b.}

12 Dl

Build Parse Table from DFA

* ACTION [state, terminal symbol]

* GOTO [state, non-terminal symbol]
e ACTION:

- If [A-a-aB] isin S; and goto(S;, a) = S;, where “a” is a terminal
then ACTION(S;, a] = shift j (sj)

- If [A—>a-]isin S, and A—>a is rule number j
then ACTION(S;, a] = reduce j (rj)

— If [S" ©S,] is in S; then ACTION[S, $] = accept

- If no conflicts among ‘shift’ and ‘reduce’ (the first two ‘if’s)
then this parser is able to parse the given grammar

* GOTO
- if goto(S;, A) = S; then GOTO[S;, A] = |

* All entries not filled are rejects

4

‘GL{

The Example

Grammar:
(0)S" > S
(1) S - BB
(2) B—> aB
(3)B—>Db

S->.5 S"->S.

S—- .BB

B> .aB ly: B g

B> b B»S%B.B S - BB.

State ACTION GOTO
a b S B
0 s3 s4
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 rl rl rl
6 r2 r2 r2
14

ub@@?

LR(O) Parsing

e Construct LR(0) automaton from the Grammar

* |[dea: assume
- Input buffer contains a
- Next inputist
— DFA on input a terminates in state s

* Reduce by X - B if

— s contains item X = B-
e Shift if
— s contains item X - B-tw
- Equivalent to saying s has a transition labeled t

(&) T X2 15 MG?

LR(O) Parsing (cont.)

* The parser must be able to determine what action to take
in each state without looking at any further input symbols

- i.e. by only considering what the parsing stack contains so far
— This is the ‘0’ in the parser name

* In an LR(O) table, each state must only shift or reduce
- Thus an LR(0) configurating set can only have exactly one
reduce item
o cannot have both shift and reduce items

- E.g., if the grammar contains the production A - g, then the
item A = -€ will create a shift reduce conflict if there is any
other nonnull production for A

o €-rules are fairly common programming language grammars

@ Tux% IR

LR(O) Conflicts

* LR(0) has a reduce/reduce conflict if:
— Any state has two reduce items:
-X=>B-andY > w-

* LR(0) has a shift/reduce conflict if:
— Any state has a reduce item and a shift item:
-X=>Band¥Y > wto

E'->E

E'->E E->E+T |T|V=E
E->E+T|T \T/->(5)Iid
T -> (E) | id | id[E] - el
/El -> .E \ .
‘ E->*E+T . T->ide
(esee) ' _ E-> T id V> ide
E->+E+T id T->ide E->sV=E
E-> T T->ide[E] T -> «(E)
T-> «(E) T -> «id
T-> «id . V -> «id
T -> «id[E]
N % _ J

LR(O) Summary

* LR(0) is the simplest LR parsing
— Table-driven shift-reduce parser
o Action table[s, a] + Goto table[s, X]

— Weakest, not used much in practice

— Parses without using any lookahead

* Adding just one token of lookahead vastly increases the
parsing power
- LR(1)
- SLR(1)
— LALR(1)

@ FTuxt Dl

SLR(1) Parsing

* LR(0) conflicts are generally caused by reduce actions

- If the item is complete, the parser must choose to reduce
o Is this always appropriate?
o The next upcoming token may tells us something different

- What tokens may tell the reduction is not appropriate?
o Perhaps Follow(A) could be useful here

* SLR = Simple LR
- Use the same LR(0) configurating sets and have the same table
structure and parser operation

— The difference comes in assigning table actions
o Use one token of lookahead to help arbitrate among the conflicts

o Reduce only if the next input token is a member of the follow set of the
nonterminal being reduced

@ Tux% IR

SLR(1) Parsing (cont.)

* In the SLR(1) parser, it is allowable for there to be both
shift and reduce items in the same state as well as
multiple reduce items

— The SLR(1) parser will be able to determine which action to take
as long as the follow sets are disjoint.

e)

)

I_> ° .
E->E+T i T->ide
E-> T T -> id*[E]
T -> (E)
T -> «id ‘
T -> «id[E]
NG v
/El _> .E \ .
E->*E+T i T->ide
E-> T V-> ide
E->V=E
T -> «(E) :
T -> «id
V -> ejd
N Y Dyig:

Example

* First two LR(0) configurating sets entered if id is the first
token of the input
- LR(O) parser: the set on the right side has a shift-reduce conflict
— SLR(1) parser:

o Compute Follow(T)={+,),], S}, i.e., only reduce on those tokens
* Follow(T) = Follow(E) = {+,),], $}
o The input [will shift and there is no conflict

(s) ' .
E->*E+T id T-> !d'
E-> T T -> id+[E]
E'->E $-> '_(g)
E->E+T|T >l
T -> (E) | id | id[E] T o> cidlE]
- /,

21 Dhig:

Example (cont.)

* The first two LR(0) configurating sets entered if id is the
first token of the input
- LR(O) parser: the right set has a reduce-reduce conflict

— SLR(1) parser:
o Capable to distinguish which reduction to apply depending on the next

input token
o Compute Follow(T)={+,), S } and Follow(V) = {=}
/E' -> oF) '

E->E+T id T->ide
E-> T V-> ide
E->V=E
T->+(E)

E'-> E vl

E->E+T |T|V=E

T ->(E) | id

V ->id _ J

22 Dhige

SLR(1) Grammars

A grammar is SLR(1) if the following two conditions hold
for each configurating set

* (1) For any item A = u-xv in the set, with terminal x, there
is no complete item B - w- in that set with x in Follow(B)
- In the tables, this translates no shift-reduce conflict on any state

* (2) For any two complete items A - u- and B - v- in the
set, the follow sets must be disjoint, e.g. Follow(A) N
Follow(B) is empty

— This translates to no reduce-reduce conflict on any state

— If more than one nonterminal could be reduced from this set, it

must be possible to uniquely determine which using only one
token of lookahead

@ Tux% IR

SLR(1) Limitations

* SLR(1) vs. LR(O)
- Adding just one token of lookahead and using the Follow set

greatly expands the class of grammars that can be parsed
without conflict

* When we have a completed configuration (i.e., dot at the
end) such as X —> u-, we know that it is reducible
- We allow such a reduction whenever the next symbol is in
Follow(X).

- However, it may be that we should not reduce for every symbol
in Follow(X), because the symbols below u on the stack
preclude u being a handle for reduction in this case

- In other words, SLR(1) states only tell us about the sequence on
top of the stack, not what is below it on the stack

- We may need to divide an SLR(1) state into separate states to
differentiate the possible means by which that sequence has
appeared on the stack

@ TuxE IR

References

* Bottom-up Parsing,
https://web.stanford.edu/class/archive/cs/cs143/cs143.1
128/handouts/100%20Bottom-Up%20Parsing.pdf

e SLR and LR(1) Parsing,
https://web.stanford.edu/class/archive/cs/cs143/cs143.1
128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

» MOOC-% 13 JR 3,
https://www.icoursel63.org/course/HIT-1002123007

25 Ik

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/100%20Bottom-Up%20Parsing.pdf
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf
https://www.icourse163.org/course/HIT-1002123007

