
Compilation Principle
编译原理

第9讲：语法分析(6)
张献伟

xianweiz.github.io
DCS290, 3/30/2021

https://xianweiz.github.io/

Review Questions (1)
• What does LR(k) mean?

• What are the parts of a LR parser?

• What are held in the stack of a LR parser?

• The LR parsing table is split into two, what are they?

• What are the possible actions in Action table?

2

A sequence of states, and each has an associated grammar symbol

L: scan the input from left to right
R: construct a rightmost derivation in reverse
k: use k input symbols of lookahead

Shift, reduce, accept, error

Action table for terminals, Goto table for non-terminals

Input buffer, stack, parse table, driver

Review Questions (2)
• Action table entries can be si and rj, what are i and j?

• Item/Configuration: what does A → XYZ· mean?

• State: why we put the items into a configuration set?

• What is augmented grammar?

• What are the possible items of S’ → S?

3

We have seen the body XYZ and it is time to reduce XYZ to A

A → X·YZ
Y → ·u
Y → ·w

Y → u|wWe hope to see one symbol in First(Y)

Add one extra rule S’ → S to guarantee only one ‘acc’ in the table

S’ → .S: initial item, haven’t seen any input symbol
S’ → S.: accept item, have reduced the input string to start symbol

si: shift the input symbol and move to state I
rj: reduce by production numbered j

Example

• Closure: the action of adding equivalent items to a set
− Example: S’ → ·S S → ·BB B → ·aB B → ·b

• Intuitively, A → ⍺·Bβ means that we might next see a
substring derivable from Bβ (_sub) as input. The _sub will
have a prefix derivable from B by applying one of the B-
productions.

− Thus, we add items for all the B-productions, i.e., if B → γ is a
production, we add B → ·γ in the closure

4

(0) S’ → S (1) S → BB (2) B → aB (3) B → b
S → ·BB
S → B·B
S → BB·

B → ·aB
B → a·B
B → aB·

B → ·b
B → b·

S’ → ·S
S’ → S·

Initial item

Accept item

Reduce item

Example

5

I0:
S’ → ·S

I1:
S’ → S·

S

I2:
S → B·BB
B → ·aB
B → ·b

I3:
B → a·B
B → ·aB
B → ·b

a
I4:
B → b·

b

S → ·BB
B → ·aB
B → ·b

I5:
S → BB·

B

I6:
B → aB·B

ab

a

b

Grammar:
(0) S’ → S
(1) S → BB
(2) B → aB
(3) B → b

✓

✓
✓

Example (cont.)

6

State
ACTION GOTO

a b $ S B
0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

Grammar:
(0) S’ → S
(1) S → BB
(2) B → aB
(3) B → b

CLOSURE()[闭包]

• Closure of item sets: if I is a set of items for a grammar G,
then closure(I) is the set of items constructed from I by
the two rules:

− Initially, add every item in I to CLOSURE(I)
− If A → ⍺·Bβ is in CLOSURE(I) and B → γ is a production, then add

item B → ·γ to CLOSURE(I), if it is not already there
p Apply this rule until no more new items can be added to CLOSURE(I)

7

Grammar:
(0) S’ → S
(1) S → BB
(2) B → aB
(3) B → b

S’ → ·S
S → ·BB
B → ·aB
B → ·b

S’ → ·S

GOTO()[跳转]

• GOTO(I, X): returns state (set of items) that can be
reached by advancing X

− Where I is a set of items and X is a grammar symbol
− The closure of the set of all items [A → ⍺X·β] such that [A →
⍺·Xβ] is in I

− Used to define the transitions in the LR(0) automaton
p The states of the automaton correspond to sets of items, and GOTO(I, X)

specifies the transition from the state for I under input X

8

I0:
S’ → ·S
S → ·BB
B → ·aB
B → ·b

Grammar:
(0) S’ → S
(1) S → BB
(2) B → aB
(3) B → b

I2:
S → B·B
B → .aB
B → .b

B
B → ·aB
B → ·b

Construct LR(0) States
• Create augmented grammar G’ for G

− Given G: S → α | β, create G’: S’ → S S → α | β
− Creates a single rule S’ → S that when reduced, signals acceptance

• Create 1st state by performing a closure on initial item S’→ ·S
− Closure(I): creates state from an initial set of items I
− Closure({S’→ ·S}) = {S’→ ·S, S → ·α, S → ·β}

• Create additional states by performing a goto on each symbol
− Goto(I, X): creates state that can be reached from I by advancing X
− If α was single symbol, the following new state would be created:

Goto({S’→ ·S, S → ·α, S → ·β}, α) =
Closure({S → α·}) = {S → α·}

• Repeatedly perform gotos until there are no more states to
add

9

Construct DFA
• Compute canonical LR(0) collection[规范LR(0)项集族, C],

i.e., set of all states in DFA
− One collection of sets of LR(0) items provides the basis for

constructing a DFA that is used to make parsing decisions
− Such an automaton is called an LR(0) automaton

p Each state of the LR(0) automaton represents a set of items in the C

• All new states are added through goto(I, X)
− State transitions are done on symbol X

10

void items(G’) {
C = { CLOSURE({[S’ → ·S]}) };
repeat
for (each state I in C)

for (each grammar symbol X)
if (GOTO(I, X) is not empty and not in C)

add GOTO(I, X) to C;
until no new states are added to C

}

LR(0) Automaton[自动机]

• The LR(0) automaton: each time we perform a shift we
are following a transition to a new state

− States: the sets of items in C
p Start state: CLOSURE({[S’ → ·S]})
p State j refers to the state corresponding to the set of items Ij

− Transitions are given by the GOTO function

• How can the automaton help with shift-reduce decisions?
− Suppose that the string γ of grammar symbols takes the LR(0)

automaton from the start state 0 to some state j
− Then, shift on next input symbol a if state j has a transition on a
− Otherwise, we choose to reduce

p The items in state j tell us which production to use

11

The Example

12

• S0 = Closure({S’ → .S})
= {S’ →.S, S →.BB, B → .aB, B → .b}

• Goto(S0, B) = closure({S → B.B})
= {S →B.B, B → .aB, B → .b}

• Goto(S0, a) = closure({B → a.B})
= {B →a.B, B → .aB, B → .b}

• Goto(S0, b) = closure({B → b.})
= {B → b.}

... … …

Grammar:
(0) S’ → S
(1) S → BB
(2) B → aB
(3) B → b

S2

S3

S4

S’ → .S

S → B.B

B → a.B

B → b.

Build Parse Table from DFA
• ACTION [state, terminal symbol]
• GOTO [state, non-terminal symbol]
• ACTION:

− If [A→α·aβ] is in Si and goto(Si, a) = Sj, where “a” is a terminal
then ACTION[Si, a] = shift j (sj)

− If [A→α·] is in Si and A→α is rule number j
then ACTION[Si, a] = reduce j (rj)

− If [S’ →S0·] is in Si then ACTION[Si, $] = accept
− If no conflicts among ‘shift’ and ‘reduce’ (the first two ‘if’s)

then this parser is able to parse the given grammar
• GOTO

− if goto(Si, A) = Sj then GOTO[Si, A] = j
• All entries not filled are rejects

13

The Example

14

State
ACTION GOTO

a b $ S B
0 s3 s4 1 2
1 acc
2 s3 s4 5
3 s3 s4 6
4 r3 r3 r3
5 r1 r1 r1
6 r2 r2 r2

Grammar:
(0) S’ → S
(1) S → BB
(2) B → aB
(3) B → b

LR(0) Parsing
• Construct LR(0) automaton from the Grammar

• Idea: assume
− Input buffer contains ⍺
− Next input is t
− DFA on input ⍺ terminates in state s

• Reduce by X → β if
− s contains item X → β·

• Shift if
− s contains item X → β·tω
− Equivalent to saying s has a transition labeled t

15

LR(0) Parsing (cont.)
• The parser must be able to determine what action to take

in each state without looking at any further input symbols
− i.e. by only considering what the parsing stack contains so far
− This is the ‘0’ in the parser name

• In an LR(0) table, each state must only shift or reduce
− Thus an LR(0) configurating set can only have exactly one

reduce item
p cannot have both shift and reduce items

− E.g., if the grammar contains the production A → ε, then the
item A → ·ε will create a shift reduce conflict if there is any
other nonnull production for A

p ε-rules are fairly common programming language grammars

16

LR(0) Conflicts

17

• LR(0) has a reduce/reduce conflict if:
− Any state has two reduce items:
− X → β· and Y → ω·

• LR(0) has a shift/reduce conflict if:
− Any state has a reduce item and a shift item:
− X → β· and Y → ω·t𝜎

LR(0) Summary
• LR(0) is the simplest LR parsing

− Table-driven shift-reduce parser
p Action table[s, a] + Goto table[s, X]

− Weakest, not used much in practice
− Parses without using any lookahead

• Adding just one token of lookahead vastly increases the
parsing power

− LR(1)
− SLR(1)
− LALR(1)

18

SLR(1) Parsing
• LR(0) conflicts are generally caused by reduce actions

− If the item is complete, the parser must choose to reduce
p Is this always appropriate?
p The next upcoming token may tells us something different

− What tokens may tell the reduction is not appropriate?
p Perhaps Follow(A) could be useful here

• SLR = Simple LR
− Use the same LR(0) configurating sets and have the same table

structure and parser operation
− The difference comes in assigning table actions

p Use one token of lookahead to help arbitrate among the conflicts
p Reduce only if the next input token is a member of the follow set of the

nonterminal being reduced

19

SLR(1) Parsing (cont.)
• In the SLR(1) parser, it is allowable for there to be both

shift and reduce items in the same state as well as
multiple reduce items

− The SLR(1) parser will be able to determine which action to take
as long as the follow sets are disjoint.

20

Example
• First two LR(0) configurating sets entered if id is the first

token of the input
− LR(0) parser: the set on the right side has a shift-reduce conflict
− SLR(1) parser:

p Compute Follow(T) = { +,),], $ }, i.e., only reduce on those tokens
• Follow(T) = Follow(E) = {+,),], $}

p The input [will shift and there is no conflict

21

Example (cont.)
• The first two LR(0) configurating sets entered if id is the

first token of the input
− LR(0) parser: the right set has a reduce-reduce conflict
− SLR(1) parser:

p Capable to distinguish which reduction to apply depending on the next
input token

p Compute Follow(T) = { +,), $ } and Follow(V) = { = }

22

SLR(1) Grammars
• A grammar is SLR(1) if the following two conditions hold

for each configurating set
• (1) For any item A → u·xv in the set, with terminal x, there

is no complete item B → w· in that set with x in Follow(B)
− In the tables, this translates no shift-reduce conflict on any state

• (2) For any two complete items A → u· and B → v· in the
set, the follow sets must be disjoint, e.g. Follow(A) ∩
Follow(B) is empty

− This translates to no reduce-reduce conflict on any state
− If more than one nonterminal could be reduced from this set, it

must be possible to uniquely determine which using only one
token of lookahead

23

SLR(1) Limitations
• SLR(1) vs. LR(0)

− Adding just one token of lookahead and using the Follow set
greatly expands the class of grammars that can be parsed
without conflict

• When we have a completed configuration (i.e., dot at the
end) such as X –> u·, we know that it is reducible

− We allow such a reduction whenever the next symbol is in
Follow(X).

− However, it may be that we should not reduce for every symbol
in Follow(X), because the symbols below u on the stack
preclude u being a handle for reduction in this case

− In other words, SLR(1) states only tell us about the sequence on
top of the stack, not what is below it on the stack

− We may need to divide an SLR(1) state into separate states to
differentiate the possible means by which that sequence has
appeared on the stack

24

References
• Bottom-up Parsing,

https://web.stanford.edu/class/archive/cs/cs143/cs143.1
128/handouts/100%20Bottom-Up%20Parsing.pdf

• SLR and LR(1) Parsing,
https://web.stanford.edu/class/archive/cs/cs143/cs143.1
128/handouts/110%20LR%20and%20SLR%20Parsing.pdf

• MOOC-编译原理，
https://www.icourse163.org/course/HIT-1002123007

25

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/100%20Bottom-Up%20Parsing.pdf
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/handouts/110%20LR%20and%20SLR%20Parsing.pdf
https://www.icourse163.org/course/HIT-1002123007

