
第1讲：量化设计分析（1）
张献伟

xianweiz.github.io
DCS3013, 9/7/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/

News: GPU Ban[禁令]
• US bans Nvidia and AMD from shipping high-performance

GPU chips to China

2
https://www.sec.gov/ix?doc=/Archives/edgar/data/1045810/000104581022000146/nvda-20220826.htm

https://www.sec.gov/ix?doc=/Archives/edgar/data/1045810/000104581022000146/nvda-20220826.htm

About
•选课（94人）

−计科-48，网安-23，信计-10，保密-13

•课件
− xianweiz.github.io > Teaching > DCS3013-Computer Architecture

p https://xianweiz.github.io/teach/dcs3013/f2022.html

•课程QQ群：419 655 749
•超算习堂：https://easyhpc.net/course/157

•助教
−黄亮鸿/理论 (huanglh59@mail2.sysu.edu.cn)
−郭天宇/实践 (guoty9@mail2.sysu.edu.cn)
−顾宇浩/实践 (guyh9@mail2.sysu.edu.cn)

3

https://xianweiz.github.io/teach/dcs3013/f2022.html
https://easyhpc.net/course/57
mailto:huanglh59@mail2.sysu.edu.cn
mailto:guoty9@mail2.sysu.edu.cn
mailto:guyh9@mail2.sysu.edu.cn

Review
• What is Computer Architecture?

− To make design trade-offs across the hw/sw interface to meet
functional, performance and cost requirements

• Why study Computer Architecture?
− Understand how computer works, design concepts and perf …
− In a golden age

• How? Use software to improve hardware
− You are not directly working on hardware
− Instead, you use software to design/optimize hardware
− C/C++, Python, Bash

4

Role of [Computer] Architect[职责]

• Look backward (to the past)
− Understand tradeoffs and designs, upsides/downsides, past

workloads. Analyze and evaluate the past.
• Look forward (to the future)

− Be the dreamer and create new designs. Listen to dreamers.
− Push the state of the art. Evaluate new design choices.

• Look up (towards problems in the computing stack)
− Understand important problems and their nature.
− Develop architectures and ideas to solve important problems.

• Look down (towards device/circuit technology)
− Understand the capabilities of the underlying technology.
− Predict and adapt to the future of technology (you are

designing for N years ahead). Enable the future technology.

5 From Onur Mutlu’s slides
https://course.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=onur-447-spring15-lecture1-intro-afterlecture.pdf

Technology Improvement[技术提升]
• Computer technology has greatly improved

− A $500 cellphone today outperforms the fastest supercomputer
in 1993 ($50 million)

− Improvement from both advances in the tech used to build
computers and from innovations in computer design

6

Trends in Technology (§1.4)[技术趋势]

• Integrated circuit (IC) logic[集成电路]
− Transistor density: +35%/year (feature size decreases)
− Die size: +10-20%/year
− Integration overall: +40-55%/year (Moore’s Law)

• DRAM capacity: +25-40%/year (growth is slowing)[内存]
− Memory usage quadruples every three years

• Flash capacity: +50-60%/year[闪存]
− 8-10X cheaper/bit than DRAM

• Magnetic disk: +40%/year[磁盘]
− 8-10X cheaper/bit then Flash and 200-300X cheaper/bit than

DRAM

• Network[网络]

7

Performance Trends[性能趋势]

• Bandwidth or throughput[带宽/吞吐]
− Total work done in a given time
− 32,000 - 40,000X improvement for processors
− 400 - 2400X improvement for memory and disks

• Latency or response time[时延/响应时间]
− Time between start and completion of an event
− 50 - 90X improvement for processors
− 8 - 9X improvement for memory and disks

p Memory wall[内存墙]

• Latency lags bandwidth (in the last 30 years)
− CPU: 20x vs. 2000x
− Memory: 4x vs. 120x

8

Transistors and Wire[晶体管/线路]

• IC processes are characterized by feature size[特征尺寸]

• Feature size: minimum size of transistor or wire
− 10um in 1971 to 22nm in 2012 to 7nm in 2017 to 5nm in 2020

(3nm is being developed)

• Moore’s Law: aka “technology scaling”[缩放]
− Literally: density (transistors/area) doubles every 18 months
− Public interpretation: performance doubles every 18 months
− Continued miniaturization (esp. reduction in channel length)

+ Improves switching speed, power/transistor, area(cost)/transistor
– Reduces transistor reliability

9

Intel 7: 10nm

Intel 4: 7nm

Intel: 7+

Intel 20A: 5nm

Power and Energy (§1.5)[功耗/能耗]

• Energy is a biggest challenge facing computer design
− Bring power in with 100s of pins
− Power is dissipated as heat and must be removed

• Power/energy are increasingly important
− Battery life for mobile devices[电池续航]

p Laptops, phones, cameras
− Tolerable temperature for devices without active cooling[温度]

p Power means temperature, active cooling means cost
p No room for a fan in a cell phone, no market for a hot cell phone

− Electric bill for compute/data centers[电费]
p Pay for power twice: once in, once out (to cool)

− Environmental concerns[环保]
p “Computers” account for growing fraction of energy consumption

10

Power and Energy (cont.)
• Energy: measured in Joules or Watt-seconds[焦耳]

− Total amount of energy stored/used
− Battery life, electric bill, environmental impact

• Power: energy per unit time (measured in Watts)[瓦特]
− Joules per second
− Power impacts power supply and cooling requirements (cost)
− Peak power vs average power

• Two sources[来源]
− Dynamic power: active switching of transistors
− Static power: leakage of transistors even while inactive

• Calculation
− Energy is proportional to Voltage2

− Power is proportional to (Voltage2 x Frequency)

11

Example：天河2号
•配置

− 16000个节点，每个2*12-核CPU + 2 Matrix-2000 + 64GB内存
p 系统峰值运算速度为每秒10.07亿亿次，持续速度每秒6.14亿亿次

•峰值功耗：17.6MW（加散热系统20+MW）
− 17.6MW x 24h x 365 = 1.5亿度电/年

p 40万度/天à 30万元电费/天

•水冷散热
−机柜内循环水冷的模式：8℃进水， 21℃出水

12

Methodology: Design/Evaluation[方法]

13

实现下一代

分析当前

设计及评估

Design Goals[设计目标]

• Functional[功能性]
− What functions should it support？
− Needs to be correct

p Unlike software, difficult to update once deployed

• Performant[性能]
− “Fast” is only meaningful in the context of a set of important

tasks
− Not just “Gigahertz”
− Impossible goal: fastest possible design for all programs

• Reliable[可靠性]
− Does it continue to perform correctly?
− Hard fault vs. transient fault

p Example：memory errors and sun spots
− Space satellites vs. desktop vs. server reliability

14

Design Goals (cont.)
• Low cost[低成本]

− Design cost (huge design teams, why?)[设计]
− Cost of making first chip after design (mask cost)[流片]
− Per unit manufacturing cost (wafer cost)[量产]

• Low power/energy[低能耗]
− Energy in (battery life, cost of electricity)
− Energy out (cooling and related costs)
− Cyclic problem, very much a problem today

• Challenge: balancing the relative importance of these
goals

− And the balance is constantly changing
− No goal is absolutely important at expense of all others
− Our focus: performance, only touch on cost, power, reliability

15

Manufacturing Process[制造流程]

• Silicon wafers[晶圆] undergo many processing steps so
that different parts of the wafer behave as insulators,
conductors, and transistors (switches)
• Multiple metal layers on the silicon enable connections

between transistors
• The wafer is chopped into many dies[裸晶或裸片] – the

size of the die determines yield and cost

16

晶圆 光刻 蚀刻

测试 封装掺杂

晶圆：制造晶圆作为衬底

光刻：把电路版图信息转移到晶圆上

蚀刻：去除多余的空白部分

掺杂：离子注入，控制导电性

测试：检查是否符合要求

封装：切割晶圆，获得单个芯片

Integrated Circuits Costs (§1.6)[成本]

• 𝐷𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 = !∗($%&'()*%+','(/.)!

0*' %('% − !∗$%&'()*%+','(
.∗0*' %('%

• 𝐷𝑖𝑒 𝑦𝑖𝑒𝑙𝑑 = 𝑊𝑎𝑓𝑒𝑟 𝑦𝑖𝑒𝑙𝑑 ∗ 1
120'&'3,4 5'(67*, %('%∗0*' %('% "

Where N= process-complexity factor=7.5-9.5(28nm,2017)

• 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑑𝑖𝑒 = 894, 9& :%&'(
0*'4 5'(:%&'(∗ 0*' ;*'<)

• 𝐶𝑜𝑠𝑡 𝑜𝑓 𝐼𝐶 =
894, 9&)*' 2 894, 9& ,'4,*7=)*' 2 894, 9& 5%3>%=*7= %7) &*7%< ,'4,

?*7%< ,'4, ;'*<)

17

Integrated Circuits Costs (cont.)
• Real-world examples

Wafer size conversions offset Intel’s increased wafer-processing cost

18

https://www.imf.org/~/media/Files/Conferences/2017-stats-forum/session-6-kenneth-flamm.ashx

https://www.imf.org/~/media/Files/Conferences/2017-stats-forum/session-6-kenneth-flamm.ashx

Dependability (§1.7)[可靠性]

• Fault vs. error
− Fault: failure of a component
− Error: manifestation of a fault
− Faults may or may not lead to system failure

• Metrics
− Reliability measure: mean time to failure (MTTF)
− Repair efficiency: mean time to repair (MTTR)
− Mean time between failures

p MTBF = MTTF + MTTR
− Availability = MTTF / MTBF

• Improving availability
− Increase MTTF: fault avoidance, fault tolerance, fault forecasting
− Reduce MTTR: improved tools and processes for diagnosis/repair

19

Performance (§1.8)[性能]

20

Application

Programming
Language

Compiler

ISA

Datapath
Control

Function Units

Transistors Wires Pins

Answers per month
Operations per second

(millions) of Instructions per second: MIPS
(millions) of (FP) operations per second: MFLOP/s

Megabytes per second

Cycles per second (clock rate)

• The performance metric may mean different things

Measuring Performance[评估性能]

• Time to run the task (latency)
− Execution time, response time, CPU time, …

• Tasks per day, hour, week, sec, ns, …
− Throughput, bandwidth

• Performance measurement[测试]
− Hardware prototypes : cost, delay, area, power estimation
− Simulation (many levels, ISA, RT, Gate, Circuit, …)
− Benchmarks (kernels, toy programs, synthetic), Traces, Mixes
− Analytical modeling and Queuing Theory

21

Measuring Performance (cont.)
• Direct measurement[直接测量]

− Can provide the best result: no simplifying assumptions
− Not flexible (difficult to change parameters)
− Prone to perturbation (if instrumented)
− Made much easier these days by using performance counters

• Simulation[模拟]
− Very flexible
− Time consuming
− Difficult to model details and validate

• Analytical modeling[分析模型]
− Quick insight for overall behaviors
− Limited applicability
− Used to confine simulation scope, validate simulations, etc.

22
https://people.cs.pitt.edu/~cho/cs2410/current/lect-trend_2up.pdf

https://people.cs.pitt.edu/~cho/cs2410/current/lect-trend_2up.pdf

Simulator[模拟器]

• What is an architecture (or architectural) simulator?
− A tool that reproduces the behavior of a computing device

• Why use a simulator?
− Leverage faster, more flexible software development cycle
− Permits more design space exploration
− Facilitates validation before hardware becomes available
− Possible to increase/improve system instrumentation

23

Simulation Goals Vary[不同目标]

• Explore the design space quickly and see what you want to
− potentially implement in a next-generation platform
− propose as the next big idea to advance the state of the art
− the goal is mainly to see relative effects of design decisions

• Match the behavior of an existing system so that you can
− debug and verify it at cycle-level accuracy
− propose small tweaks to the design that can make a difference in

performance or energy
− the goal is very high accuracy

• Other goals in-between:
− Refine the explored design space without going into a full detailed,

cycle-accurate design
− Gain confidence in your design decisions made by higher-level design

space exploration

24
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Tradeoffs in Simulation[平衡]

• Three metrics to evaluate a simulator
− Speed, Flexibility, Accuracy

• Speed[速度]: How fast the simulator runs (xIPS, xCPS,
slowdown)
• Flexibility[灵活性]: How quickly one can modify the

simulator to evaluate different algorithms and design
choices?
• Accuracy[准确度]: How accurate the performance

(energy) numbers the simulator generates are vs. a real
design (Simulation error)
• The relative importance of these metrics varies

depending on where you are in the design process (what
your goal is)

25
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

Tradeoffs in Simulation (cont.)
• Speed & flexibility affect:

− How quickly you can make design tradeoffs

• Accuracy affects:
− How good your design tradeoffs may end up being
− How fast you can build your simulator (simulator design time)

• Flexibility also affects:
− How much human effort you need to spend modifying the

simulator

• You can trade off between the three to achieve design
exploration and decision goals

26
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

High-level Simulation[高层级模拟]

• Key Idea: Raise the abstraction level of modeling to give
up some accuracy to enable speed & flexibility (and quick
simulator design)

− Get first-hand insights

• Advantages
− Can still make the right tradeoffs, and can do it quickly
− All you need is modeling the key high-level factors, you can omit

corner case conditions
− All you need is to get the “relative trends” accurately, not exact

performance numbers

• Disadvantages
− Opens up the possibility of potentially wrong decisions
− How do you ensure you get the “relative trends” accurately?

27
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture9a-simulation-afterlecture.pdf

