
第19讲：TLP（5）
张献伟

xianweiz.github.io
DCS3013, 12/7/2022

Computer Architecture

计算机体系结构

https://xianweiz.github.io/


Review Questions
• Limits of snooping protocol

• For directory-based protocol, what is the entry content?

• Explain the storage overhead of dir-protocol?

• Schemes to reduce storage overhead?

• What is ‘home node’ in dir-protocol?

• Intervention forwarding?

2

Dirty bit + presence bits.

Limited pointer scheme (P), sparse directory (M).

Node with memory holding the corresponding data for the line

Broadcast-based, hard to scale for many processors.

One entry per memory line, presence bits for all nodes/processors.

Way to reduce #messages. Home node directly requests data from
owner node, instead of involving requesting node.



Summary of Directory-base Coherence 

3

• Primary observation: broadcast doesn’t scale, but we don’t 
need to broadcast to ensure coherence because often the 
number of caches containing a copy of a line is small
• Instead of snooping, just store the list of sharers in a 

directory and check the list when necessary
• One challenge on storage[存储]

− Use hierarchies of processors or larger cache size
− Limited pointer schemes: exploit fact that most processors not 

sharing line
− Sparse directory schemes: exploit fact that most lines not in 

cache

• Another challenge on communication[通信]
− Reduce messages sent (traffic) and parallelize trans (latency)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence


Example
• Assume that

− Processes P1 and P2 are running on two different processors
− Locations A and B are originally cached by both processors with 

the initial value of 0

• If writes always take immediate effect and are 
immediately seen by other processors

− Then impossible for both IF to be true

• If write invalidate can be delayed, and the processor is 
allowed to continue during this delay

− Then possible to that P1 and P2 haven’t seen the invalidations 
before they attempt to read the values 

4

P1

A = 1;
L1: if (B == 0) … …

P2

B = 1;
L2: if (A == 0) … …

Reaching the IF means that either A or B must have been assigned the value 1 (i.e., IF is false)

P1
Cache

P2
Cache

A B



Coherence vs. Consistency[对比]

• Cache coherence defines requirements for the observed 
behavior of reads and writes to the same memory 
location

− Goal: to ensure that the memory system in a parallel computer 
behaves as if the caches were not there

p A system without caches would have no need for cache coherence
− Write value will be seen if sufficiently separated in time

• Memory consistency defines the behavior of reads and 
writes to different locations

− The allowed behavior of memory should be specified whether 
or not caches are present

− Coherence only guarantees that writes to address X will 
eventually propagate to other processors

− Consistency deals with when writes to X propagate to other 
processors, relative to reads and writes to other addresses

5
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Memory Consistency[内存一致性]

• Memory consistency specifies the ordering behaviors
− What ordering behavior should be allowed?
− Under what conditions?

• Example: a program running two threads, where A and B 
are initially both 0. What this program can output?

− 01: (1)(2)(3)(4) or (3)(4)(1)(2)
− 11: (1)(3)(2)(4) or (1)(3)(4)(2)
− 00: intuitively, it shouldn’t be possible

6
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


The Example
• x à y: x must happen before y

− (2) to print 0: (2) à (3)
− (4) to print 0: (4) à (1)
− If each thread’s events happen in order

p (1) à (2)
p (3) à (4)

• Start from (1), follow the edges
− (1) à (2) à (3) à (4) à (1)
− (1) must happen before itself ???

7
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

A=0: (4)->(1)
B=0: (2)->(3)

(4)->(1)->(2)->(3) è (4)

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Memory Operation Ordering[访存先后]

• A program defines a sequence of loads and stores (this is 
the “program order” of the loads and stores)[程序顺序]

• Four types of memory operation orderings[4类顺序]
− W→R: write to X must commit before subsequent read from Y

p When a write comes before a read in program order, the write must 
commit (its results are visible) by the time the read occurs

− R→R: read from X must commit before subsequent read from Y 
− R→W: read to X must commit before subsequent write to Y 
− W→W: write to X must commit before subsequent write to Y

• A sequentially consistent memory system maintains all 
four memory operation orderings[顺序一致]

• Certain orderings can be violated ???[违背一些顺序？]

8
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Sequential Consistency[顺序一致性]

• The most straightforward model for memory consistency
− Intuitive idea: multiple threads running in parallel are 

manipulating a single main memory, and so everything must 
happen in order

p But what order?
− Intuitive order: the events in a single thread happen in the 

order in which they were written[程序顺序]
p Intuitive to programmers

• Sequential consistency requires that the result of any 
execution be the same as though

− Memory accesses executed by each proc. were kept in order
− The accesses among different processors were arbitrarily 

interleaved

9



Sequential Consistency (cont.)
• Sequential consistency (SC)

− Formalized by Leslie Lamport in 1979
− “A system is sequentially consistent if the result of any 

execution is the same as if the operations of all the processors 
were executed in some sequential order, and the operations of 
each individual processor appear in the order specified by the 
program” [看起来像。。。]

− Defining SC is one of the many achievements that earned 
Lamport the Turing award in 2013

• Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs 

10
http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf

https://lamport.azurewebsites.ne
t/pubs/time-clocks.pdf

http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf
https://lamport.azurewebsites.net/pubs/time-clocks.pdf


The Examples
• With SC,
• Example-1:

− Must delay the read of A or 
B (A == 0 or B == 0) until the 
previous write has 
completed (B = 1 or A = 1)

− Cannot simply place the 
write in a buffer and 
continue with the read 

• Example-2:
− print(B)/print(A) cannot 

happen before A = 1/B = 1
p 00 cannot be printed

11

P1

A = 1;
L1: if (B == 0) … …

P2

B = 1;
L2: if (A == 0) … …



Memory Consistency Model[一致性模型]

• Memory consistency model (or just “memory model”) 
defines the allowed orderings of multiple threads on a 
multiprocessor

− SC is one such model
p E.g., orderings that print 01/11 are allowed, but not 00

• A memory consistency model is a contract between the 
hw and sw

− The hw promises to only reorder operations in ways allowed by 
the model[硬件承诺]

− In return, the sw acknowledges that all such reorderings are 
possible and that is needs to account for them[软件认可]

12
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Issues of SC[问题]

• SC: just like a switch to select thread to run, and runs its 
next event completely

− Events happen in program order

• SC presents a simple programming paradigm
• But, SC reduces potential performance

− Especially in a multiprocessor with a large number of processors 
or long interconnect delays

• Simplest way to implement SC
− A processor delays the completion of any memory access until 

all the invalidations caused by that access are completed
− Example: for a write miss, four processors share a block

p 170 cycles for write: 50 cycles to establish ownership, then 10 cycles to 
issue each invalidate, and 80 cycles for an invalidate to complete and be 
acknowledged (50 + 40 + 80)

13



Optimizations[优化]

• Goal: develop a model that is simple to explain and yet 
allows a high performance implementation[好理解、高性
能]

• Solution-1: develop ambitious implementations that 
preserve SC but use latency-hiding techniques to reduce 
the penalty[保持SC、隐藏时延]

• Solution-2: develop less restrictive memory consistency 
models that allow for faster hw[放宽顺序要求]

− Such models can affect how the programmer sees the 
multiprocessor

14



The Example
• SC maintains a single view of memory

− Cannot run (2) until (1) has become visible to every other 
thread

• No reason why (2) needs to wait until (1) completes
− (2): a read from B, (1): a write to A
− They don’t interfere with each other at all

p So should be allowed to run in parallel
− Note that event (1) is very slow

p A very high overhead

• SC greatly hurts performance
− The model should be relaxed!!!

p Event (2) should not wait for (1)

15
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


The Example (cont.)
• Place write(1) into a store buffer, rather than waiting for it 

to become visible
− Then (2) could start immediately, rather than waiting for (1) to 

reach the L3
− The store buffer is on-core: very fast to access
− At some time in the future, the cache hierarchy will pull the 

write from the store buffer and propagate it through the L3 so 
that it becomes visible to other threads

• The buffer helps hide the write latency
• Preserves single-threaded behavior

− Access: store buffer à memory

16
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Is it still cache coherent?
Is the result correct?

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Total Store Ordering[TSO一致性]

• TSO mostly preserves the same guarantees as SC, except 
that it allows the use of store buffers

− There buffers hide write latency, making execution significantly 
faster

• Retains ordering among writes (that’s why called ‘total 
store ordering’)[保证写顺序]

− Relaxed only the WàR ordering

• Performance gain
− Allow processor to hide latency of writes

when later read is independent

17
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Total Store Ordering (cont.)
• While boosting performance, TSO allows behaviors that 

SC does not
− I.e., programs running on TSO hw can exhibit behavior that 

programmers would find suprising

• The example: both threads first check their local store 
buffer, but fails to locate and then fetches from memory

− This program can print 00
p B=1 not in Core-1’s buffer
p A=1 not in Core-2’s buffer

− TSO cannot put into practices ???

18
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Ordering on Different Architectures
• Actually, every modern architecture includes a store 

buffer, and so has a memory model at least as weak as 
TSO

− x86 specifies a memory model that is very close to TSO
p among the most well-behaved architectures in terms of the crazy 

behaviors it allows
− ARM memory model is notoriously underspecified, but is 

essentially a form of weak ordering, gives very few guarantees
p RISC-V: “RVWMO” (RISC-V Weak Memory Ordering)
p Weak ordering allows almost any operation to be reordered, good for 

hardware optimizations but nightmare to program at the lowest levels

19https://www.cs.utexas.edu/~bornholt/post/memory-models.html
https://kernelgo.org/memory-model.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html
https://kernelgo.org/memory-model.html


Partial Store Ordering[PSO一致性]

• In TSO, only W→R order is relaxed
− The W→W constraint still exists

p Writes by the same thread are not reordered (they occur in program 
order)

• In partial store ordering (PSO), W à W is also relaxed

• Example: A and flag are initially 0s
− SC: print ’1’ (when flag is 1, A must be 1 already)
− TSO: print ‘1’ (ditto)
− PSO: may print ‘0’ (when flag is 1, A can be 0 or 1)

20

Thread 1 (on P1)

A = 1;
flag = 1;

Thread 2 (on P2)

while (flag == 0); // spinning if flag is 0
print A;

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Aggressive Memory Ordering???
• SC maintains all four memory operation orderings
• Certain orderings can be violated ???

− WàR: store buffer to allow read execute earlier
− WàW: reorder writes in the store buffer

p Earlier write is a cache miss, later is a hit
− RàW, RàR: processor may reorder independent instructions

p Out-of-order execution
− Note that all are valid optimizations if a program consists of a 

single instruction stream[对单线程都有效]

• What if we discard all four memory orderings?
− Still a memory consistency model (Release Consistency)

21
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf


Release Consistency[RC一致性]

• Release Consistency (RC)
− Processors support special synchronization operations
− Memory accesses before memory fence instruction must 

complete before the fence issues
− Memory accesses after fence cannot begin until fence 

instruction is complete
− 硬件不再对一致性做过多保证，需要软件介入以控制执行行为

22

reorderable reads and writes here
...

MEMORY FENCE
...

reorderable reads and writes here
...

MEMORY FENCE



Express Synchronization[同步]

• ’00’ is not allowed in SC (the example)
− Suppose architecture is of RC model, how to get the same effect 

with SC (i.e., no ‘00’)?

• All modern architectures include synchronization
operations to bring their relaxed memory models under 
control when necessary

− Most common operation: barrier (or fence) 

• A barrier inst forces all memory operations before it to 
complete before any memory operation after it can begin

− I.e., a barrier inst effectively reinstates SC at a particular point in 
program execution

23 FENCE: S1/S2 must be completely done before L1/L2


