

# **Computer Architecture**

第21讲: WSC & Interconnect (2)

### 张献伟

<u>xianweiz.github.io</u>

DCS3013, 12/14/2022





## Quiz Questions



Please email to <a href="mailto:zhangxw79@mail.sysu.edu.cn">zhangxw79@mail.sysu.edu.cn</a> (ddl: <a href="mailto:14:40">14:40</a>).

- Q1: for MSI snooping, how to change state from S to M? Invalidate all other copies --exclusive--> update value in cache
- Q2: for directory-based protocol, how to reduce communication overhead? Intervention forwarding, request forwarding, parallelization ...
- Q3: differences between coherence and consistency? Same vs different location, eventually vs when, cache vs. mem, ...
- Q4: what are possible values of *data* in TSO processors? Give the ordering. 1: (12)(3)(4)
- Q5: what about PSO processors? 1: 1234/2134/2314 0: (2)(3)(4) 2

| P0                         | P1                                    |  |  |  |  |
|----------------------------|---------------------------------------|--|--|--|--|
| // flag = 0; data = 0;     |                                       |  |  |  |  |
| data = 1; 1<br>flag = 1; 2 | while (flag == 0); ③<br>print data; ④ |  |  |  |  |

## Warehouse-scale Computer[仓储规模]

- Massive scale datacenters: 10,000 to 100,000 servers + networks to connect them together
  - Emphasize cost-efficiency
  - Attention to power: distribution and cooling
  - (relatively) homogeneous hardware/software
- Single gigantic machine
- Offer very large applications (Internet services): search, voice search (Siri), social networks, video sharing
- Very highly available: < 1 hour down/year</li>
  - Must cope with failures common at scale
- "...WSCs are no less worthy of the expertise of computer systems architects than any other class of machines" (Barroso and Hoelzle, 2009)





## Warehouse-scale Computer (cont.)

- Differences with HPC "clusters" [高性能集群]:
  - Clusters have higher performance processors and network
     HPC apps are more interdependent and communicate more frequently
  - Clusters emphasize TLP and DLP, WSCs emphasize RLP
    - HPC emphasizes latency to complete a single task vs. bandwidth to complete many independent tasks
    - HPC clusters tend to have long-run jobs that keep servers fully utilized
- Differences with datacenters[数据中心]:
  - Datacenters consolidate different machines and software into one location
  - Datacenters emphasize virtual machines and hardware heterogeneity in order to serve varied customers



| ,              |                |           |            |           |   |
|----------------|----------------|-----------|------------|-----------|---|
|                | VM             | VM        |            |           |   |
|                | Арр            | Арр       | CONTAINER  | CONTAINER |   |
| Арр            | Libs           | Libs Libs | Арр        | Арр       |   |
| Libs Libs Libs | OS             | OS        | Libs       | Libs App  |   |
| OS             | Hypervisor     |           | OS         |           |   |
| Bare Metal     | Virtualization |           | Containers |           | 4 |





## Design Goals of WSC[设计目标]

- WSCs share many goals and requirements with servers
  - Cost-performance
    - Work done per \$
  - Energy efficiency
    - Work done per J
  - Dependability via redundancy
    - 99.99% of availability, i.e., less 1h down per year
  - Network I/O
    - Good interface to external world
  - Both interactive and batch processing workloads
    - Interactive: e.g., search and social networking with Billions of users
    - Batch: calculate metadata useful to such services, e.g., MapReduce jobs to convert crawled pages into search indices





## Design Goals of WSC (cont.)

#### • Unique to WSCs

- Ample parallelism
  - Batch apps: many independent data sets with independent processing (Data-Level and Request-Level Parallelism)
- Scale and its opportunities/problems
  - Relatively small number of WSC make design cost expensive and difficult to amortize
  - But price breaks are possible from purchases of very large numbers of commodity servers
  - Must also prepare for high component failures
- Operational costs count
  - Cost of equipment purchases << cost of ownership</p>
- Location counts
- Computing efficiently at low utilization
  - WSC servers are rarely fully utilized



#### Google's Oregon WSC





7 https://inst.eecs.berkeley.edu/~cs61c/resources/su18\_lec/Lecture21.pdf



#### Containers in WSCs[集装箱]

#### Inside WSC



#### Inside Container





8 https://inst.eecs.berkeley.edu/~cs61c/resources/su18\_lec/Lecture21.pdf



#### Programming Models for WSCs[编程模型]

- Batch processing framework: MapReduce
  - The MapReduce runtime environment schedules map tasks and reduce tasks to the nodes of a WSC
  - MapReduce can be thought of as a generalization of the SIMD operation
    - Except that a function to be applied is passed to the data
- Map: (in\_key, in\_value) → list(interm\_key, interm\_val)
  - Slice data into "shards" or "splits" and distribute to workers
  - Compute set of intermediate key/value pairs
- Reduce: (interm\_key, list(interm\_value)) → list(out\_value)
  - Combines all intermediate values for a particular key
  - Produces a set of merged output values (usually just one)





#### MapReduce Example

Map phase: (doc name, doc contents) → list(word, count)

// "I do I learn""  $\rightarrow$  [("I",1),("do",1),("I",1),("learn",1)]

map(key, value): for each word w in value: emit(w, 1)

• Reduce phase: (word, list(count)) → (word, count\_sum)

// ("I", [1,1])  $\rightarrow$  ("I",2)

reduce(key, values):
result = 0
for each v in values:
 result += v
 emit(key, result)





## WSC Software[软件]

- Must scale up and down gracefully in response to varying demands
  - Varying workloads impact availability
- Must cope with failures gracefully
  - High failure rate impact reliability and availability
- More elaborate hierarchy of memories, failure tolerance, workload accommodation makes WSC software development more challenging than software for single computer







## Equipment Inside a WSC

- Server[服务器]
  - 1 ¾ inches high "1U" (4.445cm)
  - 8 cores, 16 GB DRAM, 4x1 TB disk
- Rack[机架]
  - 7 feet (213.36cm)
  - 40-80 servers + Ethernet local area network (1-10 Gbps) switch in middle ("rack switch")
- Array (a.k.a., cluster)[集群]
  - 16-32 server racks + larger local area network switch ("array switch")
    - Expensive switch (10X bandwidth, 100x cost)









#### Server, Rack, Array













Tower Server

Rack Server

Blade Server Micro Server



### WSC Architecture[架构]



- Disk: 24PB, 12ms

Lower latency to DRAM in another server than local disk Higher bandwidth to local disk than to DRAM in another server





14 https://cs61c.org/fa21/pdfs/lectures/lec25.pdf

#### Network[网络]

- The WSC needs 40 arrays to reach 100K servers
   One more level in the networking hierarchy
- Conventionally, Layer 3 routers to connect the arrays together and to the Internet







#### Power vs. Server Utilization[能耗]

- Figure: server power usage as load varies idle to 100%
- Uses ½ peak power when idle!
- Uses <sup>2</sup>/<sub>3</sub> peak power when 10% utilized! 90%@ 50%!
- Most servers in WSC utilized 10% to 50%
- Goal should be Energy-Proportionality: % peak load = % peak energy



#### Power Usage Effectiveness[电源使用效率]

- Overall WSC Energy Efficiency: amount of computational work performed divided by the total energy used in the process
- Power Usage Effectiveness (PUE):

**Total Building Power** 

**IT equipment Power** 

- Power efficiency measure for WSC, not including efficiency of servers, networking gear
- Power usage for non-IT equipment increases PUE
- 1.0 is perfection, higher numbers are worse
- Google WSC's PUE: 1.2





### Power Usage Effectiveness (cont.)

- Average PUE of the 15 google WSCs 2008 2017
- Google's Belgium WSC PUE: 1.09
  - Careful air flow handling
  - Elevated cold aisle temperatures
  - Use of free cooling
  - Per-server 12-V DC UPS

Continuous PUE Improvement Average PUE for all data centers

1.26





#### Interconnection Network





#### Interconnection Networks[互联网络]

- An Interconnection Network (ICN) is a programmable system that transports data between terminals
  - To hold our parallel machines together, at the core of parallel computer architecture
  - Share basic concept with LAN/WAN, but very different tradeoffs due to very different time scale/requirements
- Interconnection networks can be grouped into four domains[分类]
  - Depending on number and proximity of devices to be connected





## Different Scales of Networks

- Local-Area Networks[局域网络]
  - Interconnect autonomous computer systems
  - Machine room or throughout a building or campus
  - Hundreds of devices interconnected (1,000s with bridging)
  - Maximum interconnect distance
    - Few meters to tens of kilometers
    - Example (most popular): Ethernet, with 10 Gbps over 40Km
- Wide-Area Networks[广域网络]
  - Interconnect systems distributed across the globe
  - Internetworking support is required
  - Millions of devices interconnected
  - Maximum interconnect distance
     many thousands of kilometers





21 https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf



## Different Scales of Networks (cont.)

- System-Area Networks[系统区域网络]
  - Interconnects within one "machine"
    - Interconnect in a multi-processor system
    - Interconnect in a supercomputer
- Hundreds to thousands of devices interconnected
  - Tianhe-2 supercomputer (16K nodes, each with 2 12-core processors)
- Maximum interconnect distance
  - Fraction to tens of meters (typical)
  - A few hundred meters (some)
    - InfiniBand: 120 Gbps over a distance of 300m





22 https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf



## Different Scales of Networks (cont.)

- On-Chip Networks[片上网络]
  - Interconnect within a single chip
- Devices are micro-architectural elements
  - Caches, directories, processor cores
- Currently, designs with 10s of devices are common
  - Ex: IBM Cell, Intel multicores, Tile processors
- Projected systems with 100s of devices on the horizon
- Proximity: millimeters

We are concerned with On-Chip and System-Area Networks



