)T mXx® [ERBRHE Mehas

NNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Architecture ’
T HNLR R G
S2uk:. BT HT AR (2)
TR AT

xianweiz.github.io

DCS5367,9/14/2021

IR

https://xianweiz.github.io/

— LEIE A

« T JAVREUHE (09/21)
o« IR ANEL

- 86 (120 - 34)

s PRIEQQET

- 962501738

« RFEF T xianweiz.github.io/ (> Teaching)

e H&IHE: https://wj.qg.com/s2/8993787/debf/

? b

https://xianweiz.github.io/
https://wj.qq.com/s2/8993787/debf/

How to Summarize Performance

e Arithmetic mean (weighted arithmetic mean)[Z AR-F1]
— Considering the frequencies of programs in the workload

L T,
— E.g.,: tracks execution time: 2?21;‘ or . ln Wi x T;

* Harmonic mean (weighted harmonic mean) of rates[ii
SL:[:/}j]
- E.g.,: track MFLOPS:

n

7.1 1
l=1Ratei

* Normalized execution time is handy for scaling
performance (e.g., X times faster than Pentium 4)

* Geometric mean ==>"/[]", execution_ratio; [JL{AF#])

— The execution ratio is relative to a reference machine
o Based on relative performance to a reference machine

,‘ b
(&) T b K '\
\ovys/ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Performance Evaluation{4:geiE4h]

e Execution time and power are the main measure
of computer performance

* Good products created when we have

- Good benchmarks
o For better or worse, benchmarks shape a field
- Good ways to summarize performance

o Reproducibility is important (should provide details of
experiments)

* Given that sales is a function, in part, of performance
relative to competition, companies invest in improving
performance summary

— If benchmarks/summary are inadequate, then choose between
improving product for real programs vs. improving product to
get more sales ===> Sales almost always wins!

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Quantitative Principles (§1.8) &4k J5]

* Guidelines and principles that are useful in the design and
analysis of computers

* Take advantage of parallelism[F17]
- System level: multiple processors, multiple disks
- Individual processor: instruction parallelism, e.g., pipelining
— Detailed digital design: cache, memory

* Principle of locality[/&1

- Programs tend to reuse data and insts they have used recently
o A program spends 90% of its execution time in only 10% of the code

* Focus on the common case[— &]
- To make a trade-off, favor the frequent case over infrequent

,‘ N
[< 7\
(&) F b X NG
\ <), : -
\‘ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Amdahl’s Law[Bi ik /K & &)

o

* The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used

o RGO PR S AT 2T A A) 2R 4
P RE GIERE I, HUOR T 1M AT 7 20 fa A O AT,
BT AT IR TR] Y B

* Amdahl's law defines the speedup that can be gained by

using a particular feature
- Speedup due to some enhancement E:

ExTimeyithoute Performanceg

Speedu = - -
p Poverall EXTlmewi thE Per f ormanceé,ithoutE

) o K 'g ‘
[« z) I
“\““ ‘ U
v/ SUN YAT-SEN UNIVERSITY ’ ‘

Amdahl‘s Law (cont.)

e Suppose that enhancement E accelerates a fraction of the
task by a factor S, and the remainder of the task is

unaffected
N — e

ExTimeyitng

fractionennanced

= ExTimeyithoute * [(1 — fraCtionenhanced) + S]

ExTime,,;
Spee dup _ withoutE

ExT imewiTE

. raction
(1- f racaonenhanced) + i Senhanced

Amdahl's Law (cont.)

* Example 1: Floating point instructions can be improved
to run 2X; but only 10% of actual instructions are FP.
What is the overall speedup?

— Fractiong = 10%, S = 2, Speedup = 1/(90% + 10%/2) = 1.05

* Example 2: Assume we need to improve the performance
of a graphics engine (assume 20% inst are FP Square root,
50% for all FP inst). Which choice is better?

— Choice one: Speed up FP Square root by 10x
1/(80% + 20%/10) = 1.22

— Choice two: Speed up all FP instruction by 1.6x
1/(50% + 50%/1.6) = 1.23

<~ Focus on the common case!
@) Tux s 8 D

Amdahl's Law (cont.)

* A program’s speedup is limited by its serial part

- For example, if 95% of the program can be parallelized, the
theoretical maximum speedup using parallel computing would

be 20x
Amdahl's Law
L B e
18 Pl
// Parallel portion
16 7 | 50%
/ 75%
14 ‘ / ‘ —— 90%
/- —— 95%
e //
% 10 L AR S S N NN SN B M
2 / o
5 P <~ Make the fast case common !
/ 1
6 y A
Py
. /2 N Y O Y O N O OO
271
F ™
2 / """
0

QQQQQ

’ Dl

Computing CPU time

* CPU @ 2.5GHz
— 2.5G ticks per second =2 1/2.5G s/tick = 0.4ns / tick
— Tick == clock == clock cycle
* CPU time for a program, i.e., #clock cycles to execute

— CPU time = CPU clock cycles for a program x Clock cycle time
— CPU time = CPU clock cycles for a program / Clock rate

* Clock cycles per instruction (CPI)
— CPI = CPU clock cycles for a program / Instruction count
— Reverse of IPC (instructions per cycle)

* CPU time = Inst count x CPI x Clock cycle time

Instructions X Clock cycles X Seconds _ Seconds
Program Instruction Clock cycle - Program

ﬂrlﬁi

Computing CPU time (cont.)

* Average Cycles per Instruction (CPI) = ’]7‘:1 CPI; * F;

- Where CPI; is the number of cycles needed to execute
instructions of type j

- and F; is the percentage (fraction) of instructions that are of

type _
Example: Base Machine (Reg / Reg)
Op Freq Cycles CPI*F; (% Time)
ALU 50%| 1 D (33%)
Load 20%| 2 4 (27%)
Store 10%| 2 2 (13%)
Branch 20%| 2 4 (27%)
’ i
1.5
Typical Mix

* CPU time = Cycle time = }.;_, CPI; = I

- I;is the number of instructions of type j, and Cycle time is the
inverse of the clock rate.

‘\“‘ IYA’%S‘EN&E:% 1 1 ﬂ 7 ;G &

Computing CPU time (cont.)

e CPl is a function of the machine and program.

— The CPI depends on the actual instructions appearing in the
program—a floating-point intensive application might have a
higher CPI than an integer-based program.

- |t also depends on the CPU implementation. For example, a
Pentium can execute the same instructions as an older 80486,
but faster.

* It is common to each instruction took one cycle, making
CPl=1.
— The CPI can be >1 due to memory stalls and slow instructions.

— The CPI can be <1 on machines that execute more than 1
instruction per cycle (superscalar).

,‘ N
[< 7\
(&) F b X NG
&9 ‘ L
iy \‘ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Aspects of CPU Performance

e CPU time = Seconds _ Instructlons Cycles Seconds
program program Instructlons Cycles
Inst Count CPI Clock Rate
Program O
Compiler O O
Inst. Set O O
Organization O O
Technology O

13 w;‘@‘i

Improving CPI using caches

30%

* An example e

CPU cache memory
What is the improvement (speedup) in memory access time? :

e Caching works because of the principle of locality:

- Locality found in memory access instructions

o Temporal locality: if an item is referenced, it will tend to be referenced
again soon

o Spatial locality: if an item is referenced, items whose addresses are
close by tend to be referenced soon

— 90/10 locality rule

o A program executes about 90% of its instructions in 10% of its code

- We will look at how this principle is exploited in various
microarchitecture techniques

(&) F X % 14 o}
¢l £l HRY
\“‘ SUN YAT-SEN UNIVERSITY ﬂ ’ ‘ i

Dt Elg | 3¢ 368 B3t ST s

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

" Advanced Computer
Architecture

I

3!

HLAR R 45 1)

/EX/%ZL s

NINGE

ISA and ILP (1)

xianweiz.github.io

DCS5367,9/14/2021

https://xianweiz.github.io/

The History

* For more than 50 years, we have enjoyed exponentially
increasing compute power[& 7 2UaHE K]

* The growth is based on a fundamental contract between
HW and SW[1E & T FAE A4 22 1] 5]
- HW may change radically “under the hood”
o Old SW can still run on new HW (even faster)

- HW looks the same to SW, always speaking the same language
o The ISA, allows the decoupling of SW development from HW dev

of hardware .
> . mobile
devices in
operation

growth

%

h‘ﬂ

Program Compilation

2 9)

* Program written in a “high-leve

— C/C++, Java, Python
— Hierarchical, structured control: loops, functions, conditionals
— Hierarchical, structured data: scalars, arrays, pointers,

structures

* Compiler: translates program to assembly
— Parsing and straight-forward translation

— Compiler also opt

imizes

C -

C Frontend

Fortran —

Fortran Frontend

Ada »

Ada Frontend

Common

X86 Backend

Optimizer

17

PowerPC Backend

ARM Backend

” programming language

— X86
—» PowerPC

- ARM

| sx' G
HHE “

What is [SA?

* Instruction Set == A set of instructions

e The HW/SW contract[Z & F i3]

— Compiler correctly translates source code to the ISA[% F %5]
- Assembler translates to relocatable binary[J[2 #5]

— Linker solidifies relocatables into object code[JE % #5]

- HW promises to do what the object code says[f# /£ AT]

* Not in the “contract”: non-functional aspects[dET}1¥]
- How operations are implemented
— Which operations are fast and which are slow and when
- Which operations take more power and which take less

»lﬁ‘i

Problem
ISA + u-arch = Arch
Program/Language
. . » . . Runtime System
e “Architecture” = ISA + microarchitecture m
° ISA[TE%E&%*@] r:::farchitecture
— Agreed upon interface between software and hardwa g:c‘:fns

o SW/compiler assumes, HW promises

— What the software writer needs to know to write and debug
system/user programs

* Microarchitecture (p-arch)[#¥ 244

— Specific implementation of an ISA
o Implementation of the ISA under specific design constraints and goals
— Not visible to the software

T : o153 IS Ppnsmsa;
Qﬁarch

N \ ol |
(&) T X (NG
SUN YAT-SEN UNIVERSITY

ISA vs. u-arch (cont.)

* Implementation (p-arch) can be various as long as it
satisfies the specification (ISA)

— Add instruction vs. Adder implementation

o Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

— x86 ISA has many implementations: 286, 386, 486, Pentium,

Pentium Pro, Pentium 4, Core, ...

* p-arch usually changes faster than ISA
- Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many u-archs

: : IS

Qﬁ arch

h‘ﬂ

What Makes a Good ISA?

* Programmability[A] 4 FE 1]

— Easy to express programs efficiently?

* Implementability[7] S 4]
— Easy to design high-performance implementations?

— More recently
o Easy to design low-power implementations?
o Easy to design high-reliability implementations?
o Easy to design low-cost implementations?

e Compatibility[3f 75 14]
— Easy to maintain programmability (implementability) as
languages and programs (technology) evolves?

- x86 (IA32) generations: 8086, 286, 386, 486, Pentium,
Pentiumll, Pentiumlll, Pentium4, Core?2...

ﬂrlﬁi

How to Design ISA?[#it]

* Design decisions must take into account[Z5 & A &]
— Technology
- Machine organization
- Programming languages
— Compiler technology
— Operating systems

* [ssues in instruction set design[—%&]]
- Operand storage in CPU (stack, registers, accumulator)

- Number of operands in an instruction (fixed or variable
number)

- Type and size of operands (how is operand type determined)
— Addressing modes

— Allowed operations and the size of op-codes

— Size of each instruction.

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

ISA Classifying (§A.2)14r24]

* Type of internal storage in a processor
— Major choices: stack, accumulator, registers

e Stack architecture[tk]
— Operands are implicitly on the top of the stack

 Accumulator architecture[Z 78]
— One operand is implicitly the accumulator

* General-purpose register (GPR) architecture[i# H & 17 28]
— Only explicit operands — either registers or memory locations

— Two subclasses

o Register-memory: can access any memory as part of any instruction
o Load-store: can access memory only with load and store instructions

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Example

*C=A+8B
— Stack Push A
Push B
Add
Pop C
— Accumulator Load A
Add B
Store C
- Register (register-memory) Load R1, A
Add R3,R1, B
Store R3, C
- Register (load-store) Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

”*’T:) r W
“‘J i\(:}s‘m‘ﬁ ’% 24 u' "E “

Memory Addressing (§A.3)[H 7734k

* How memory addresses are interpreted and how they are
specified[R F11E E]
- Interpretation: what object is accessed as a function of the
address and the length?

— Addressing modes: the ways addresses are specified

* Addressing modes[-4t 1]

— Register, immediate, indexed, ...

 Effective address[f &t iik]

— The actual address to access a memory location

Instruction Memory

Effective address Data

Y

(&) F X % 25 o}
¢l £l HRY
\“‘ SUN YAT-SEN UNIVERSITY ﬂ ’ ‘ i

Memory Addressing (cont.)

* Register[Z {7 23] Add R4, R3
— operand = content of register

* Immediate[7. R[] Add R4, 3
— operand = in instruction

* Register indirect[2717 25 0]] Add R4, (R1)

- operand = in memory = Mem(R1)
— address = content of register

* Displacement[ff#%] Add R4, 100(R1)
- operand in memory = Mem[(R1) + base]
— address = content of register + base

* Indexed[Z 5] Add R3, (R1 + R2)
— operand in memory = Mem|[(R1) + (R2)]
— address = content of R1 + content of R2

Note: (R) means content of R and Mem[A] means content of memory address A
(@) Tux% 26 Us ,;ﬂ

Memory Addressing (cont.)

* Direct (absolute)[B #&/44 %] Add R1, (1001)
— operand in memory = Mem|C]
— address = a constant in the instruction

* Memory indirect[417 a]$] Add R1, @(R3)

- operand in memory = Mem[Mem[(R3)]]
— address = the content of Mem[(R3)]

e Auto-increment (or decrement)[E1%] AddR1, (R2)+

- operand in memory = Mem[(R2)]
— The content of R2 is incremented

e Scaled[k4] Add R1, 100(R2)[R3]
— operand in memory = Mem[C+(R2)+(R3)*d]

. B
[< 7\
g 9 'l J' x ’g i ¥
\% &) | A
avys/ SUN YAT-SEN UNIVERSITY ‘ 7N

Memory Addressing (cont.)

* The usage of various addressing modes is critical in
helping the architect what to include[#= =45 A 1 52 0m]
— Can significantly reduce instruction counts
— Can also add to the complexity of building a computer and may

increase CPI

Memory indirect
Scaled
Register indirect

Immediate

Displacement

TeX
spice

TeX

spice

TeX
spice
qgee
TeX
SpPice

TeX
spice

(J(C

10
6%
1%
16%
24%
39
43
17%
39%
32

55%

10 0 30 0% 50%

Frequency of the addressing mode

28

60%

j‘. Vi Wy
Unﬂ “

Operations (§A.5)[#1F)]

* Operators supported by most ISAs

— Arithmetic/logical: add, sub, mult, div, shift (arith,logical), and,
or, not, xor ...

— Data transfer: copy, move, load, store, ..

— Control: branch, jump, call, return, trap, ...

- System: operating system call, virtual memory management, ...
- Floating point: add, mult, div, ...

— Decimal: add, multi, decimal-to-character conversions

- String: move, copy, compare, search

— Graphics: pixel operations, compression, ...

* Rule of thumb: most widely executed instructions are the
simple operations of an instruction set

ﬂrlﬁi

Operations (cont.)

* 10 simple insts account for 96% of insts executed for a
collection of integer programs running on Intel 80x86

— Common case, make them fast

O 00 N o Ul p W N B

[N
o

Total

Load

Conditional branch
Compare

Store

Add

And

Sub

Move register-register
Call

Return

22%
20%
16%
12%
8%
6%
5%
4%
1%
1%
96%

ﬂ!;'ﬂ;‘

Encoding (§A.7)[4mHY]

* Encoding: instructions = binary representation
— Affects the size of the compiled program

— Affects the implementation of processors

o Decode instruction to quickly find the operation (opcode) and its
operands

* How to encode the addressing modes with the operations

— Depends on the range of addressing modes and the degree of
independence between opcodes and modes

o Older computers: 1-5 operands with 10 addressing modes for each 2
separate address specifier for each operand

o Load-store computers: only one memory operand and 1-2 addressing
modes = encode mode as part of the opcode

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Encoding (cont.)

* Popular choices
— Variable: allows all addressing modes to be with all operations

- Fixed: few addressing modes and operations
- Hybrid

* Trade-off: size of the program vs. ease of decoding

— Variable: use as few bits as psbl to represent the program, but
individual instructions can vary widely

Operation and | Address Address Address Address
no. of operands | specifier 1 field 1 specifier n field n

(a) Variable (e.g., Intel 80x86, VAX)

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.qg., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

”& s'T: 0\ r W
“‘J i\(:‘&mﬁ ’% 32 u"'m “

Existing ISAS

 RISC: reduced-instruction set computer[f & {5 2 %E]
— Coined by Patterson in early 80’s
— RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
— Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

* CISC: complex-instruction set computer[& 44455 %]
— Term didn’t exist before “RISC”
— Examples: x86, VAX, Motorola 68000, etc.

e

AMDA

000000

Z “freescale
TRER

000000

Q mUMENTS

Wi

ﬁEW

* Xx86
REBDIEOE, R - H%j\lﬁ/?j\lﬁ
ETERPHE, 2]
86 e ARM

._thy\ —ﬁﬁé
RBETXRI T AN

BB, B | Q jé

ReEFBS T, 12!
— Jits. R

MIPS

BEBWindowstRTE
, CRMBEDEEZF
’ D&\ !

*CPU/EZ% EEEE (B | 202F T, Mt
2 B FECPUIE AT ?

»X ﬂ
) 34 I DEL{
! SU'N YAT-SEN UNIVERSITY U' ‘

S—

https://zhuanlan.zhihu.com/p/363765166

Performance Argument[#: 48]

* Performance equation:
— (instructions/program) * (cycles/instruction) * (seconds/cycle)

* CISC

— Reduce “instructions/program” with “complex” instructions
o But tends to increase CPI or clock period

— Easy for assembly-level programmers, good code density

- ldea: give programmers powerful insts, fewer insts to complete
the work

* RISC

— Improve “cycles/instruction” with many single-cycle instructions

— Increases “instruction/program”, but hopefully not as much
o Help from smart compiler
- |dea: compose simple insts to get complex results

e NG

CISC vs. RISC

* Instructions: multi-cycle complex vs. single-cycle reduced
* Addressing modes: many vs. few

* Encoding: many formats and lengths vs. fixed-length
instruction format

* Performance: hand assemble to get good performance
vs. reliance on compiler optimizations

* Registers: few vs. many (compilers are better at using
them)

* Code size: small vs. large

36 h‘ﬂ

CISC vs. RISC (cont.)

e The war started in mid 1980’s

— CISC won the high-end commercial war (1990s to today)
o Compatibility a stronger force than anyone (but Intel) thought

— RISC won the embedded computing war

* CISC: winner on revenue[i fEY5 2]

— X86 was the first 16-bit microprocessor
o No competing choices = historical inertia and “financial feedback”

- Moore’s law was the helper
o Most engineering problems can be solved with more transistors

* RISC: winner on volume[7t 5]
— First ARM chip in mid-1980s = 150 billion chips
- Low-power and embedded devices (e.g., cellphones)

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Xx86 =2 ARM =2 RISC-V/[#:47 o (735 %)

* But now, things are changing ...
— Fugaku: ARM-based supercomputer (Top1)
— Apple Inc.: ARM-based M1 chip
— Amazon Inc.: AWS Graviton processor

e RISC-V: a freely licensed open standard (Linux in hw)

— Builds on 30 years of experience with RISC architecture, “cleans
up” most of the short-term inclusions and omissions
o Leading to an arch that is easier and more efficient to implement

Ediso
: y R I S C BRKEETF 20104

-
.

»

LTTHTTH T)

=

Dl

§3=1985£é 2

What is RISC-V?

* Fifth generation of RISC design from UC Berkeley[#f F1.1X]

* A high-quality, license-free, royalty-free RISC ISA[H H]

* Experiencing rapid uptake in both industry and academia]
PRI & JE]

* Supported by growing shared software ecosystem[*E#5]

* Appropriate for all levels of computing system, from
microcontrollers to supercomputers[i¥id]

— 32-bit, 64-bit, and 128-bit variants

| cm— |
@ |%4% - DRAPER bluespec = < D®VER HewiettPaciard

e Standard maintained by e B8 crosot, 1O iy i Cortus
. . A_vﬁgrgn snmsumc B sifive ., Rambus """ gy
non-profit RISC-V Foundation 23 [EN%r Google < Mosom QUAIOMWA
RISC Foundation: 65+ Members
: y RISC ’ ®esr: AMDZl Asses @IDT D= IO
. o — Silicon [BLATTICE ttatatn Mantmicro [o
https://riscv.org/ — 5?;c s @ N il imperas G
= . Run @ 2 o
G)FTux® 39 T,)

https://riscv.org/

RISC-V (cont.)

* The free and open RISC instruction set architecture

- Free and open ISA enabling a new era of processor innovation
through open standard collaboration [11])& H 7]

— RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

What’s Different About RISC-V?
(“RISC Five’, fifth UC Berkeley RIS

« Free and Open FR . Slmple Elegant
o Anyone can use o EE 25 years later, learn |
o More competition =3 from 1st gen RISCs*

= More innovation Ao © Farsimpler than ARM and x86

o Pick ISA, then vendor ”\l o Can add custom instructions
N el o Input from software/architecture

e For Cloud & Edge vy{j experts BEFORE finalize ISA

AN

o From large to tiny

computers J Community designeq
o RISC-V Foundation =
. Secure/Trustworthy @ RIS FE

o Design own secure core o
o Open cores = no secrets

10 IR

The RISC-V Architecture[ze#

* 32, 64-bit general purpose registers (GPRs)
— called x0, ..., x31 (x0 is hardwired to the value 0).

» 32, 64-bit floating point registers - FPRs (each can hold a
32-bit single precision or a 64-bit double precision value)
- called 1O, 1, ..., f31 (or O, f2, ..., f30)

» A few special purpose registers (example: floating point
status),

* Byte addressable memories with 64-bit addresses
e 32-bit instructions

* Only immediate and displacement addressing modes (12-
bit field)

Data transfer operations: Id, lw, |b, Ih, flw, sd, sw, sb, sh, fsw, ...
Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, ...
Control operations: beq, bne, blt, jal, jalr, ...

+ 4 X # Floating point operations: fadd, fsub, fmult, fsqrt, ...

L-OPS [T EEAE]

* x86: RISC inside
- Maintains x86 ISA externally for compatibility

— But executes RISC pISA internally for implementability
o x86 code is becoming more “RISC-like”

— Different pops for different designs
o Not part of the ISA specification, not publicly disclosed

* Example:
push Seax
becomes (we think, uops are proprietary)
store Seax, -4(Sesp)
addi Sesp,Sesp,-4

‘\“‘ IYA’%S‘EN&E:% 42 ﬂ 7 ;G &

ranslation and Virtual ISAS[EH PR B]

* New compatibility interface: ISA + translation software
- Binary-translation: transform static image, run native
- Emulation: unmodified image, interpret each dynamic inst
- Typically optimized with just-in-time (JIT) compilation
— Examples: JZ:ts x86 = LoongArch
- Performance overheads reasonable (many recent advances)

* Virtual ISAs: designed for translation, not direct execution
— Target for high-level compiler (one per language)
- Source for low-level translator (one per ISA)
— Goals: Portability (abstract hardware nastiness), flexibility over
time
- Examples: Java Bytecodes, NVIDIA’s “PTX”

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Instruction Execution

* Instruction fetch (IF)

— Fetch the next instruction from memory (and update PC to the
next sequential instruction)

* Instruction decode/register fetch (ID)

— Decode the inst and read the registers corresponding to register
source specifiers

* Execution/effective address (EX)
— Operate on the operands prepared in the prior cycle

* Memory access (MEM)

- Load: read using the effective address, store: write to memory

* Write-back (WB)

Fetch

Decode «
— Writes the result into the register Il / e
Execute ~
CPU Main memory (RAM)

. B
& z) 1
(D)) * b X \(NG
\) | i
\‘ SUN YAT-SEN UNIVERSITY ‘ 7N

Pipelining (§C.1)

* Pipelining: an implementation technique whereby
multiple instructions are overlapped in execution
— Just like an assembly line

— Takes advantage of parallelism that exists among the actions
needed to execute an instruction

— Pipelining is the key technique to make fast processors

Instr. No. Pipeline Stage
1 IF | ID | EX IMEM| WB
2 IF | ID [EX IMEM| WB
3 IF | ID | EX IMEM| WB
4 IF | ID | EX [MEM
5 IF | ID | EX
g'y"ccl'; 1|2(3|4|5|6]|7

‘\“‘ IYA’%S‘EN&E:% 45 ﬂ 7 ;G &

