
Advanced Computer
Architecture

高级计算机体系结构

第2讲：量化设计分析基础(2)
张献伟

xianweiz.github.io
DCS5367, 9/14/2021

https://xianweiz.github.io/

一些通知
•下周课取消 (09/21)

•选课人数
− 86 (120 - 34)

•课程QQ群
− 962501738

•课程主页：xianweiz.github.io/ (> Teaching)

•问卷调查：https://wj.qq.com/s2/8993787/debf/

2

https://xianweiz.github.io/
https://wj.qq.com/s2/8993787/debf/

How to Summarize Performance
• Arithmetic mean (weighted arithmetic mean)[算术平均]

− Considering the frequencies of programs in the workload
− E.g.,: tracks execution time: ∑"#$% &'

%
or ∑"#$% 𝑊" ∗ 𝑇"

• Harmonic mean (weighted harmonic mean) of rates[调和
平均]

− E.g.,: track MFLOPS: %
∑'+,
- ,

./01'

• Normalized execution time is handy for scaling
performance (e.g., X times faster than Pentium 4)

• Geometric mean ==>- ∏"#$
% execuaon_𝑟𝑎𝑡𝑖𝑜" [几何平均]

− The execution ratio is relative to a reference machine
p Based on relative performance to a reference machine

3

Performance Evaluation[性能评估]

• Execution time and power are the main measure
of computer performance
• Good products created when we have

− Good benchmarks
p For better or worse, benchmarks shape a field

− Good ways to summarize performance
p Reproducibility is important (should provide details of

experiments)

• Given that sales is a function, in part, of performance
relative to competition, companies invest in improving
performance summary

− If benchmarks/summary are inadequate, then choose between
improving product for real programs vs. improving product to
get more sales ===> Sales almost always wins!

4

Quantitative Principles (§1.8)[量化原则]

• Guidelines and principles that are useful in the design and
analysis of computers
• Take advantage of parallelism[并行]

− System level: multiple processors, multiple disks
− Individual processor: instruction parallelism, e.g., pipelining
− Detailed digital design: cache, memory

• Principle of locality[局部性]
− Programs tend to reuse data and insts they have used recently

p A program spends 90% of its execution time in only 10% of the code

• Focus on the common case[一般情况]
− To make a trade-off, favor the frequent case over infrequent

5

Amdahl‘s Law[阿姆达尔定律]

• The performance improvement to be gained from using
some faster mode of execution is limited by the fraction
of the time the faster mode can be used
•系统中对某一部件采用更快执行方式所能获得的系统
性能改进程度，取决于这种执行方式被使用的频率，
或所占总执行时间的比例

• Amdahl's law defines the speedup that can be gained by
using a particular feature

− Speedup due to some enhancement E:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝>?@ABCC =
𝐸𝑥𝑇𝑖𝑚𝑒H"IJ>KIL
𝐸𝑥𝑇𝑖𝑚𝑒H"IJL

=
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒L

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒H"IJQKIL

6

Amdahl‘s Law (cont.)
• Suppose that enhancement E accelerates a fraction of the

task by a factor S, and the remainder of the task is
unaffected

𝐸𝑥𝑇𝑖𝑚𝑒H"IJL
= 𝐸𝑥𝑇𝑖𝑚𝑒H"IJ>KIL ∗ [1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛@%JB%U@V +

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛@%JB%U@V
𝑆]

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐸𝑥𝑇𝑖𝑚𝑒H"IJ>KIL
𝐸𝑥𝑇𝑖𝑚𝑒H"IJL

=
1

1 − 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛@%JB%U@V + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛@%JB%U@V𝑆

7

Amdahl's Law (cont.)
• Example 1: Floating point instructions can be improved

to run 2X; but only 10% of actual instructions are FP.
What is the overall speedup?

− FractionE = 10%, S = 2, Speedup = 1/(90% + 10%/2) = 1.05

• Example 2: Assume we need to improve the performance
of a graphics engine (assume 20% inst are FP Square root,
50% for all FP inst). Which choice is better?

− Choice one: Speed up FP Square root by 10x
1/(80% + 20%/10) = 1.22

− Choice two: Speed up all FP instruction by 1.6x
1/(50% + 50%/1.6) = 1.23

8
👉 Focus on the common case！

Amdahl's Law (cont.)
• A program’s speedup is limited by its serial part

− For example, if 95% of the program can be parallelized, the
theoretical maximum speedup using parallel computing would
be

9

20x

👉Make the fast case common！

Computing CPU time
• CPU @ 2.5GHz

− 2.5G ticks per second à 1/2.5G s/tick = 0.4ns / tick
− Tick == clock == clock cycle

• CPU time for a program, i.e., #clock cycles to execute
− CPU time = CPU clock cycles for a program x Clock cycle time
− CPU time = CPU clock cycles for a program / Clock rate

• Clock cycles per instruction (CPI)
− CPI = CPU clock cycles for a program / Instruction count
− Reverse of IPC (instructions per cycle)

• CPU time = Inst count x CPI x Clock cycle time
− Y%ZIAKUI">%Z

[A>\AB] 𝑥 ^C>U_ U`UC@ZY%ZIAKUI">% x a@U>%VZ
^C>U_ U`UC@ = a@U>%VZ[A>\AB]

10

Computing CPU time (cont.)
• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (𝐶𝑃𝐼) = ∑l#$% 𝐶𝑃𝐼l ∗ 𝐹l

− Where CPIj is the number of cycles needed to execute
instructions of type j

− and Fj is the percentage (fraction) of instructions that are of
type j

• 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = 𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 ∗ ∑l#$% 𝐶𝑃𝐼l ∗ 𝐼l
− Ij is the number of instructions of type j, and Cycle time is the

inverse of the clock rate.

11

Computing CPU time (cont.)
• CPI is a function of the machine and program.

− The CPI depends on the actual instructions appearing in the
program—a floating-point intensive application might have a
higher CPI than an integer-based program.

− It also depends on the CPU implementation. For example, a
Pentium can execute the same instructions as an older 80486,
but faster.

• It is common to each instruction took one cycle, making
CPI = 1.

− The CPI can be >1 due to memory stalls and slow instructions.
− The CPI can be <1 on machines that execute more than 1

instruction per cycle (superscalar).

12

Aspects of CPU Performance
• 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒 = a@U>%VZ

oA>\AB] = Y%ZIAKUI">%Z
oA>\AB] ∗ ^`UC@Z

Y%ZIAKUI">%Z ∗
a@U>%VZ
^`UC@Z

13

Inst Count CPI Clock Rate

Program ❍
Compiler ❍ ❍
Inst. Set ❍ ❍
Organization ❍ ❍
Technology ❍

Improving CPI using caches
• An example

What is the improvement (speedup) in memory access time? :

• Caching works because of the principle of locality:
− Locality found in memory access instructions

p Temporal locality: if an item is referenced, it will tend to be referenced
again soon

p Spatial locality: if an item is referenced, items whose addresses are
close by tend to be referenced soon

− 90/10 locality rule
p A program executes about 90% of its instructions in 10% of its code

− We will look at how this principle is exploited in various
microarchitecture techniques

14

Advanced Computer
Architecture

高级计算机体系结构

第2讲： ISA and ILP (1)
张献伟

xianweiz.github.io
DCS5367, 9/14/2021

https://xianweiz.github.io/

The History
• For more than 50 years, we have enjoyed exponentially

increasing compute power[算力急剧增长]

• The growth is based on a fundamental contract between
HW and SW[得益于软硬件之间的协议]

− HW may change radically “under the hood”
p Old SW can still run on new HW (even faster)

− HW looks the same to SW, always speaking the same language
p The ISA, allows the decoupling of SW development from HW dev

16

Program Compilation[程序编译]

• Program written in a “high-level” programming language
− C/C++, Java, Python
− Hierarchical, structured control: loops, functions, conditionals
− Hierarchical, structured data: scalars, arrays, pointers,

structures

• Compiler: translates program to assembly
− Parsing and straight-forward translation
− Compiler also optimizes

17

What is ISA?
• Instruction Set == A set of instructions
• The HW/SW contract[软硬件协议]

− Compiler correctly translates source code to the ISA[编译器]
− Assembler translates to relocatable binary[汇编器]
− Linker solidifies relocatables into object code[连接器]
− HW promises to do what the object code says[硬件执行]

• Not in the “contract”: non-functional aspects[非协议]
− How operations are implemented
− Which operations are fast and which are slow and when
− Which operations take more power and which take less

18

ISA + µ-arch = Arch
• “Architecture” = ISA + microarchitecture
• ISA[指令集架构]

− Agreed upon interface between software and hardware
p SW/compiler assumes, HW promises

− What the software writer needs to know to write and debug
system/user programs

• Microarchitecture (µ-arch)[微架构]
− Specific implementation of an ISA

p Implementation of the ISA under specific design constraints and goals
− Not visible to the software

19

ISA
µ-arch

https://image.slideserve.com/466455/instruction-set-design-l.jpg

ISA vs. µ-arch (cont.)
• Implementation (µ-arch) can be various as long as it

satisfies the specification (ISA)
− Add instruction vs. Adder implementation

p Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

− x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

• µ-arch usually changes faster than ISA
− Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many u-archs

20

ISA
µ-arch

What Makes a Good ISA?
• Programmability[可编程性]

− Easy to express programs efficiently?

• Implementability[可实现性]
− Easy to design high-performance implementations?
− More recently

p Easy to design low-power implementations?
p Easy to design high-reliability implementations?
p Easy to design low-cost implementations?

• Compatibility[兼容性]
− Easy to maintain programmability (implementability) as

languages and programs (technology) evolves?
− x86 (IA32) generations: 8086, 286, 386, 486, Pentium,

PentiumII, PentiumIII, Pentium4, Core2…

21

How to Design ISA?[设计]

• Design decisions must take into account[考虑因素]
− Technology
− Machine organization
− Programming languages
− Compiler technology
− Operating systems

• Issues in instruction set design[一些问题]
− Operand storage in CPU (stack, registers, accumulator)
− Number of operands in an instruction (fixed or variable

number)
− Type and size of operands (how is operand type determined)
− Addressing modes
− Allowed operations and the size of op-codes
− Size of each instruction.

22

ISA Classifying (§A.2)[分类]

• Type of internal storage in a processor
− Major choices: stack, accumulator, registers

• Stack architecture[栈]
− Operands are implicitly on the top of the stack

• Accumulator architecture[聚集器]
− One operand is implicitly the accumulator

• General-purpose register (GPR) architecture[通用寄存器]
− Only explicit operands – either registers or memory locations
− Two subclasses

p Register-memory: can access any memory as part of any instruction
p Load-store: can access memory only with load and store instructions
p Memory-memory: all operands in memory

23

Example
• C = A + B

− Stack

− Accumulator

− Register (register-memory)

− Register (load-store)

24

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R3, R1, B
Store R3, C

Load R1, A
Load R2, B
Add R3, R1, R2
Store R3, C

Memory Addressing (§A.3)[内存寻址]

• How memory addresses are interpreted and how they are
specified[解释和指定]

− Interpretation: what object is accessed as a function of the
address and the length?

− Addressing modes: the ways addresses are specified

• Addressing modes[寻址模式]
− Register, immediate, indexed, …

• Effective address[有效地址]
− The actual address to access a memory location

25

Memory Addressing (cont.)
• Register[寄存器]

− operand = content of register
• Immediate[立即]

− operand = in instruction
• Register indirect[寄存器间接]

− operand = in memory = Mem(R1)
− address = content of register

• Displacement[偏移]
− operand in memory = Mem[(R1) + base]
− address = content of register + base

• Indexed[索引]
− operand in memory = Mem[(R1) + (R2)]
− address = content of R1 + content of R2

26
Note: (R) means content of R and Mem[A] means content of memory address A

Add R4, R3

Add R4, 3

Add R4, (R1)

Add R4, 100(R1)

Add R3, (R1 + R2)

Memory Addressing (cont.)
• Direct (absolute)[直接/绝对]

− operand in memory = Mem[C]
− address = a constant in the instruction

• Memory indirect[内存间接]
− operand in memory = Mem[Mem[(R3)]]
− address = the content of Mem[(R3)]

• Auto-increment (or decrement)[自增]
− operand in memory = Mem[(R2)]
− The content of R2 is incremented

• Scaled[比例]
− operand in memory = Mem[C+(R2)+(R3)*d]

27

Add R1, (1001)

Add R1, @(R3)

Add R1, (R2)+

Add R1, 100(R2)[R3]

Memory Addressing (cont.)
• The usage of various addressing modes is critical in

helping the architect what to include[模式使用的影响]
− Can significantly reduce instruction counts
− Can also add to the complexity of building a computer and may

increase CPI

28

Operations (§A.5)[操作]

• Operators supported by most ISAs
− Arithmetic/logical: add, sub, mult, div, shift (arith,logical), and,

or, not, xor …
− Data transfer: copy, move, load, store, ..
− Control: branch, jump, call, return, trap, …
− System: operating system call, virtual memory management, …
− Floating point: add, mult, div, …
− Decimal: add, multi, decimal-to-character conversions
− String: move, copy, compare, search
− Graphics: pixel operations, compression, ...

• Rule of thumb: most widely executed instructions are the
simple operations of an instruction set

29

Operations (cont.)

Rank 80x86 instruction Integer avg % total executed

1 Load 22%

2 Conditional branch 20%

3 Compare 16%

4 Store 12%

5 Add 8%

6 And 6%

7 Sub 5%

8 Move register-register 4%

9 Call 1%

10 Return 1%

Total 96%30

• 10 simple insts account for 96% of insts executed for a
collection of integer programs running on Intel 80x86

− Common case, make them fast

Encoding (§A.7)[编码]

• Encoding: instructions à binary representation
− Affects the size of the compiled program
− Affects the implementation of processors

p Decode instruction to quickly find the operation (opcode) and its
operands

• How to encode the addressing modes with the operations
− Depends on the range of addressing modes and the degree of

independence between opcodes and modes
p Older computers: 1-5 operands with 10 addressing modes for each à

separate address specifier for each operand
p Load-store computers: only one memory operand and 1-2 addressing

modes à encode mode as part of the opcode

31

Encoding (cont.)
• Popular choices

− Variable: allows all addressing modes to be with all operations
− Fixed: few addressing modes and operations
− Hybrid

• Trade-off: size of the program vs. ease of decoding
− Variable: use as few bits as psbl to represent the program, but

individual instructions can vary widely

32

Existing ISAs
• RISC: reduced-instruction set computer[精简指令集]

− Coined by Patterson in early 80’s
− RISC-I (Patterson), MIPS (Hennessy), IBM 801 (Cocke)
− Examples: PowerPC, ARM, SPARC, Alpha, PA-RISC

• CISC: complex-instruction set computer[复杂指令集]
− Term didn’t exist before “RISC”
− Examples: x86, VAX, Motorola 68000, etc.

33

国产架构
• x86

−曙光/海光

• ARM
−华为、飞腾

•自主
−龙芯、申威

34

* CPU及指令集演进 (漫画 | 20多年了，为什
么国产CPU还是不行？)

https://zhuanlan.zhihu.com/p/363765166

Performance Argument[性能的争论]

• Performance equation:
− (instructions/program) * (cycles/instruction) * (seconds/cycle)

• CISC
− Reduce “instructions/program” with “complex” instructions

p But tends to increase CPI or clock period
− Easy for assembly-level programmers, good code density
− Idea: give programmers powerful insts, fewer insts to complete

the work
• RISC

− Improve “cycles/instruction” with many single-cycle instructions
− Increases “instruction/program”, but hopefully not as much

p Help from smart compiler
− Idea: compose simple insts to get complex results

35

CISC vs. RISC
• Instructions: multi-cycle complex vs. single-cycle reduced
• Addressing modes: many vs. few
• Encoding: many formats and lengths vs. fixed-length

instruction format
• Performance: hand assemble to get good performance

vs. reliance on compiler optimizations
• Registers: few vs. many (compilers are better at using

them)
• Code size: small vs. large

36

CISC vs. RISC (cont.)
• The war started in mid 1980’s

− CISC won the high-end commercial war (1990s to today)
p Compatibility a stronger force than anyone (but Intel) thought

− RISC won the embedded computing war

• CISC: winner on revenue[赢在收益]
− X86 was the first 16-bit microprocessor

p No competing choices à historical inertia and “financial feedback”
− Moore’s law was the helper

p Most engineering problems can be solved with more transistors

• RISC: winner on volume[赢在数量]
− First ARM chip in mid-1980s à 150 billion chips
− Low-power and embedded devices (e.g., cellphones)

37

x86 à ARM à RISC-V[进行中的变革]

• But now, things are changing …
− Fugaku: ARM-based supercomputer (Top1)
− Apple Inc.: ARM-based M1 chip
− Amazon Inc.: AWS Graviton processor

• RISC-V: a freely licensed open standard (Linux in hw)
− Builds on 30 years of experience with RISC architecture, “cleans

up” most of the short-term inclusions and omissions
p Leading to an arch that is easier and more efficient to implement

38

What is RISC-V?
• Fifth generation of RISC design from UC Berkeley[第五代]

• A high-quality, license-free, royalty-free RISC ISA[自由]

• Experiencing rapid uptake in both industry and academia[
快速发展]

• Supported by growing shared software ecosystem[生态]

• Appropriate for all levels of computing system, from
microcontrollers to supercomputers[普适]

− 32-bit, 64-bit, and 128-bit variants

• Standard maintained by
non-profit RISC-V Foundation

39

https://riscv.org/

https://riscv.org/

RISC-V (cont.)
• The free and open RISC instruction set architecture

− Free and open ISA enabling a new era of processor innovation
through open standard collaboration [彻底开放]

− RISC-V ISA delivers a new level of open, extensible software and
hardware freedom on architecture, paving the way for the next
50 years of computing design and innovation

40

The RISC-V Architecture[架构]

• 32, 64-bit general purpose registers (GPRs)
− called x0, … , x31 (x0 is hardwired to the value 0).

• 32, 64-bit floating point registers - FPRs (each can hold a
32-bit single precision or a 64-bit double precision value)

− called f0, f1, … , f31 (or f0, f2, … , f30)
• A few special purpose registers (example: floating point

status),
• Byte addressable memories with 64-bit addresses
• 32-bit instructions
• Only immediate and displacement addressing modes (12-

bit field)

41

Data transfer operations: ld, lw, lb, lh, flw, sd, sw, sb, sh, fsw, …
Arithmetic/logical operations: add, addi, sub, subi, slt, and, andi, xor, mul, div, …
Control operations: beq, bne, blt, jal, jalr, …
Floating point operations: fadd, fsub, fmult, fsqrt, …

µ-ops[微操作]

• x86: RISC inside
− Maintains x86 ISA externally for compatibility
− But executes RISC µISA internally for implementability

p x86 code is becoming more “RISC-like”
− Different µops for different designs

p Not part of the ISA specification, not publicly disclosed

• Example:
push $eax
becomes (we think, uops are proprietary)
store $eax, -4($esp)
addi $esp,$esp,-4

42

Translation and Virtual ISAs[翻译和虚拟]

• New compatibility interface: ISA + translation software
− Binary-translation: transform static image, run native
− Emulation: unmodified image, interpret each dynamic inst
− Typically optimized with just-in-time (JIT) compilation
− Examples: 龙芯 x86 à LoongArch
− Performance overheads reasonable (many recent advances)

• Virtual ISAs: designed for translation, not direct execution
− Target for high-level compiler (one per language)
− Source for low-level translator (one per ISA)
− Goals: Portability (abstract hardware nastiness), flexibility over

time
− Examples: Java Bytecodes, NVIDIA’s “PTX”

43

Instruction Execution
• Instruction fetch (IF)

− Fetch the next instruction from memory (and update PC to the
next sequential instruction)

• Instruction decode/register fetch (ID)
− Decode the inst and read the registers corresponding to register

source specifiers
• Execution/effective address (EX)

− Operate on the operands prepared in the prior cycle
• Memory access (MEM)

− Load: read using the effective address, store: write to memory
• Write-back (WB)

− Writes the result into the register

44

Pipelining (§C.1)
• Pipelining: an implementation technique whereby

multiple instructions are overlapped in execution
− Just like an assembly line
− Takes advantage of parallelism that exists among the actions

needed to execute an instruction
− Pipelining is the key technique to make fast processors

45

