
Advanced Computer
Architecture

高级计算机体系结构

第10讲：Thread-Level Parallelism (2)
张献伟

xianweiz.github.io
DCS5367, 12/7/2021

https://xianweiz.github.io/

Review Questions
• Q1: SMP?

• Q2: what is NUMA?

• Q3: What is cache coherence issue?

• Q4: two classes of protocols.

• Q5: write invalidation protocol.

• Q6: how to handle miss in snoopy protocol?

2

Non-uniform memory access, occurring in DSM

Processors see different values of the same data.

Symmetric (shared-memory) multiprocessor

Snooping, directory.

On write, invalidate all other copies.

Write-through: from memory, write-back: memory or cache

Review: Snoopy Implementation[窥探实现]

• Key is to use bus, or another broadcast medium, to
perform invalidates
• To perform an invalidate

− The processor simply acquires bus access and broadcasts the
address to be invalidated on the bus[获得总线，广播地址]

− All processors continuously snoop on the bus, watching the
addresses[窥探总线，收听地址]

− The processors check whether the address on the bus is in their
cache. If so, the corresponding data in the cache is invalidated[
核对地址，作废数据]

3

Review: Snoopy Implementation (cont.)
• When a write to a block that is shared occurs,[写到共享块]

− The writing processor must acquire bus access to broadcast its
invalidation

• If two processors attempt to write shared blocks at the
same time,[两个处理器同时写到共享块]

− Their attempts to broadcast an invalidate operation will be
serialized when they arbitrate for the bus[串行‘无效’操作]

− The first processor to obtain bus access will cause any other
copies of the block it is writing to be invalidated[作废数据]

− If the processors were attempting to write the same block, the
serialization enforced by the bus also serializes their writes[串行
写操作]

4

Review: Snoopy Implementation (cont.)
• Locate a data item when a cache miss occurs,[找到数据]

− For write-through cache, easy to find the recent value[写通]
p All written data are always sent to the memory

− For write-back cache, harder to find the most recent value[写回]
p The newest value can be in a private cache rather than in the shared

cache or memory

• Happily, write-back caches can use the same snooping
scheme both for cache misses and for writes[同样窥探]

− Each processor snoops every address placed on the shared bus[
每个处理器窥探每个地址]

− If a processor finds that it has a dirty copy of the requested
cache block, it provides that block in response to the read
request and causes the memory (or L3) access to be aborted[某
个处理器拥有脏数据à响应]

5

Snoopy Implementation (cont.)
• Normal cache tags can be used to implement snooping,

and the valid bit for each block makes invalidation easy to
implement

− Read misses, whether generated by an invalidation or by other
events, are simply relying on the snooping capability

− For writes, we’d like to know whether any other copies of the
block are cached, because

p If no other copies, then the write need not be placed on the bus

• Add an extra bit to track whether a block is shared
− The bit is used to decide whether a write must generate an

invalidate
p Write to shared: invalidate, then mark block as “exclusive”
p Sole copy of a cache block is normally called “owner”

6

Example Protocol
• Invalidation protocol for write-back caches
• Each data block can be[数据块状态]

− Uncached: not in any cache
− Clean in one or more caches and up-to-date in memory, or
− Dirty in exactly one cache

• Correspondingly, we record the coherence state of each
block in a cache as[一致性状态]

− Invalid: block contains no valid data
− Shared: a clean block (can be shared by other caches), or
− Modified/Exclusive: a dirty block (cannot be in any other cache)

7

MSI protocol = Modified/shared/invalid

Makes sure that if a block is dirty in one cache, it is not valid in any
other cache and that a read request gets the most updated data

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Dirty in more caches???

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Example Protocol (cont.)
• A read miss to a block in a cache, C1, generates a bus

transaction
− If another cache, C2, has the block “modified”, it has to write back the

block before memory supplies it
p C1 gets data from the bus and the block becomes “shared” in both caches

• A write hit to a shared block in C1 forces an “Invalidate”
− Other caches that have the block should invalidate it – the block then

becomes “modified” in C1
• A write hit to a modified block does not generate “Invalidate”

or change of state
• A write miss (to an invalid block) in C1 generates a bus

transaction
− If a cache, C2, has the block as “shared”, it invalidates it
− If a cache, C2, has the block in “modified”, it writes back the block

and changes it state in C2 to “invalid”
− If no cache supplies the block, the memory will supply it
− When C1 gets the block, it sets its state to “modified”

8
https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Example
• Assume that

− Blocks B1 and B2 map to the same cache location L
− Initially neither B1 or B2 is cached
− Block size = one word

9

L = invalid L = invalid

P1 writes 10 to B1

P1 reads B1

P2 reads B1

P2 writes 20 to B1

P2 writes 40 to B2

P1 reads B1

Event In P1’s cache In P2’s cache

(write miss)

(read hit)

(read miss) B1 is written back

(write hit)
Put invalidate B1 on bus

(write miss)
B1 is written back

(read miss)

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (modified) L = invalid

L <- B1 = 10 (shared) L <- B1 = 10 (shared)

L = invalid

L = invalid
L <- B1 = 20 (modified)
L <- B2 = 40 (modified)
L <- B2 = 40 (modified)L <- B1 = 20 (shared)

P1
Cache

P2
Cache

B1 B2

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Example (cont.)

10

P1 writes 30 to B1

P2 writes 50 to B1

P1 reads B1

P2 reads B2

P1 writes 60 to B2

Event In P1’s cache In P2’s cache

(write hit)

(write miss)

(read miss)

(read miss)
(write miss)

L <- B1 = 30 (modified)

L <- B1 = 50 (shared) L <- B1 = 50 (shared)
L <- B2 = 40 (shared)

L <- B2 = 60 (modified)

L <- B2 = 40 (modified)L <- B1 = 20 (shared)
Put invalidate B1 on bus L <- B2 = 40 (modified)

L = invalid
B1 is written back B2 is written back

L <- B1 = 50 (modified)
B1 is written back

L <- B1 = 50 (shared)
L = invalid

• When an invalidate or a write miss is placed on the bus, any cores
whose private caches have copies of the block invalidate it
• For a write miss, if the block is exclusive in just one private cache,

that cache also writes back the block
− Otherwise, the data can be read from the shared cache or memory

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

The Protocol

11

Formal Specification[形式化定义]

• Finite state transition diagram for a single private cache
block[状态转换图]

− Transitions based on processor and bus requests, respectively

12

MSI Issues & Extensions[扩展]

• Complications for the basic MSI protocol
− Operations are not atomic[非原子操作]

p E.g. detect miss, acquire bus, receive a response
p Creates possibility of deadlock and races

− One solution: processor that sends invalidate can hold bus until
other processors receive the invalidate

• MSI: always invalidate before writing
• Extensions

− Adding additional states and transitions, which optimize certain
behaviors, possibly resulting in improved performance

− Two common extensions
p MESI: new ‘Exclusive’
p MOESI: new ‘Exclusive’ and ‘Owner’

13

MESI and MOESI
• MESI adds state Exclusive

− Shared: Exclusive (only one cache) + Shared (2 or more caches)
− Indicate when a cache block is resident only in a single cache

but is clean
− A subsequent write to a block in E state by the same core need

not acquire bus access or generate an invalidate

• MOESI further adds state Owner
− Shared: Shared Modified (O) + Shared Clean (S)
− Indicate that the associated block is owned by that cache and

out-of-date in memory
− In MSI/MESI, when sharing a block in M state, the state is

changed to S, and the block must be written back to memory
− In MOESI, the block can be changed from M to O without

writing it to memory
14

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

https://people.engr.ncsu.edu/efg/506/sum99/001/lec9-coherence.pdf

Performance of SMPs: Misses
• In a multicore using a snooping coherence protocol,

overall cache performance is a combination of
− The behavior of uniprocessor cache miss traffic
− The traffic caused by communication, resulting in invalidations

and subsequent cache misses

• Three C’s classification of uniprocessor misses
− Capacity(容量), compulsory(冷启动), conflict(地址冲突)

• Coherence misses caused by interprocessor
communication[一致性缺失]

− True sharing misses: directly arise from the sharing of data
among processors

− False sharing misses: the miss would not occur if the block size
were a single word

15

Performance of SMPs: Misses (cont.)
• True sharing misses, in an invalidation-based protocol

− The first write by a processor to a shared block causes an
invalidation to establish ownership of that block (invalidate all)

− When another processor tries to read a modified word in that
block, a miss occurs and the resultant block is transferred
(invalidated by the store)

• False sharing misses
− Caused by the coherence alg. with a single valid bit per block
− Occurs when a block is invalidated (and a subsequent reference

causes a miss)
p Some word in the block, other than the one being read, is written into

16

Time P1 P2

1 Write x1

2 Read x2

x1 x2 x1 x2

False sharing miss: x2 was invalidated by ‘write x1’ in P1

Shared:

Performance of SMPs: Result
• Coherence misses:

− True sharing misses
p Write to a shared block
p Read an invalid block

− False sharing misses
p Read an unmodified word in

an invalidated block

17
CPI for commercial benchmarks

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Increasing the cache size eliminates most
of the uniprocessor misses while leaving
the multiprocessor misses untouched.

https://people.cs.pitt.edu/~melhem/courses/2410p/ch5-2.pdf

Performance of SMPs: Result (cont.)

18

Limits of Snooping Protocol[限制]

19

• Snooping cache coherence protocols rely on broadcasting
coherence info to all processors over the chip inter-
connect

− Cache miss occurred, triggering cache communicated with all
other caches

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

20

• On a non-uniform memory access (NUMA) shared memory
system, regions of memory are located near the processors
increases scalability

− Yield higher aggregate bandwidth and reduced latency

• NUMA does little good if the coherence protocol can’t be
scaled

− Processor can access nearby memory, but need to broadcast to
all other processors (overhead)

Limits of Snooping Protocol (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scaling Cache Coherence to Large Machines

21

• One possible solution: hierarchical snooping[层级化]
− Use snooping coherence at each level

• Another: with memory localized with the groups of
processors, rather than centralized

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scaling Cache Coherence (cont.)

22

• One possible solution: hierarchical snooping
− Use snooping coherence at each level

− Advantages
q Relatively simple to build (already have to deal with similar issues due to

multi-level caches)
− Disadvantages

q The root of network may become a performance bottleneck
q Larger latencies than direct communication
q Doesn’t apply to more general network topologies

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scalable Coherence using Directories

23

• To avoid broadcast by storing info about status of the line
in one place: directory

− The directory entry for a cache line contains information about
the state of the cache line in all caches

− Caches look up information from the directory as necessary
− Cache coherence is maintained by point-to-point messages

between the caches (not by broadcast mechanisms)

• Theoretical advantages of directory-based approach
− The root of network won’t be the performance bottleneck
− Can apply to more general network topologies(e.g. meshes,

cubes)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Simple Directory Protocol Impl.

24
http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Distributed Directory: Partition

25

• Directory partition is co-located with memory it describes
• “Home node” of a line: node with memory holding the

corresponding data for the line
− For example: node 0 is the home node of orange line, node 1 is

the home node of blue node

• “Requesting node”: node containing processor requesting
line

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to clean line

26

• Read miss message sent to home node of requested line
• Home directory checks entry for line

− If dirty bit of line is OFF, respond with contents from memory, set
presence[0] to true(to indicate line is cached by processor 0)

Read from main memory by processor 0 of blue line(not dirty)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to dirty line

27

• Read from main memory by processor 0 of blue line
− Dirty and its content is in P2’s cache

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to dirty line (cont.)

28

Procedure

1. If dirty bit is ON, data must be sourced by another processor
2. Home node responds with id of line owner
3. Requesting node requests data from owner

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: read miss to dirty line (cont.)

29

Procedure

4. Owner responds to requesting node, changes state in
cache to SHARED (read only)
5. Owner also responds to home node, home clears dirty,
updates presence bits, updates memory

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: write miss

30

• Write to memory by processor 0
− Line is clean, but resident in P1’s and P2’s caches

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: write miss (cont.)

31

Procedure

1. If dirty bit is ON, data muse be modified on another
processor

2. Home node responds with id of node containing this
data(sharer) and data

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example: write miss (cont.)

32

Procedure

3. Requesting sharer to invalidate corresponding data
4. Get response from P1 and P2
After receiving both invalidation acks, P0 can write

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Pros of Directory Protocol

33

• On reads, directory tells requesting node exactly where to
get the line from

− Either from home node (if the line is clean)
− Or from the owning node (if the line is dirty)
− Either way, retrieving data involves only point-to-point

communication

• On writes, the advantages of directories depends on the
number of sharers

− In the limit, if all caches are sharing data, all caches must be
communicated with (just like broadcast in a snooping protocol)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Cons of Directory Protocol

34

• Full bit vector directory representation
• One presence bit per node

• Storage proportional to P * M
− P = number of nodes(e.g., processors)
− M = number of lines in memory

• Storage overhead rises with P
− Assume 64 byte cache line size (512 bits)
− 64 nodes (P=64) -> 12% overhead
− 256 nodes (P=256) -> 50% overhead
− 1024 nodes (P=1024) -> 200% overhead

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Reducing Storage Overhead

35

• Optimizations on full-bit vector scheme
− Increase cache line size (reduce M term)
− Group multiple processors into a single directory “node”

(reduce P term)
p Need only one directory bit per node, not one bit per processor
p Hierarchical: could use snooping protocol to maintain coherence among

processors in a node, directory across nodes

• Two alternative schemes
− Limited pointer schemes (reduce P)
− Sparse directories (reduce M)

• Reduce number of messages transferred

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Limited Pointer Schemes

36

• Since data is expected to only be in a few caches at once,
storage for a limited number of pointers per directory entry
should be sufficient (only need a list of the nodes holding a
valid copy of the line)

− Example:
q In a 1024 processor system
q Full bit vector scheme needs 1024 bits per line
q Using limited pointer scheme, 1024 bits can store approximately 100

pointers to nodes holding the line (log(1024) = 10 bits per pointer)
q In practice, we can get by with far less than this.(20-80 principle)

Graphs plot histogram of number of sharers of a line at the time of a write

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Managing Overflow in Limited Pointer Schemes

37

• Fallback to broadcast (if broadcast mechanism exists)
− When more than max number of sharers, revert to broadcast

• If no broadcast mechanism present on machine
− Don’t allow more than a max number of sharers
− On overflow, newest sharer replaces an existing one (must

invalidate line in the old sharer’s cache)

• Coarse vector fallback
− Revert to bit vector representation
− Each bit corresponds to K nodes
− On write, invalidate all nodes a bit corresponds to

If too many pointers (sharers) are required…

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Summary of Limited Pointer Schemes

38

• Limited pointer schemes reduce directory storage
overhead caused by large P

− By adopting a compact representation of a list of shares

• But do we really need to maintain storage for a list for
each cache-line chunk of data in memory?
• Key observation: the majority of memory is NOT resident

in cache. And to carry out coherence protocol the system
only needs sharing information for lines that are currently
in cache

− Most directory entries are empty most of the time
− 1 MB cache, 1 GB memory per node -> 99.9% of directory

entries are idle

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Sparse Directories

39

• Directory at home node maintains pointer to only one
node caching line (not a list of sharers)
• Pointer to next node in list is stored as extra information in

the cache line (like the line’s tag, dirty bits, etc.)
• On read miss: add requesting node to head of list
• On write miss: propagate invalidations along list
• On evict: need to patch up list (linked list removal)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Scaling Properties of Sparse Directories

40

• Good
− Low memory storage overhead (one pointer to list head per line)
− Additional directory storage is proportional to cache size (the list

stored in SRAM)
− Traffic on write is still proportional to number of sharers

• Bad
− Write latency proportional to #sharers

(invalidation of lines is serial)
− Higher implementation complexity

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

41

Reduce number of msg. sent
Read from main memory by P0 of the blue line: line is
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

42

Reduce number of msg. sent (cont.)

Five network transactions in total
Four of them are sequential (transaction 4&5 can parallel)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

43

Intervention Forwarding
Read from main memory by P0 of the blue line: line is
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

44

Intervention Forwarding (cont.)

1. Requests to read miss message on home node (P1)
2. Home node requests data from owner node (P2)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

45

Intervention Forwarding (cont.)

3. Owning node response
4. Home node updates directory, responds to requesting
node with requested data

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

46

Intervention Forwarding (cont.)

Total 4 transactions are needed.
But all of them are sequential, can they be parallel?

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

47

Request Forwarding
Read from main memory by P0 of the blue line: line is
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

48

1. Requests to read miss message on home node (P1)
2. Home node send target data to owner

Request Forwarding (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

49

3. Owning node responses data to the home node
4. Owning node responses data to the requesting node

Request Forwarding (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

50

Only 3 transactions are in serial
Transaction 3 & 4 can be parallel

Request Forwarding (cont.)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Summary of Directory-base Coherence

51

• Primary observation: broadcast doesn’t scale, but we don’t
need to broadcast to ensure coherence because often the
number of caches containing a copy of a line is small
• Instead of snooping, just store the list of sharers in a

directory and check the list when necessary
• One challenge

− Use hierarchies of processors or larger cache size
− Limited pointer schemes: exploit fact that most processors not

sharing line
− Sparse directory schemes: exploit fact that most lines not in line

• Another challenge
− Reduce messages sent (traffic) and parallelize transactions

(latency)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

