
Advanced Computer
Architecture

高级计算机体系结构

第11讲：Thread-Level Parallelism (3)
张献伟

xianweiz.github.io
DCS5367, 12/14/2021

https://xianweiz.github.io/

Quiz Questions
• Q1: list the states in MSI protocol.

• Q2: how does MESI improve MSI?

• Q3: drawbacks of snooping protocol?

• Q4: explain false sharing miss.

• Q5: for directory-based protocol, what is being kept in a
directory entry?

• Q6: generally, how to reduce directory storage overhead?

2

Splits S into E(1 share) and S (2+ shares), to avoid unnecessary inv.

Broadcasting, which involves all processors.

Modified, Shard, Invalid.

No real data sharing, can be avoided with 1B blocks.

Dirty bit, presence bits (a full bit vector).

Reduce P (# of nodes), or M (# of memory lines).

Review: Formal Specification
• Finite state transition diagram for a single private cache

block[状态转换图]
− Transitions based on processor and bus requests, respectively

3

Review: Distributed Directory

4

• Directory partition is co-located with memory it describes
• “Home node” of a line: node with memory holding the

corresponding data for the line
− For example: node 0 is the home node of orange line, node 1 is

the home node of blue node

• “Requesting node”: node containing processor requesting
line

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Review: read miss to dirty line

5

• Read from main memory by processor 0 of blue line
− Dirty and its content is in P2’s cache

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

6

Review: Intervention Forwarding
Read from main memory by P0 of the blue line: line is
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

7

Review: Request Forwarding
Read from main memory by P0 of the blue line: line is
dirty (contained in P2’s cache)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Summary of Directory-based Coherence

8

• Primary observation: broadcast doesn’t scale, but we don’t
need to broadcast to ensure coherence because often the
number of caches containing a copy of a line is small
• Instead of snooping, just store the list of sharers in a

directory and check the list when necessary
• One challenge

− Use hierarchies of processors or larger cache size
− Limited pointer schemes: exploit fact that most processors not

sharing line
− Sparse directory schemes: exploit fact that most lines not in line

• Another challenge
− Reduce messages sent (traffic) and parallelize transactions

(latency)

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

http://15418.courses.cs.cmu.edu/spring2017/lecture/directorycoherence

Example
• Assume that

− Processes P1 and P2 are running on two different processors
− Locations A and B are originally cached by both processors with

the initial value of 0

• If writes always take immediate effect and are
immediately seen by other processors

− Then impossible for both IF to be true

• If write invalidate can be delayed, and the processor is
allowed to continue during this delay

− Then possible to that P1 and P2 haven’t seen the invalidations
before they attempt to read the values

9

P1

A = 1;
L1: if (B == 0) … …

P2

B = 1;
L2: if (A == 0) … …

Reaching the IF means that either A or B must have been assigned the value 1

Coherence vs. Consistency[对比]

• Cache coherence defines requirements for the observed
behavior of reads and writes to the same memory
location

− All processors must agree on the order of reads/writes to X
− Goal: to ensure that the memory system in a parallel computer

behaves as if the caches were not there
p A system without caches would have no need for cache coherence

• Memory consistency defines the behavior of reads and
writes to different locations

− The allowed behavior of memory should be specified whether
or not caches are present

− Coherence only guarantees that writes to address X will
eventually propagate to other processors

− Consistency deals with when writes to X propagate to other
processors, relative to reads and writes to other addresses

10
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Memory Consistency[内存一致性]

• Memory consistency specifies the ordering behaviors
− What ordering behavior should be allowed?
− Under what conditions?

• Example: a program running two threads, where A and B
are initially both 0. What this program can output?

− 01: (1)(2)(3)(4) or (3)(4)(1)(2)
− 11: (1)(3)(2)(4) or (1)(3)(4)(2)
− 00: intuitively, it shouldn’t be possible

11
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Example
• x à y: x must happen before y

− (2) to print 0: (2) à (3)
− (4) to print 0: (4) à (1)
− If each thread’s events happen in order

p (1) à (2)
p (3) à (4)

• Start from (1), follow the edges
− (1) à (2) à (3) à (4) à (1)
− (1) must happen before itself???

12
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Memory Operation Ordering[访存先后]

• A program defines a sequence of loads and stores (this is
the “program order” of the loads and stores)
• Four types of memory operation orderings

− W→R: write to X must commit before subsequent read from Y
p When a write comes before a read in program order, the write must

commit (its results are visible) by the time the read occurs
− R→R: read from X must commit before subsequent read from Y
− R→W: read to X must commit before subsequent write to Y
− W→W: write to X must commit before subsequent write to Y

• A sequentially consistent memory system maintains all
four memory operation orderings
• Certain orderings can be violated ???

13
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Sequential Consistency[顺序一致性]

• The most straightforward model for memory consistency
− Intuitive idea: multiple threads running in parallel are

manipulating a single main memory, and so everything must
happen in order

p But what order?
− Intuitive order: the events in a single thread happen in the

order in which they were written
p Intuitive to programmers

• Sequential consistency requires that the result of any
execution be the same as though

− Memory accesses executed by each proc. were kept in order
− The accesses among different processors were arbitrarily

interleaved

14

Sequential Consistency (cont.)
• Sequential consistency (SC)

− Formalized by Leslie Lamport in 1979
− “A system is sequentially consistent if the result of any

execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in the order specified by the
program”

− Defining SC is one of the many achievements that earned
Lamport the Turing award in 2013

• Sequential Consistency =
arbitrary order-preserving interleaving
of memory references of sequential programs

15
http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf

http://csg.csail.mit.edu/6.823S14/lectures/L22.pdf

The Examples
• With SC,
• Example-1:

− Must delay the read of A or
B (A == 0 or B == 0) until the
previous write has
completed (B = 1 or A = 1)

− Cannot simply place the
write in a buffer and
continue with the read

• Example-2:
− Print(B)/Print(A) cannot

happen before A = 1/B = 1
p 00 cannot be printed

16

P1

A = 1;
L1: If (B == 0) … …

P2

B = 1;
L2: If (A == 0) … …

Memory Consistency Model[一致性模型]

• Memory consistency model (or just “memory model”)
defines the allowed orderings of multiple threads on a
multiprocessor

− E.g., orderings that print 01/11 are allowed, but not 00

• A memory consistency model is a contract between the
hw and sw

− The hw promises to only reorder operations in ways allowed by
the model

− In return, the sw acknowledges that all such reorderings are
possible and that is needs to account for them

17
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Issues of SC[问题]

• SC: just like a switch to select thread to run, and runs its
next event completely

− Events happen in program order

• SC presents a simple programming paradigm
• But, SC reduces potential performance

− Especially in a multiprocessor with a large number of processors
or long interconnect delays

• Simplest way to implement SC
− A processor delays the completion of any memory access until

all the invalidations caused by that access are completed
− Example: for a write miss, four processors share a block

p 170 cycles for write: 50 cycles to establish ownership, then 10 cycles to
issue each invalidate, and 80 cycles for an invalidate to complete and be
acknowledged (50 + 40 + 80)

18

Optimizations[优化]

• Goal: develop a model that is simple to explain and yet
allows a high performance implementation

• Solution-1: develop ambitious implementations that
preserve SC but use latency-hiding techniques to reduce
the penalty

• Solution-2: develop less restrictive memory consistency
models that allow for faster hw

− Such models can affect how the programmer sees the
multiprocessor

19

The Example
• SC maintains a single view of memory

− Cannot run (2) until (1) has become visible to every other
thread

• No reason why (2) needs to wait until (1) completes
− (2): a read from B, (1): a write to A
− They don’t interfere with each other at all

p So should be allowed to run in parallel
− Note that event (1) is very slow

p A very high overhead

• SC greatly hurts performance
− The model should be relaxed!!!

p Event(2) should not wait for (1)

20
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

The Example (cont.)
• Place write(1) into a store buffer, rather than waiting for it

to become visible
− Then (2) could start immediately, rather than waiting for (1) to

reach the L3
− The store buffer is on core: very fast to access
− At some time in the future, the cache hierarchy will pull the

write from the store buffer and propagate it through the L3 so
that it becomes visible to other threads

• The buffer helps hide the write latency
• Preserves single-threaded behavior

− Access: store buffer à memory

21
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total Store Ordering[TSO一致性]

• TSO mostly preserves the same guarantees as SC, except
that it allows the use of store buffers

− There buffers hide write latency, making execution significantly
faster

• Retains ordering among writes (that’s why called ‘total
store ordering’)

− Relaxed only the WàR ordering

• Performance gain
− Allow processor to hide latency of writes

when later read is independent

22
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total Store Ordering (cont.)
• While boosting performance, TSO allows behaviors that

SC does not
− I.e., programs running on TSO hw can exhibit behavior that

programmers would find suprising

• The example: both threads first check their local store
buffer, but fails to locate and then fetches from memory

− This program can print 00
− TSO cannot put into practices???

23

• Actually, every modern architecture
includes a store buffer, and so has a
memory model at least as weak as
TSO

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Partial Store Ordering[PSO一致性]

• In TSO, only W→R order is relaxed
− The W→W constraint still exists. Writes by the same thread are

not reordered (they occur in program order)

• In partial store ordering (PSO), W à W is also relaxed

• Example: A and flag are initially 0s
− SC: print ’1’
− TSO: print ‘1’
− PSO: may print ‘0’

24

Thread 1 (on P1)

A = 1;
flag = 1;

Thread 2 (on P2)

while (flag == 0);
print A;

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Aggressive Memory Ordering???
• SC maintains all four memory operation orderings
• Certain orderings can be violated ???

− WàR: store buffer to allow read execute earlier
− WàW: reorder writes in the store buffer

p Earlier write is a cache miss, later is a hit
− RàW, RàR: processor may reorder independent instructions

p Out-of-order execution
− Note that all are valid optimizations if a program consists of a

single instruction stream

• What if we discard all four memory orderings?
− Still a memory consistency model (Release Consistency)

25
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Release Consistency[RC一致性]

• Release Consistency (RC)
− Processors support special synchronization operations
− Memory accesses before memory fence instruction must

complete before the fence issues
− Memory accesses after fence cannot begin until fence

instruction is complete

26

reorderable reads and writes here
...

MEMORY FENCE
...

reorderable reads and writes here
...

MEMORY FENCE

Express Synchronization[同步]

• ’00’ is not allowed in SC (the example)
• All modern architectures include synchronization

operations to bring their relaxed memory models under
control when necessary

− Most common operation: barrier (or fence)

• A barrier inst forces all memory operations before it to
complete before any memory operation after it can begin

− I.e., a barrier inst effectively reinstates SC at a particular point in
program execution

27

Summary: Relaxed Consistency
• Motivation: obtain higher performance by allowing

reordering of memory operations (reordering is not
allowed by SC)

− Relaxed consistency models differ in which memory ordering
constraints they ignore

• One cost is software complexity: programmer or compiler
must correctly insert synchronization to ensure certain
specific operation orderings when needed

− Optimize for the common case: most memory accesses are not
conflicting, so don’t design a system that pays the cost as if they
are

− But in practice complexities encapsulated in libraries that
provide intuitive primitives like lock/unlock, barrier (or lower
level primitives like fence)

28
http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

http://15418.courses.cs.cmu.edu/tsinghua2017content/lectures/12_consistency/12_consistency_slides.pdf

Synchronized Programs[同步程序]

• Two memory accesses by different processors conflict if
− They access the same memory location
− At least one is a write

• Unsynchronized program
− Conflicting accesses not ordered by synchronization (e.g., a

fence, operation with release/acquire semantics, barrier, etc.)
− Unsynchronized programs contain data races: the output of the

program depends on relative speed of processors (non-
deterministic program results)

• In practice, most programs are synchronized (via locks,
barriers, etc. implemented in synchronization libraries)
• Synchronized programs yield SC results on non-SC

systems
− Synchronized programs are data-race-free

29

Locks[锁]

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

− Lock algorithms assume an underlying cache coherence
mechanism – when a process updates a lock, other processes
will eventually see the update

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

30

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Hardware Primitives[硬件元语]

• Basic hardware primitives: a set of hw primitives with the
ability to atomically read and modify a memory location

− The basic building blocks that are used to build a wide variety of
user-level sync operations, including things such as locks and
barriers

− The primitives will be used by system programmers to build a
sync library, a process that is often complex and tricky

• One typical operation for building synchronization
operations is the atomic exchange

− Interchanges a value in a register for a value in memory

31

Atomic Exchange[原子交换]

• To build a simple lock (0: lock free, 1: lock unavailable)
− A processor tries to set the lock by doing an exchange of 1,

which is in a register, with the memory address corresponding
to the lock

• Exchange inst returns value:
− 1: if some other processor had ow already claimed access
− 0: no one has claimed. But it is also changed to 1, preventing

any competing exchange from also retrieving a 0

• Key to using the exchange primitive to implement sync is
that the operation is atomic

− The exchange is indivisible, and two simultaneous exchanges
will be ordered

32

Other Primitives[其他]

• Other atomic primitives
− Test-and-set: tests a value and sets it if the value passes test

p Example: test for 0 and set the value to 1 (similar to atomic exchange)
− Fetch-and-increment: fetches the value of a memory location

and atomically increments it
p Example: using value 0 to indicate that the sync variable is unclaimed

(just as exchange)

• Key property of all atomic primitives
− Read and update a memory value in such a manner that we can

tell whether the two operations executed atomically

33

Atomic Primitives[原子性]

• How to guarantee the atomic primitive?
− Option-1: implement a single atomic memory operation
− Option-2: have a pair of instructions where the 2nd inst returns

a value from which it can be deduced whether the pair of insts
was executed as though the insts were atomic

• Option-1: single
− Requires both a memory read and write in uninterruptable

instruction
p Complicates the coherence: hw cannot allow any other operations

between the read and the write, and yet must not deadlock

• Option-2: pair
− Effectively atomic if it appears as through all other operations

executed by any processor occurred before or after the pair
p No other processor can change the value between the inst pair

34

Atomic Pair[原子对]

• Used in the MIPS processor and RISC-V
• RISC-V: load reserved/store conditional

− Load reserved (lr): loads the contents of memory given by rs1
into rd and creates a reservation on that memory address

p Also called load linked or load locked
− Store conditional (sc): stores the value in rs2 into the memory

address given by rs1

• Store conditional fails (writes a non-zero) if,
− The reservation of the load is broken by a write to the same

memory location
− The processor does a context switch between the instructions

35

Atomic Pair (cont.)
• Instructions lr/sc are used in sequence

− lr returns the initial value
− sc returns 0 only if it succeeds

• Example: use lr/sc to implement an atomic exchange on
the memory location specified by the contents of x1 with
the value in x4

− Anytime a processor intervenes and modifies the value in
memory between the lr and sc, the sc returns a non-zero,
causing the code sequence to try again

36

try: mov x3,x4 ;mov exchange value
lr x2,x1 ;load reserved from
sc x3,0(x1) ;store conditional
bnez x3,try ;branch store fails
mov x4,x2 ;put load value in x4?

Atomic exchange

try: lr x2,x1 ;load reserved 0(x1)
addi x3,x2,1 ;increment
sc x3,0(x1) ;store conditional
bnez x3,try ;branch store fails

Atomic fetch-and-increment

Implementing Locks[实现锁]

• Once we have an atomic operation, we can use the
coherence mechanism of a multiprocessor to implement
spin locks

− Locks that a processor continuously tries to acquire, spinning
around a loop until it succeeds

• Simplest implementation of keeping the lock variables in
memory (there were no cache coherence)
• Cache the locks using the coherence mechanism to

maintain the lock value coherently

37

addi x2,R0,#1
lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,locket ;already locked?

lockit: ld x2,0(x1) ;load of lock
bnez x2,locket ;not available-spin
addi x2,R0,#1 ;load locked value
EXCH x2,0(x1) ;swap
bnez x2,locket ;branch if lock wasn’t 0

