
Advanced Computer
Architecture

高级计算机体系结构

第12讲：WSC & Interconnect
张献伟

xianweiz.github.io
DCS5367, 12/21/2021

https://xianweiz.github.io/

Atomic Pair[原子对]

• Used in the MIPS processor and RISC-V
• RISC-V: load reserved/store conditional

− Load reserved (lr): loads the contents of memory given by rs1
into rd and creates a reservation on that memory address

p Also called load linked or load locked
− Store conditional (sc): stores the value in rs2 into the memory

address given by rs1

• Store conditional fails (writes a non-zero) if,
− The reservation of the load is broken by a write to the same

memory location
− The processor does a context switch between the instructions

2

Atomic Pair (cont.)
• Instructions lr/sc are used in sequence

− lr returns the initial value
− sc returns 0 only if it succeeds

• Example: use lr/sc to implement an atomic exchange on
the memory location specified by the contents of x1 with
the value in x4

− Anytime a processor intervenes and modifies the value in
memory between the lr and sc, the sc returns a non-zero,
causing the code sequence to try again

3

try: mov x3,x4 ;mov exchange value
lr x2,x1 ;load reserved from
sc x3,0(x1) ;store conditional
bnez x3,try ;branch store fails
mov x4,x2 ;put load value in x4?

Atomic exchange

try: lr x2,x1 ;load reserved 0(x1)
addi x3,x2,1 ;increment
sc x3,0(x1) ;store conditional
bnez x3,try ;branch store fails

Atomic fetch-and-increment

Implementing Locks[实现锁]

• Once we have an atomic operation, we can use the
coherence mechanism of a multiprocessor to implement
spin locks

− Locks that a processor continuously tries to acquire, spinning
around a loop until it succeeds

• Simplest implementation of keeping the lock variables in
memory (there were no cache coherence)
• Cache the locks using the coherence mechanism to

maintain the lock value coherently

4

addi x2,R0,#1
lockit: EXCH x2,0(x1) ;atomic exchange

bnez x2,locket ;already locked?

lockit: ld x2,0(x1) ;load of lock
bnez x2,locket ;not available-spin
addi x2,R0,#1 ;load locked value
EXCH x2,0(x1) ;swap
bnez x2,locket ;branch if lock wasn’t 0

Coherence-based Locks[基于一致性]

• Spins by doing reads on a local copy of the lock until it
successfully sees that the lock is available
• Then, attempts to acquire the lock by doing a swap

operation
− All processes use a swap inst that reads the old value and stores

1 into the lock variable
− The single winner will see the 0, and the losers will see a 1 that

was placed there by the winner
− The winning processor executes the code after the lock and,

when finished, stores a 0 into the lock variable to release the
lock

5

lockit: ld x2,0(x1) ;load of lock
bnez x2,locket ;not available-spin
addi x2,R0,#1 ;load locked value
EXCH x2,0(x1) ;swap
bnez x2,locket ;branch if lock wasn’t 0

Coherence-based Locks (cont.)
• To lock a variable using an atomic swap

− Once the processor with the lock stores a 0 into the lock (i.e.,
lock released), all other caches are invalidated and must fetch
the new value to update their copy of the lock[锁释放->竞争]

− One such cache gets the copy of the unlocked value (0) first and
performs the swap[赢得竞争]

− When the cache miss of other processors is satisfied, they find
that the variable is already locked, so they must return to
testing and spinning[继续]

6

lockit: ld x2,0(x1) ;load of lock
bnez x2,locket ;not available-spin
addi x2,R0,#1 ;load locked value
EXCH x2,0(x1) ;swap
bnez x2,locket ;branch if lock wasn’t 0

Coherence-based Locks (cont.)

7

Languages’ Memory Models[语言内存模型]

• Besides hardware, compilers can also reorder memory
operations

− Example: the program always prints a string of 100 ‘1’s
− Possible to optimize the code?

p Loop-invariant code motion: move the write outside the loop
p Dead store elimination: remove X = 0

− These two programs are totally equivalent
p Produce the same output

8

X = 0
for i in range(100):

X = 1
print X

X = 1
for i in range(100):

print X

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Languages’ Memory Models (cont.)
• Now suppose there’s another thread running in parallel

with the program, and it performs a single write to X
− The first program

p It can print strings like 11101111 …, so long as there’s only one single
zero (because it will reset X = 1 on the next iteration)

− The second program
p It can print strings like 1110000 …, where once it starts printing 0s it

never goes back to 1s
− The first can never print 1110000…; the second cannot print

11011111…

9

X = 1
for i in range(100):

print X

X = 0

X = 0
for i in range(100):

X = 1
print X

X = 0

With parallelism, the compiler optimization no longer produces
an equivalent program.

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Languages’ Memory Models (cont.)
• Memory consistency at the program level
• The compiler optimization is effectively reordering

− It’s rearranging (and removing some) memory accesses in ways
that may or may not be visible to programmers

• To preserve intuitive behavior, programming languages
need memory models of their own,

− To provide a contract to programmers about how their memory
operations will be reordered

10
https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Summary
• Multiprocessors with thread-level parallelism

− Sharing memory, having private caches
• Cache coherence

− Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the shared
bus so they can update the sharing status of the block, if
necessary

− Directory-based: A single location (directory) keeps track of the
sharing status of a block of memory

• Memory consistency
− Sequential consistency: maintains all four memory operation

orderings (W→R, R→R, R→W, W→W)
− Relaxed consistency: allows certain orderings to be violated

p TSO, PSO, RC

11

12

Warehouse Scale Computing

Parallelism[并行]

• Instruction-level parallelism
(ILP)

− Pipelining, speculation, OoO, …

• Data-level parallelism (DLP)
− Vectors, GPU, AVX, …

• Thread-level parallelism (TLP)
− Multithreading, multi-cores

• Request-level parallelism (RLP)
− Parallelism among multi

decoupled tasks

13
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Request-level Parallelism[请求级并行]

• Hundreds or thousands of requests per second
− Not your laptop or cell-phone, but popular Internet services like

web search, social networking, …
− Such requests are largely independent

p Often involve read-mostly databases
p Rarely involve strict read–write data sharing or synchronization across

requests

• Computation easily partitioned within a request and
across different requests

14
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Luiz André Barroso
• Google Fellow & former VP of

Engineering
• ACM-IEEE CS Eckert-Mauchly Award

− For pioneering the design of
warehouse-scale computing and
driving it from concept to industry

• Award lecture:
− Q: What to focus on while educating

the next generation of computer
engineers and scientists?

− A: … being a good programmer is
really important, doesn’t matter what
you are where you are in the field of
computer science; make sure you are
graduating good programmers
whatever that means for you …

15

Warehouse-scale Computer[仓储规模]

• Massive scale datacenters: 10,000 to 100,000 servers +
networks to connect them together

− Emphasize cost-efficiency
− Attention to power: distribution and cooling
− (relatively) homogeneous hardware/software

• Single gigantic machine
• Offer very large applications (Internet services): search,

voice search (Siri), social networks, video sharing
• Very highly available: < 1 hour down/year

− Must cope with failures common at scale
• “…WSCs are no less worthy of the expertise of computer

systems architects than any other class of machines”
(Barroso and Hoelzle, 2009)

16
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Warehouse-scale Computer (cont.)
• Differences with HPC “clusters”:

− Clusters have higher performance processors and network
p HPC apps are more interdependent and communicate more frequently

− Clusters emphasize TLP and DLP, WSCs emphasize request-level
parallelism

p HPC emphasizes latency to complete a single task vs. bandwidth to
complete many independent tasks

p HPC clusters tend to have long-running jobs that keep the servers fully
utilized

• Differences with datacenters:
− Datacenters consolidate different machines and software into

one location
− Datacenters emphasize virtual machines and hardware

heterogeneity in order to serve varied customers

17

Design Goals of WSC[设计目标]

• WSCs share many goals and requirements with servers
− Cost-performance

p Work done per $
− Energy efficiency

p Work done per J
− Dependability via redundancy

p 99.99% of availability, i.e., less 1h down per year
− Network I/O

p Good interface to external world
− Both interactive and batch processing workloads

p Interactive: e.g., search and social networking with Billions of users
p Batch: calculate metadata useful to such services, e.g., MapReduce jobs

to convert crawled pages into search indices

18

Design Goals of WSC (cont.)
• Unique to WSCs

− Ample parallelism:
p Batch apps: many independent data sets with independent processing

(Data-Level and Request-Level Parallelism)
− Scale and its Opportunities/Problems

p Relatively small number of WSC make design cost expensive and
difficult to amortize

p But price breaks are possible from purchases of very large numbers of
commodity servers

p Must also prepare for high component failures
− Operational Costs Count:

p Cost of equipment purchases << cost of ownership
− Location counts
− Computing efficiently at low utilization

p WSC servers are rarely fully utilized

19

Google’s Oregon WSC

20
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Containers in WSCs[集装箱]

21

Inside WSC Inside Container

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Programming Models for WSCs[编程模型]

• Batch processing framework: MapReduce
− The MapReduce runtime environment schedules map tasks and

reduce tasks to the nodes of a WSC
− MapReduce can be thought of as a generalization of the SIMD

operation
p Except that a function to be applied is passed to the data

• Map: (in_key, in_value) → list(interm_key, interm_val)
− Slice data into “shards” or “splits” and distribute to workers
− Compute set of intermediate key/value pairs

• Reduce: (interm_key, list(interm_value)) → list(out_value)
− Combines all intermediate values for a particular key
− Produces a set of merged output values (usually just one)

22
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

MapReduce Example
• Map phase: (doc name, doc contents) → list(word, count)

• Reduce phase: (word, list(count)) → (word, count_sum)

23

map(key, value):
for each word w in value:

emit(w, 1)

reduce(key, values):
result = 0
for each v in values:

result += v
emit(key, result)

// “I do I learn”” → [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]

// (“I”, [1,1]) → (“I”,2)

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

WSC Software[软件]

• Must scale up and down gracefully
in response to varying demand

− Varying workloads impact Availability

• Must cope with failures gracefully
− High failure rate impact Reliability

Availability

• More elaborate hierarchy of
memories, failure tolerance,
workload accommodation makes
WSC software development more
challenging than software for
single computer

24

Equipment Inside a WSC
• Server[服务器]

− 1 ¾ inches high “1U”
− 8 cores, 16 GB DRAM, 4x1 TB disk

• Rack[机架]
− 7 foot
− 40-80 servers + Ethernet local area

network (1-10 Gbps) switch in middle
(“rack switch”)

• Array (a.k.a., cluster)[集群]
− 16-32 server racks + larger local area

network switch (“array switch”)
p Expensive switch (10X bandwidth, 100x

cost)

25
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Server, Rack, Array

26

WSC Architecture[架构]

• 1U Server:
− DRAM: 64GB, 100ns
− Disk: 10TB, 10ms

• Rack (80 severs):
− DRAM: 5TB, 300µs
− Disk: 800TB, 11ms

• Array (30 racks):
− DRAM: 150TB, 500µs
− Disk: 24PB, 12ms

27
https://cs61c.org/fa21/pdfs/lectures/lec25.pdf

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server

https://cs61c.org/fa21/pdfs/lectures/lec25.pdf

Network[网络]

• The WSC needs 40 arrays to reach 100K servers
− One more level in the networking hierarchy

• Conventionally, Layer 3 routers to connect the arrays
together and to the Internet

28

Power vs. Server Utilization[能耗]

• Server power usage as load varies idle to 100%
• Uses ½ peak power when idle!
• Uses ⅔ peak power when 10% utilized! 90%@ 50%!
• Most servers in WSC utilized 10% to 50%
• Goal should be Energy-Proportionality: % peak load = %

peak energy

29
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Power Usage Effectiveness[电源使用效率]

• Overall WSC Energy Efficiency: amount of computational
work performed divided by the total energy used in the
process
• Power Usage Effectiveness (PUE):

− Power efficiency measure for WSC, not including efficiency of
servers, networking gear

− Power usage for non-IT equipment increases PUE
− 1.0 is perfection, higher numbers are worse
− Google WSC’s PUE: 1.2

30
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Power Usage Effectiveness (cont.)
• Average PUE of the 15 google WSCs 2008 – 2017
• Google’s Belgium WSC PUE: 1.09

− Careful air flow handling
− Elevated cold aisle temperatures
− Use of free cooling
− Per-server 12-V DC UPS

31
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

32

Interconnection Network

Interconnection Networks[互联网络]

• An Interconnection Network (ICN) is a programmable
system that transports data between terminals

− To hold our parallel machines together, at the core of parallel
computer architecture

− Share basic concept with LAN/WAN, but very different trade-
offs due to very different time scale/requirements

• Interconnection networks can be grouped into four
domains[分类]

− Depending on number and proximity of devices to be
connected

33

Different Scales of Networks
• Local-Area Networks[局域网络]

− Interconnect autonomous computer systems
− Machine room or throughout a building or campus
− Hundreds of devices interconnected (1,000s with bridging)
− Maximum interconnect distance

p Few meters to tens of kilometers
p Example (most popular): Ethernet, with 10 Gbps over 40Km

• Wide-Area Networks[广域网络]
− Interconnect systems distributed across the globe
− Internetworking support is required
− Millions of devices interconnected
− Maximum interconnect distance

p many thousands of kilometers

34
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Different Scales of Networks (cont.)
• System-Area Networks[系统区域网络]

− Interconnects within one “machine”
p Interconnect in a multi-processor system
p Interconnect in a supercomputer

• Hundreds to thousands of devices interconnected
− Tianhe-2 supercomputer (16K nodes, each with 2 12-core

processors)

• Maximum interconnect distance
− Fraction to tens of meters (typical)
− A few hundred meters (some)

p InfiniBand: 120 Gbps over a distance
of 300m

35
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Different Scales of Networks (cont.)
• On-Chip Networks[片上网络]

− Interconnect within a single chip

• Devices are micro-architectural elements
− Caches, directories, processor cores

• Currently, designs with 10s of devices are common
− Ex: IBM Cell, Intel multicores, Tile processors

• Projected systems with 100s of devices on the horizon

• Proximity: millimeters

36
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

We are concerned with On-Chip and System-Area Networks

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Why Study Interconnects?
• They provide external connectivity from system to

outside world
− Also, connectivity within a single computer system at many

levels
p I/O units, boards, chips, modules and blocks inside chips

• Interconnection networks should be well designed
− To transfer the maximum amount of information
− Within the least amount of time (and cost, power constraints)
− So as not to bottleneck the system

• Application: managing communication can be critical to
performance

37
https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

Why Study Interconnects? (cont.)
• Trends: high demand on communication bandwidth

− increased computing power and storage capacity
− switched networks are replacing buses

• Computer architects/engineers must understand
interconnect problems and solutions in order to more
effectively design and evaluate systems

38
https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

Basic Definitions[基本定义]

• An interconnection network is a graph of nodes
interconnected using channels
• Node[节点]: a vertex in the network graph

− Terminal nodes: where messages originate and terminate
− Switch (router) nodes: forward messages from in ports to out

ports
− Switch degree: number of in/out ports per switch

• Channel[信道]: an edge in the graph
− i.e., an ordered pair (x,y) where x and y are nodes
− Channel = link (transmission medium) + transmitter + receiver
− Channel width: w = number of bits transferred per cycle
− Phit (physical unit or digit): data transferred per cycle
− Signaling rate: f = number of transfer cycles per second
− Channel bandwidth: b = w × f

39https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Basic Definitions (cont.)
• Path (or route): a sequence of channels, connecting a

source node to a destination node
• Minimal Path: a path with the minimum number of

channels between a source and a destination
− Rxy = set of all minimal paths from x to y

• Network Diameter: longest minimal path over all (source,
destination) pairs

40https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

ICN Design Considerations[设计考虑]

• Application requirements
− Number of terminals or ports to support
− Peak bandwidth of each terminal
− Average bandwidth of each terminal
− Latency requirements
− Message size distribution
− Expected traffic patterns
− Required quality of service
− Required reliability and availability

• Job of an interconnection network is to transfer
information from source node to dest. node in support of
network transactions that realize the application

− Latency as small as possible
− As many concurrent transfers as possible
− Cost as low as possible

41https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

ICN Design Considerations (cont.)
• Example requirements for a coherent processor-memory

interconnect
− Processor ports 1-2048
− Memory ports 1-4096
− Peak BW 8 GB/s
− Average BW 400 MB/s
− Message Latency 100 ns
− Message size 64 or 576 bits
− Traffic pattern arbitrary
− Quality of service none
− Reliability no message loss
− Availability 0.999 to 0.99999

42https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

ICN Design Considerations (cont.)
• Technology constraints

− Signaling rate
− Chip pin count (if off-chip networking)
− Area constraints (typically for on-chip networking)
− Chip cost
− Circuit board cost (if backplane boards needed)
− Signals per circuit board
− Signals per cable
− Cable cost
− Cable length
− Channel and switch power constraints
− …

43https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Off-chip vs. On-chip ICNs[片外 vs. 片上]

• Off-chip: I/O bottlenecks
− Pin-limited bandwidth
− Inherent overheads of off-chip I/O transmission

• On-chip
− Wiring constraints

p Metal layer limitations
p Horizontal and vertical layout
p Short, fixed length
p Repeater insertion limits routing of wires

• Avoid routing over dense logic
• Impact wiring density

− Power
p Consume 10-15% or more of die power budget

− Latency
p Different order of magnitude
p Routers consume significant fraction of latency

44https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Main Aspects of an ICN[主要因素]

• Topology[拓扑]
− Static arrangement of channels and nodes in a network

• Routing[寻路]
− Determines the set of paths a message/packet can follow

• Flow control[流控]
− Allocating network resources (channels, buffers, etc.) to packets

and managing contention
• Switch microarchitecture[交换机微架构]

− Internal architecture of a network switch
• Network interface[网络接口]

− How to interface a terminal with a switch
• Link architecture[链接架构]

− Signaling technology and data representation on the channel

45https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Types of Topologies[拓扑类型]

• Direct[直接拓扑结构]
− Each router is associated with a terminal node
− All routers are sources and destinations of traffic

• Indirect[非直接拓扑结构]
− Routers are distinct from terminal nodes
− Terminal nodes can source/sink traffic
− Intermediate nodes switch traffic between terminal nodes

46https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Network Topologies[拓扑]

• Blocking vs. Non-Blocking
− If connecting any permutation of sources & destinations is

possible, network is non-blocking; otherwise network is
blocking

• A variety of network topologies have been proposed and
implemented

− These topologies tradeoff performance for cost
− Commercial machines often implement hybrids of multiple

topologies for reasons of packaging, cost, and available
components

47
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Metrics for Comparing Topologies[指标]

• Switch degree[交换度]
− Proxy for switch complexity

• Hop count[跳数] (average and worst case)
− Proxy for network latency

• Maximum channel load[最大通道负载]
− A proxy for hotspot load

• Bisection bandwidth[对半带宽]
− Proxy for maximum traffic a network can support under a

uniform traffic pattern

• Path diversity[路径多样性]
− Provides routing flexibility for load balancing and fault tolerance
− Enables better congestion avoidance

48
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Topologies: Buses[总线]

• All processors access a common bus for exchanging data
• The distance between any two nodes is O(1) in a bus. The

bus also provides a convenient broadcast media
• However, the bandwidth of the shared bus is a major

bottleneck
• Typical bus based machines are limited to dozens of

nodes
− Sun Enterprise servers and Intel Pentium based shared-bus

multiprocessors are examples of such architectures

49
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Topologies: Crossbars[交叉]

• A crossbar network uses an p×m grid of switches to
connect p inputs to m outputs in a non-blocking manner
• The cost of a crossbar of p processors grows as O(p2)

− This is generally difficult to scale for large values of p
− Examples of machines that employ crossbars include the Sun

Ultra HPC 10000 and the Fujitsu VPP500

50
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

https://www.fujitsu.com/global/products/computing/servers/unix/sparc-enterprise/technology/performance/crossbar.html

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf
https://www.fujitsu.com/global/products/computing/servers/unix/sparc-enterprise/technology/performance/crossbar.html

Topologies: Multistage[多级]

• Multistage interconnects strike a compromise between
Buses and Crossbars

− Crossbars have excellent performance scalability but poor cost
scalability

− Buses have excellent cost scalability, but poor performance
scalability

51
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Topologies: Fully Connected[全连]

• Each processor is connected to every other processor
• The number of links in the network scales as O(p2)
• While the performance scales very well, the hardware

complexity is not realizable for large values of p
• In this sense, these networks are static counterparts of

crossbars

52
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Topologies: Star Connected[星型]

• Every node is connected only to a common node at the
center
• Distance between any pair of nodes is O(1)
• However, the central node becomes a bottleneck
• In this sense, star connected networks are static

counterparts of buses

53
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Topologies: Linear Arrays, Meshes, …
• In a linear array, each node has two neighbors, one to its

left and one to its right
− If the nodes at either end are connected, we refer to it as a 1-D

torus or a ring

• A generalization to 2 dimensions has nodes with 4
neighbors, to the north, south, east, and west
• A further generalization to d dimensions has nodes with
2d neighbors

− A special case of a d-dimensional mesh is a hypercube. Here, d
= log p, where p is the total number of nodes

54
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

(a) with no wraparound links; (b) with wraparound link.

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Topologies: Mesh[网格]

• Two and three dimensional meshes
− (a) 2-D mesh with no wraparound
− (b) 2-D mesh with wraparound link (2-D torus)

p Mesh is not symmetric on edges: performance very sensitive to
placement of task on edge vs. middle

p Torus avoids this problem
− (c) a 3-D mesh with no wraparound

55
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Examples

56

Topologies: Tree[树型]

• Diameter and average distance logarithmic
− k-ary tree, height = logk N
− Address specified d-vector of radix k coordinates describing

path down from root
− Route up to common ancestor and down

• Trees can be laid out in 2D with no wire crossings
− This is an attractive property of trees

57
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

Topologies: Fat-Tree[胖树]

• Links higher up the tree potentially carry more traffic than
those at the lower levels
• For this reason, a variant called a fat-tree, fattens the

links as we go up the tree

58
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Interconnection%20Network.pdf

And Other Topologies …
• Many other topologies with different properties

discussed in the literature
− Clos Networks
− Omega networks
− Benes networks
− Bitonic networks
− Flattened Butterfly
− Dragonfly
− Cube-connected cycles
− HyperX
− …

• However, these are typically special purpose and not used
in general purpose hardware

59
https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

