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Atomic Pair[J&E X}

* Used in the MIPS processor and RISC-V

* RISC-V: load reserved/store conditional

— Load reserved (Ir): loads the contents of memory given by rsl
into rd and creates a reservation on that memory address

o Also called load linked or load locked
— Store conditional (sc): stores the value in rs2 into the memory
address given by rs1
* Store conditional fails (writes a non-zero) if,

— The reservation of the load is broken by a write to the same
memory location

— The processor does a context switch between the instructions
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Atomic Pair (cont.)

* Instructions Ir/sc are used in sequence
— Ir returns the initial value
- sc returns O only if it succeeds

* Example: use Ir/sc to implement an atomic exchange on
the memory location specified by the contents of x1 with
the value in x4

— Anytime a processor intervenes and modifies the value in
memory between the Ir and sc, the sc returns a non-zero,
causing the code sequence to try again

try: mov x3,x4 ;mov exchange value

try: Ir x2,x1 ;load reserved 0(x1
Ir x2,x1 ;load reserved from Y . . (x1)
N addi x3,x2,1  ;increment

sc x3,0(x1) ;store conditional s

_ sc x3,0(x1) ;store conditional
bnez x3,try :branch store fails .

) bnez x3,try :branch store fails
mov x4,x2 ;put load value in x4?

Atomic exchange . .
G o g K B g Atomic fetch-and-increment
ﬁ'}“ u!\“: SUN YAT-SEN UNIVERSITY " ‘.q L




Implementing Locks[sz 84

* Once we have an atomic operation, we can use the

coherence mechanism of a multiprocessor to implement
spin locks

— Locks that a processor continuously tries to acquire, spinning
around a loop until it succeeds

* Simplest implementation of keeping the lock variables in
memory (there were no cache coherence)

* Cache the locks using the coherence mechanism to
maintain the lock value coherently

lockit: Id x2,0(x1) ;load of lock

addi x2,R0,#1 bnez x2,locket ;not available-spin
lockit: EXCH x2,0(x1) ;atomic exchange addi x2,R0,#1 ;load locked value
bnez x2,locket ;already locked? EXCH x2,0(x1)  ;swap

bnez x2,locket ;branch if lock wasn’t 0
“,,‘ ‘\ ‘1’ f !
\"/" i\m‘-smﬁmsi% " ;G ~




Coherence-based Locks[3&F—# )

~

 Spins by doing reads on a local copy of the lock until it
successfully sees that the lock is available

* Then, attempts to acquire the lock by doing a swap
operation

— All processes use a swap inst that reads the old value and stores
1 into the lock variable

— The single winner will see the 0, and the losers will see a 1 that
was placed there by the winner

- The winning processor executes the code after the lock and,

when finished, stores a O into the lock variable to release the

lock L b e AL

bnez x2,locket ;not available-spin
addi x2,RO,#1 ;load locked value
EXCH x2,0(x1) ;swap

bnez x2,locket ;branch if lock wasn’t O

AV f
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Coherence-based Locks (cont.)

* To lock a variable using an atomic swap

— Once the processor with the lock stores a 0 into the lock (i.e.,
lock released), all other caches are invalidated and must fetch
the new value to update their copy of the lock [ F&/it-> 7% 4]

— One such cache gets the copy of the unlocked value (0) first and
performs the swap[#if5 74+

— When the cache miss of other processors is satisfied, they find
that the variable is already locked, so they must return to
testing and spinning[4% 4]

lockit: Id x2,0(x1) ;load of lock
bnez x2,locket ;not available-spin
addi x2,RO,#1 ;load locked value
EXCH x2,0(x1) ;swap
bnez x2,locket ;branch if lock wasn’t O

[ 30) g
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Coherence-based Locks (cont.)

Coherence
state of lock at

Step PO P1 P2 end of step Bus/directory activity

1 Has lock  Begins spin, testing  Begins spin, Shared Cache misses for P1 and P2 satisfied
if lock =0 testing if lock =0 in either order. Lock state becomes

shared.

2 Set lock  (Invahdate (Invalidate Exclusive (P0) Write invalidate of lock variable

to 0 received) received) from PO.

3 Cache miss Cache miss Shared Bus/directory services P2 cache
miss; write-back from PO; state
shared.

4 (Waits while bus/ Lock =0 test Shared Cache miss for P2 satisfied.

directory busy) succeeds

5 Lock =0 Exccutes swap, Shared Cache miss for Pl satisfied.

gets cache miss

6 Executes swap, Completes swap:  Exclusive (P2) Bus/directory services P2 cache
gets cache miss retums 0 and sets miss; generates invahdate; lock 1s

lock =1 exclusive.

7 Swap completes Enter cntical Exclusive (P1) Bus/irectory services Pl cache
and returns 1, and  section miss; sends invalidate and generates
sets Jock =1 write-back from P2.

8 Spins, testing if None

» X

Fux 2
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Languages’ Memory Modelsiszpmzn

* Besides hardware, compilers can also reorder memory
operations

— Example: the program always prints a string of 100 ‘1’s

— Possible to optimize the code?

o Loop-invariant code motion: move the write outside the loop
o Dead store elimination: remove X =0

— These two programs are totally equivalent
o Produce the same output

X=0 X=1

foriin range(100): foriin range(100):
X=1 print X
print X

8 Dhge
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Languages’ Memory Models (cont.)

* Now suppose there’s another thread running in parallel
with the program, and it performs a single write to X

— The first program

o It can print strings like 11101111 ..., so long as there’s only one single
zero (because it will reset X = 1 on the next iteration)

— The second program

o It can print strings like 1110000 ..., where once it starts printing Os it
never goes back to 1s

— The first can never print 1110000...; the second cannot print

11011111... With p?rallelism, the compiler optimization no longer produces
an equivalent program.

X=0 X=1
foriin range(100): foriin range(100):

X=1 print X

print X

X=0
0 Dg:
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Languages’ Memory Models (cont.)

* Memory consistency at the program level

* The compiler optimization is effectively reordering

— It’s rearranging (and removing some) memory accesses in ways
that may or may not be visible to programmers

* To preserve intuitive behavior, programming languages
need memory models of their own,

— To provide a contract to programmers about how their memory

operations will be reordered
std:memory_order

Defined in header <atomic>

typedef enum memory order {
memory order relaxed,
memory order _consume,
memory order_acquire,
memory _order_release, {until C++20)
memory_order_acq_rel,
memory order_seq cst

} memory order;

enum class memory order : /*unspecified*/ {
relaxed, consume, acquire, release, acq rel, seq cst

(since C++11)

inline constexpr memory order memory order relaxed = memory order::relaxed;
inline constexpr memory order memory order_consume = memory order::consume; (since C++20)
inline constexpr memory order memory order_acquire = memory order::acquire;
inline constexpr memory order memory order_ release = memory order::release;
inline constexpr memory order memory order _acq_rel = memory order::acq_rel;
inline constexpr memory order memory order_seq_cst = memory order::seq _cst;

Lo Dg:
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Summary

* Multiprocessors with thread-level parallelism
— Sharing memory, having private caches

e Cache coherence

— Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the shared
bus so they can update the sharing status of the block, if
necessary

- Directory-based: A single location (directory) keeps track of the
sharing status of a block of memory
* Memory consistency

- Sequential consistency: maintains all four memory operation
orderings (W—->R, R->R, R>W, W->W)

— Relaxed consistency: allows certain orderings to be violated
o TS0, PSO, RC

u*' X ’g ¥
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Warehouse Scale Computing
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Parallelism[3f:47

* Instruction-level parallelism

(ILP)
~ Pipelining, speculation, 000, ... W:;“{%‘%ZSF
e Data-level parallelism (DLP)
- Vectors, GPU, AVX, ... s«;_- =" computer "~
* Thread-level parallelism (TLP) [ e o }
— Multithreading, multi-cores | input/Output |
gy |
* Request-level parallelism (RLP) ChMmry| # \L:;gl{c;Gates
— Parallelism among multi v

decoupled tasks

13 iﬂtz
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Request-level Parallelismii k4 3f

17]

 Hundreds or thousands of requests per second

- Not your laptop or cell-phone, but popular Internet services like

web search, social networking, ...

— Such requests are largely independent
o Often involve read-mostly databases

o Rarely involve strict read—write data sharing or synchronization across

requests

 Computation easily partitioned within a request and

across different requests
y

Google Web server -4+—» Spell checker

‘\ \

\

1\

.|>\ Ad server
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Luiz André Barroso

* Google Fellow & former VP of
Engineering

* ACM-IEEE CS Eckert-Mauchly Award

— For pioneering the design of
warehouse-scale computing and
driving it from concept to industry

e Award lecture:

— Q: What to focus on while educating
the next generation of computer |
engineers and scientists? ,

- A: ... being a good programmer is
really important, doesn’t matter what BEEZEENIAVAEE

you are Where YOU are in the field of A Brief History of Warehouse-Scale
computer science, make sure YOU alre e rtetialate

g ra d u atl ng good p rog rammers Reflections Upon Receiving the 2020 Eckert-Mauchly Award
Whatever that means for you . Luiz André Barroso ®, Google, Mountain View, CA, 94043, USA
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Warehouse-scale Computer[f g

* Massive scale datacenters: 10,000 to 100,000 servers +
networks to connect them together

- Emphasize cost-efficiency
— Attention to power: distribution and cooling
— (relatively) homogeneous hardware/software

* Single gigantic machine

e Offer very large applications (Internet services): search,
voice search (Siri), social networks, video sharing

* Very highly available: < 1 hour down/year

— Must cope with failures common at scale

e “...WSCs are no less worthy of the expertise of computer
systems architects than any other class of machines”
(Barroso and Hoelzle, 2009)

»l G
https://inst.eecs.berkeley.edu/~cs61c/resources/sul8 lec/Lecture21.pdf s ‘G -
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Warehouse-scale Computer (cont.)

e Differences with HPC “clusters”:

— Clusters have higher performance processors and network
o HPC apps are more interdependent and communicate more frequently
— Clusters emphasize TLP and DLP, WSCs emphasize request-level
parallelism

o HPC emphasizes latency to complete a single task vs. bandwidth to
complete many independent tasks

o HPC clusters tend to have long-running jobs that keep the servers fully
utilized

e Differences with datacenters:

— Datacenters consolidate different machines and software into
one location

— Datacenters emphasize virtual machines and hardware
heterogeneity in order to serve varied customers

‘ ' 'l L
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Design Goals of WSC[#it H ##]

* WSCs share many goals and requirements with servers

— Cost-performance
o Work done per S
- Energy efficiency
o Work done perJ
- Dependability via redundancy
o 99.99% of availability, i.e., less 1h down per year
- Network I/O
o Good interface to external world
- Both interactive and batch processing workloads

o Interactive: e.g., search and social networking with Billions of users

o Batch: calculate metadata useful to such services, e.g., MapReduce jobs
to convert crawled pages into search indices

A\ ¥
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Design Goals of WSC (cont.)

* Unique to WSCs

- Ample parallelism:

o Batch apps: many independent data sets with independent processing
(Data-Level and Request-Level Parallelism)

— Scale and its Opportunities/Problems

o Relatively small number of WSC make design cost expensive and
difficult to amortize

o But price breaks are possible from purchases of very large numbers of
commodity servers

o Must also prepare for high component failures

— Operational Costs Count:
o Cost of equipment purchases << cost of ownership
— Location counts

— Computing efficiently at low utilization
o WSC servers are rarely fully utilized

AN f
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Google’s Oregon WSC

SUN YAT-SEN UNIVERSITY



https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Containers in WSCs[& 2544

Inside WSC Inside Container
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Programming Models for WSCs|[ 4 f2 45 5]

* Batch processing framework: MapReduce

— The MapReduce runtime environment schedules map tasks and
reduce tasks to the nodes of a WSC

— MapReduce can be thought of as a generalization of the SIMD
operation
o Except that a function to be applied is passed to the data
 Map: (in_key, in_value) = list(interm_key, interm_val)
— Slice data into “shards” or “splits” and distribute to workers
— Compute set of intermediate key/value pairs

* Reduce: (interm key, list(interm value)) = list(out value)
— Combines all intermediate values for a particular key
- Produces a set of merged output values (usually just one)

22 Dhage
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MapReduce Example

* Map phase: (doc name, doc contents) = list(word, count)
// “I'do | learn™” - [(”I”,1),(”do”,1),(”I”,1),(”Iearn”,1)]

map(key, value):
for each word w in value:
emit(w, 1)

e Reduce phase: (word, list(count)) - (word, count_sum)
/1“7, [1,1]) = (“1",2)

reduce(key, values):
result=0
for each vin values:
result +=v
emit(key, result)

¥
L e
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WSC Software[# 4]

0.03

* Must scale up and down gracefully
in response to varying demand
- Varying workloads impact Availability :

2 0.015
S

* Must cope with failures gracefully

— High failure rate impact Reliability
Availability

* More elaborate hierarchy of
memories, failure tolerance,
workload accommodation makes P ™
WSC software development more S~ x \ _
challenging than software for k : W
single computer

0.025

0.01

0.005

0

Workloa

Midnight Noon Midnight
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Equipment Inside a WSC

* Server[Jk %5 %3] -
— 1 % inches high “1U”
— 8 cores, 16 GB DRAM, 4x1 TB disk

* Rack[#l3]
— 7 foot

— 40-80 servers + Ethernet local area
network (1-10 Gbps) switch in middle
(“rack switch”)

* Array (a.k.a., cluster)[&E#]

— 16-32 server racks + larger local area
network switch (“array switch”)

o Expensive switch (10X bandwidth, 100x
cost)

b
25 d 1@2
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https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture21.pdf

Server, Rack, Array
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WSC Architecture[ZE#]

e 1U Server:
— DRAM: 64GB, 100ns
— Disk: 10TB, 10ms

* Rack (80 severs):
- DRAM: 5TB, 300us
— Disk: 800TB, 11ms

v

& * Array (30 racks):
N - DRAM: 150TB, 500us

— Disk: 24PB, 12ms

Lower latency to DRAM in another server than local disk
Higher bandwidth to local disk than to DRAM in another server
@ tuxs 27 IR
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Network[m

* The WSC needs 40 arrays to reach 100K servers

— One more level in the networking hierarchy

* Conventionally, Layer 3 routers to connect the arrays

together and to the Internet

Internet

Datacenter
Layer 3

Layer 2

Key:

* CR = L3 core router

* AR = L3 access router

» S = Array switch

» LB = Load balancer

* R = Rack of 80 servers
with top of rack switch

28



Power vs. Server Utilization[gg3E)

e Server power usage as load varies idle to 100%

* Uses Y2 peak power when idle!

* Uses % peak power when 10% utilized! 90% @ 50%!
* Most servers in WSC utilized 10% to 50%

* Goal should be Energy-Proportionality: % peak load = %
peak energy

BCPU B DRAM Disk Other

10000 -
90.00 4

80.00 -

70.00 4

60.00 4
5000 4
4000 1
30.00 -
2000 4
1000 4
000 4 T T T T T T T
e 7 14 21 29 36 43 50 S 64 4 79 86 93 100
Compute load (%) o _%
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Power Usage Effectiveness| i # Fi x %]

* Overall WSC Energy Efficiency: amount of computational
work performed divided by the total energy used in the
process

* Power Usage Effectiveness (PUE):

Total Building Power

IT equipment Power

— Power efficiency measure for WSC, not including efficiency of
servers, networking gear

— Power usage for non-IT equipment increases PUE
- 1.0 is perfection, higher numbers are worse
- Google WSC’s PUE: 1.2

30 | ‘i@{
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Power Usage Effectiveness (cont.)

* Average PUE of the 15 google WSCs 2008 — 2017

* Google’s Belgium WSC PUE: 1.09

— Careful air flow handling

— Elevated cold aisle temperatures
— Use of free cooling

— Per-server 12-V DC UPS

Continuous PUE Improvement
Average PUE for all data centers

126
1221
w
> 118
114
A A ®
A AN
1101 \—/ \/ @
20082009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

X %

m—= Quarterly PUE = Trailing twelve-month (TTM) PUE A
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Interconnection Network
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Interconnection Networks| & 5t/ %)

* An Interconnection Network (ICN) is a programmable
system that transports data between terminals

— To hold our parallel machines together, at the core of parallel
computer architecture

— Share basic concept with LAN/WAN, but very different trade-
offs due to very different time scale/requirements

* Interconnection networks can be grouped into four
domains[725]
- Depending on number and proximity of devices to be

connected
Processor Processor Processor Processor
Local Cache Local Cache Local Cache Local Cache
Memory Memory Memory Memory
( Interconnect )

SN ¥
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Different Scales of Networks

* Local-Area Networks|[ /55 ' 2%
- Interconnect autonomous computer systems
— Machine room or throughout a building or campus
- Hundreds of devices interconnected (1,000s with bridging)

— Maximum interconnect distance
o Few meters to tens of kilometers
o Example (most popular): Ethernet, with 10 Gbps over 40Km

* Wide-Area Networks[/ 1 X 2% ]

— Interconnect systems distributed across the globe

- Internetworking support is required | ... < e =

- Millions of devices interconnected = & & @ w
- Maximum interconnect distance | "
o many thousands of kilometers

34 | '@
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Different Scales of Networks (cont.)

 System-Area Networks[ £ 4t [X 1, X 24 ]
— Interconnects within one “machine”

o Interconnect in a multi-processor system
o Interconnect in a supercomputer

e Hundreds to thousands of devices interconnected

— Tianhe-2 supercomputer (16K nodes, each with 2 12-core
processors)

Perf  54.9PFlops/33.36PFlops

. . . o Highlights of Tianhe-2
e Maximum interconnect distance o 1

25+8+13+24=170 (720m?)

— Fraction to tens of meters (typical) « ez g 5| P
__ . /JH-Express2
— A few hundred meters (some) P o

&ipuw (8% board) E > & ) & Z'Z
o InfiniBand: 120 Gbps over a distance ‘
e

= | /&E board - ‘;_:‘\/g i_\:‘::;
of 300m “ﬁ;ﬁ B2 81y on = ===l

#32000 == FM —
FT-1500 =& & & ¢
bt — & & & D
Hybrid Hierarchy shared storage System
l aB#ER_RL LE H?’FS 12.4PB
=7 National University of Defense Tecknology

”~
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Different Scales of Networks (cont.)

* On-Chip Networks[ I 4%]

- Interconnect within a single chip

 Devices are micro-architectural elements
— Caches, directories, processor cores

* Currently, designs with 10s of devices are common
- Ex: IBM Cell, Intel multicores, Tile processors

* Projected systems with 100s of devices on the horizon

* Proximity: millimeters

We are concerned with On-Chip and System-Area Networks

36 | .@
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Why Study Interconnects?

* They provide external connectivity from system to
outside world

— Also, connectivity within a single computer system at many
levels

o /O units, boards, chips, modules and blocks inside chips
* Interconnection networks should be well desighed
— To transfer the maximum amount of information

- Within the least amount of time (and cost, power constraints)
- So as not to bottleneck the system

* Application: managing communication can be critical to
performance

»;'G‘i

https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf



https://ece757.ece.wisc.edu/lect09-interconnects-1-intro.pdf

Why Study Interconnects? (cont.)

* Trends: high demand on communication bandwidth
- increased computing power and storage capacity
- switched networks are replacing buses

» Computer architects/engineers must understand
interconnect problems and solutions in order to more
effectively de5|gn and evaluate systems

256 Cores
512
« 4-way SIMD FMACs @ 2.5-5 GHz Ny
256 | . 5-10 TFlops on one chip ®
s 128 -7 Some apps require 1 bytg/flop T}S,‘:F')S Manycore
€ axl Need 5-10 TB/s of off-chip BW - ©, el Era
3 - Need 510 TB/s of on-chip BW too! Tiges © =
5 % G ©'oraso
2 16 T o laza @ @ @ Rock
£ _ e Cell
5 8 Niagra @ @ Nehalem
Z Barcelona
4 ® @ Nehalem
5 Powers ; Opteron o )130"360
286 386 486 Pentum P2 p3 p4 CO'®2  Powers
1 o0—©0 &) o © 000 O ltanium
Athalon R
1980 1985 1990 1995 2000 2005 2010 2015 2020 4
20
UHE
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Basic Definitions[# 4z X

* An interconnection network is a graph of nodes
interconnected using channels

* Node[ 77./4]: a vertex in the network graph
— Terminal nodes: where messages originate and terminate

— Switch (router) nodes: forward messages from in ports to out
ports

— Switch degree: number of in/out ports per switch

* Channel[/Z:&]: an edge in the graph
- i.e., an ordered pair (x,y) where x and y are nodes
— Channel = link (transmission medium) + transmitter + receiver
— Channel width: w = number of bits transferred per cycle
— Phit (physical unit or digit): data transferred per cycle
— Signaling rate: f = number of transfer cycles per second
— Channel bandwidth: b = w x f

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fal5/cse610/slides/07-icn.pdf >y ;E 1
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Basic Definitions (cont.)

* Path (or route): a sequence of channels, connecting a
source node to a destination node

* Minimal Path: a path with the minimum number of
channels between a source and a destination
— Rxy = set of all minimal paths from xtoy

* Network Diameter: longest minimal path over all (source,
destination) pairs

i
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ICN Design Considerations[#it#% &)

* Application requirements
— Number of terminals or ports to support
— Peak bandwidth of each terminal
— Average bandwidth of each terminal
- Latency requirements
— Message size distribution
- Expected traffic patterns
- Required quality of service
— Required reliability and availability

* Job of an interconnection network is to transfer
information from source node to dest. node in support of
network transactions that realize the application

— Latency as small as possible
— As many concurrent transfers as possible
— Cost as low as possible

e A F
() . . |, B
iyzlij&.;ﬁ https://compas.cs.stonybrook.edu/~nhonarmand/courses/fal5/cse610/slides/07-icn.pdf }nai



https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

ICN Design Considerations (cont.)

* Example requirements for a coherent processor-memory
interconnect

— Processor ports 1-2048

- Memory ports 1-4096

— Peak BW 8 GB/s

— Average BW 400 MB/s

- Message Latency 100 ns

- Message size 64 or 576 bits

— Traffic pattern arbitrary

— Quality of service none

— Reliability no message loss

— Availability 0.999 to 0.99999

i
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ICN Design Considerations (cont.)

* Technology constraints
- Signaling rate
— Chip pin count (if off-chip networking)
— Area constraints (typically for on-chip networking)
— Chip cost
— Circuit board cost (if backplane boards needed)
— Signals per circuit board
— Signals per cable
— Cable cost

ooooooooooo

ooooooooo

— Cable length S Imrmmcten o
— Channel and switch power constraints ﬁ ﬁﬁj

https://compas.cs.stonybrook.edu/~nhonarmand/courses/fal5/cse610/slides/07-icn.pdf



https://compas.cs.stonybrook.edu/~nhonarmand/courses/fa15/cse610/slides/07-icn.pdf

Off-chip vs. On-chip ICNS[}4h vs. A k]

* Off-chip: I/O bottlenecks e
- Pin-limited bandwidth ITrace
— Inherent overheads of off-chip I/O transmission engih

* On-chip ) [ES

- Wiring constraints
o Metal layer limitations
o Horizontal and vertical layout
o Short, fixed length
o Repeater insertion limits routing of wires PAODIR

switch

* Avoid routing over dense logic link
* Impact wiring density
— Power
o Consume 10-15% or more of die power budget
- Latency
o Different order of magnitude
o Routers consume significant fraction of latency

A
ARG
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Main Aspects of an ICN[FZH &)

 Topology[#f1}]

— Static arrangement of channels and nodes in a network

* Routing[7- ]
— Determines the set of paths a message/packet can follow

* Flow control[ifif%]

- Allocating network resources (channels, buffers, etc.) to packets
and managing contention

e Switch microarchitecture[sZ #a Lk 25 44]
- Internal architecture of a network switch

e Network interface[ %% 42 11]
- How to interface a terminal with a switch

* Link architecture[%# 4 22 #4)]
- Signaling technology and data representation on the channel

RN F
() . . |, B
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Types of Topologies[#rHhEH)

o Direct[E £:3h M 45 H4]
— Each router is associated with a terminal node
— All routers are sources and destinations of traffic

* Indirect[dE BB M50

— Routers are distinct from terminal nodes
— Terminal nodes can source/sink traffic
— Intermediate nodes switch traffic between terminal nodes

Static network Indirect network
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Network Topologies[#ri#h]

* Blocking vs. Non-Blocking

- If connecting any permutation of sources & destinations is
possible, network is non-blocking; otherwise network is
blocking

* A variety of network topologies have been proposed and
implemented
— These topologies tradeoff performance for cost

— Commercial machines often implement hybrids of multiple
topologies for reasons of packaging, cost, and available

components 5; I I @
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Metrics for Comparing Topologies[fg#x]

* Switch degree[5Z #: )&
— Proxy for switch complexity

* Hop count[Bk%%] (average and worst case)
— Proxy for network latency

* Maximum channel load[& K3#iE 171%%]
— A proxy for hotspot load
 Bisection bandwidth[X} 75 7]

— Proxy for maximum traffic a network can support under a
uniform traffic pattern

* Path diversity[#15 2 F:14]

— Provides routing flexibility for load balancing and fault tolerance
— Enables better congestion avoidance

»;'G‘i
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To

nologies: Buses[#£;]

* Al

processors access a common bus for exchanging data

* The distance between any two nodes is O(1) in a bus. The
bus also provides a convenient broadcast media

* However, the bandwidth of the shared bus is a major
bottleneck

* Typical bus based machines are limited to dozens of
nodes

— Sun Enterprise servers and Intel Pentium based shared-bus

multiprocessors are examples of such architectures

Processor 1 Processor 2 Processor 3 Processor 4 Processor 5§

Buos

AN Memory 1 Memory 2 Memory 3 Memory 4 Memory 5§ 4
g‘ *!_E Ji K ’I G
(&) ALK
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Topologies: Crossbars[zs ¥

* A crossbar network uses an pxm grid of switches to
connect p inputs to m outputs in a non-blocking manner

* The cost of a crossbar of p processors grows as O(p2)
- This is generally difficult to scale for large values of p

— Examples of machines that employ crossbars include the Sun
Ultra HPC 10000 and the Fujitsu VPP500

No-crossbar system Crossbar system

M ; I\ <
Memory Modules Parallel memory access

MM 4 MM 3 MM 2 MM 1 Accessing Waiting

memeory memaory access CPUO CPU1
J—. ,L ;_LJ — CPUD CPU1 /} . x
I | — S ava

. H

CPU 3 Memory 1o 1o o 1o
, ‘ a !

EHH\—C]—

CPU 4 CPU1 can't access memory until
CPUOQ completes memory access

CPUO and 1 access memory in parallel

Perfarmance bottleneck Data transfer rate improved
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Topologies: Multistage[£ %]

* Multistage interconnects strike a compromise between
Buses and Crossbars

— Crossbars have excellent performance scalability but poor cost

scalability
— Buses have excellent cost scalability, but poor performance
scalability
Processors Multistage interconnection network Memory banks
' Stage 1 ) Stage 2 i | Stage n
1 — —
(&) Tk ¥ o1 K
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Topologies: Fully Connected[4:i#]

e Each processor is connected to every other processor
* The number of links in the network scales as O(p2)

* While the performance scales very well, the hardware
complexity is not realizable for large values of p

* In this sense, these networks are static counterparts of

crossbars
) QP g
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Topologies: Star Connected[£#]

* Every node is connected only to a common node at the
center

* Distance between any pair of nodes is O(1)
* However, the central node becomes a bottleneck

* |n this sense, star connected networks are static
counterparts of buses

L cPU ]
PCI EXPRESS e I
ENDPOINT B ROOT 1
i COMPLEX
PCIETO ity L
PCI/PCI-X
BRIDGE
" . ,,,m‘_,',‘,fl’ l Il PCI EXPRESS |
eSS ENDPOINT
- ,
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Topologies: Linear Arrays, Meshes, ...

* In a linear array, each node has two neighbors, one to its
left and one to its right

— If the nodes at either end are connected, we refer to it as a 1-D
torus or aring

* A generalization to 2 dimensions has nodes with 4
neighbors, to the north, south, east, and west

* A further generalization to d dimensions has nodes with
2d neighbors

— A special case of a d-dimensional mesh is a hypercube. Here, d
= log p, where p is the total number of nodes

S T (i T ch W ()

@ (b)
(a) with no wraparound links; (b) with wraparound link.

> “‘] ¢
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Topologies: Mesh{m#&]

e Two and three dimensional meshes
- (a) 2-D mesh with no wraparound

- (b) 2-D mesh with wraparound link (2-D torus)

o Mesh is not symmetric on edges: performance very sensitive to
placement of task on edge vs. middle

o Torus avoids this problem
- (c) a 3-D mesh with no wraparound
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Examples

DDR2 memory DIMMs

DDR2:
Stub-bus DIMM DIMM DIMM DIMM

topology

DDR
memory
controller

Fully buffered memory DIMMs

DIMM DIMM DIMM DIMM
FBE-DIMM:

Serial point-to-point
links topology Buffer Buffer Buffer Buffer

FB-DIMM
memory
controller

Mesh Architecture

Ix U1 Links 376 POe Gan2

Ring Architecture
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Topologies: Tree[##!]

* Diameter and average distance logarithmic
— k-ary tree, height = logk N

— Address specified d-vector of radix k coordinates describing
path down from root

— Route up to common ancestor and down

* Trees can be laid out in 2D with no wire crossings
— This is an attractive property of trees

Switch

O Processing nodes

PCle PCle PCle PCle PCle PCle PCle PCle

Switch Switch Switch Switch Switch Switch Switch Switch

l:l Switching nodes

NIC NIC NIC NIC NIC NIC NIC NIC

NVMe NVMe NVMe NVMe NVMe NVMe NVMe NVMe

O O O
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Topologies: Fat-Tree[ )

* Links higher up the tree potentially carry more traffic than
those at the lower levels

* For this reason, a variant called a fat-tree, fattens the
links as we go up the tree

(a) Binary tree

AN /\\
d@(éé)@ OO

(b) Binary fat—tree
T “‘ \ b ‘
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And Other Topologies ...

* Many other topologies with different properties
discussed in the literature
— Clos Networks
— Omega networks
— Benes networks
— Bitonic networks
- Flattened Butterfly
— Dragonfly
— Cube-connected cycles
- HyperX

* However, these are typically special purpose and not used
in general purpose hardware

59 wiﬂi
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