
成绩计算
•课堂参与（15%）

−出席：6%
p Review提问点名缺席：-2%

− Quiz：3% x 3
p 提交但全错：-3%（即，当次quiz分为0）
p 未提交：-4%（即，当次quiz分为-1）
p 代提交：-5%（即，当次quiz分为-2）

•作业（35%）
− hw1: 10%（理论）
− hw2: 10%（论文）
− hw3: 15%（分析）

•期末考试（50%）
− 闭卷（中文，关键术语英文标注）
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期末考试
•时间地点

− 2022.1.12(周三)、14:30 - 16:30
p 注：4个班统一时间，不同试题

− B201

•试题类型
−选择题(30’): 3’ x 10
−简答题(20’): 5’ x 4
− 应用题(30’): 15’ x 2
− 综合题(20’): 20’ x 1

2

50’

50’

100’



考试内容(初步)
• Instruction-level Parallelism

− Pipelining, branch prediction, dynamic scheduling, …

• Data-level Parallelism/GPU
− SIMD/SIMT, GPU architecture, CUDA programming, …

• Memory System
− Memory hierarchy, cache optimizations, …
− (TLP) coherence and consistency, …

• Others
− Quantitative evaluation and metrics
− Warehouse scale computing
− Interconnects and domain specific architectures
− …
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Industry[工业界]
• Nvidia, 04/2021: Grace, ARM-based data-center CPU[1]

• Apple, 11/2020: M1, ARM-based SoC[2]

• AMD, 10/2020: Acquire Xilinx[3]

• Intel, 09/2020: Xe GPU[4]

• Samsung, 11/2019: Cease CPU development[6]

• Amazon, 11/2018: AWS Graviton[5]

• Intel/IBM/ARM, 01/2018: Meltdown and Spectre
• Micron, 03/2021: Cease 3D-XPoint, invest CXL[7]

• AI Chips: Graphcore, Habana Labs, Cerebras, Cambricon…
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[1] https://www.nvidia.com/en-us/data-center/grace-cpu/
[2] https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
[3] https://www.amd.com/en/corporate/xilinx-acquisition
[4] https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
[5] https://aws.amazon.com/ec2/graviton/
[6] https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
[7] https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-
address-growing

https://www.nvidia.com/en-us/data-center/grace-cpu/
https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
https://www.amd.com/en/corporate/xilinx-acquisition
https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
https://aws.amazon.com/ec2/graviton/
https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing


Academia[学术界]
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[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016) 
[2] A New Golden Age for Computer Architecture (2019) 

• Current challenges
− End of Moore's Law and 

Dennard Scaling
− Overlooked security

• Future opportunities in 
computer architecture

− Domain-specific 
architectures

− Domain-specific 
languages

− Open architectures
− Agile hardware 

development

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson

https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext


Top-tier Conferences[顶级会议]

• ISCA
− The International Symposium on Computer Architecture (ISCA)
− 2021: 48th, 76/407 papers (18.6% acceptance rate)

• MICRO
− The IEEE/ACM International Symposium on Microarchitecture
− 2021: 54th, 94/430 papers (21.8% acceptance rate)

• HPCA
− IEEE International Symposium on High-Performance Computer 

Architecture
− 2021: 27th, 63/258 papers (24.4% acceptance rate)

• ASPLOS
− ACM International Conference on Architectural Support for 

Programming Languages and Operating Systems
− 2021: 26th, 75/398 (18.8% acceptance rate)
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Arch vs. AI

8

AAAI



HPCA’2021 (High-Performance Computer Architecture)

• Sessions
− Security Architecture
− Security Attacks
− Accelerators for Machine Learning (2)
− Systems for Machine Learning (2)
− Hardware Accelerators Beyond Machine Learning
− Storage Systems
− Memory and Storage Architectures
− Cache Design
− Network on Chip
− High Throughput Architectures
− Power Efficiency and Resiliency
− Emerging Technologies and Applications
− Quantum Computing

9
[1] https://hpca-conf.org/2021/main-program/

https://hpca-conf.org/2021/main-program/


ASPLOS’2021 (Arch Support for Prog. Lang. and OS)

• Sessions
− Memory Systems
− Persistence (2)
− Solid State Drives
− Flow
− Microservices
− Systems Software
− Pages and Machine Architecture
− Language and Systems (2)
− Towards Improved Throughputs
− Tools and Frameworks
− Mapping and Management of Quantum and Cloud
− Quantum Abstractions
− Beyond the Pixels
− Races and Concurrency
− Supporting Hardware Parallelism
− Robots, Optimization, and Robo-optimization
− Better Hardware through Compilers
− Data Driven Optimization
− Neural Net Optimization
− Beyond Neural Nets

10
[1] https://asplos-conference.org/program/

https://asplos-conference.org/program/


ISCA’2021 (Computer Architecture)

• Sessions
− Industry Track
− Microarchitecture (2)
− Memory (3)
− Machine Learning (2)
− Processing In/Near Memory
− Data Center
− Security (2)
− Accelerators (3)
− Compilers
− Graph Processing
− Low Temperature/Low Energy Computing
− Network Storage & Acceleration
− Quantum/Photonics
− Reliability & Security
− DRAM/IO/Network
− Sparse Processing
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[1] https://www.iscaconf.org/isca2021/program/

https://www.iscaconf.org/isca2021/program/


MICRO’2021 (Microarchitecture)

• Sessions
− Best Paper
− Non-Volatile Memory
− Energy Efficiency & Low Power
− Security & Privacy (3)
− Processing In/Near Memory
− Parallelism
− Accelerators (3)
− Reliability & Verification
− GPGPU
− Microarchitecture (2)
− Superconducting & Quantum
− Sparse Processing
− Graph Processing
− Virtual Memory & Prefetching

12
[1] https://www.microarch.org/micro54/program/

https://www.microarch.org/micro53/program/


Selected Topics
• HPCA’2021

− Accelerators for Machine 
Learning (2)

− Systems for Machine Learning 
(2)

− Hardware Accelerators 
Beyond Machine Learning

− Quantum Computing
• ASPLOS’2021

− Mapping and Management of 
Quantum and Cloud

− Data Driven Optimization
− Neural Net Optimization
− Beyond Neural Nets
− Quantum Abstractions
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• ISCA’2021
− Machine Learning (2)
− Accelerators (3)
− Graph Processing
− Sparse Processing
− Quantum/Photonics

• MICRO’2021
− Accelerators (3)
− Sparse Processing
− Graph Processing
− Superconducting & 

Quantum
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Domain Specific Architecture



HW Companies Building Custom Chips
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SW Companies are Building HW
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Startups Building Custom Hardware

17
https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/


Past General-Purpose[通用]

• Moore’s Law enabled:
− Deep memory hierarchy
− Wide SIMD units
− Deep pipelines
− Branch prediction
− Out-of-order execution
− Speculative prefetching
− Multithreading
− Multiprocessing

• The sophisticated architectures targeted general-purpose 
code

− Architects treated code as black boxes
− Extract performance from software that is oblivious to 

architecture
18



Domain-Specific Architecture[领域专用]

• Hard to keep improving performance
− More transistors means more power
− Energy budget is limited: higher performance à lower 

energy/operation
− Enhancing existing cores may only boost 10% performance

• Need factor of 100 improvements in number of 
operations per instruction

− Requires domain specific architectures
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Domain-Specific Architecture (cont.)
• Computers will be much more heterogeneous[异构]

− Standard processors to run conventional large programs
p E.g., operating system

− Domain-specific processors doing only a narrow range of tasks
p But they do them extremely well

• DSA opportunities[机遇]
− Preceding architecture from the past may not be a good match 

to some domains
p E.g., caches are excellenet general-purpose architectures but not 

necessarily for DSAs
− Domain-specific algorithms are almost always for small 

compute-intensive kernels of larger systems
p DSAs should focus on the subset and not plan to run the entire program
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DSA Challenges[挑战]

• Architects must expand their areas of expertise
− Must now learn application domains and algorithms

• Nonrecurring engineering (NRE) costs[一次性工程成本]
− Find a target whose demand is large enough to justify allocating 

dedicated silicon on an SOC or even a custom chip
p The costs are amortized over the number of chips manufactured, so 

unlikely to make economic sense if you need only 1000 chips
− For smaller volume applications, use reconfigurable chips such 

as FPGAs
p Several different applications may reuse the same reconfigurable 

hardware to amortize costs
p However, the hardware is less efficient than custom chips, so the gains 

from FPGAs are more modest

• Port software[移植软件]
− Programming languages and compilers

21



DSA Design Guidelines[设计准则]

• Why guidelines?
− Lead to increased area and energy efficiency
− Provide two valuable bonus effects

p Lead to simpiler designs, reducing the cost of NRE of DSAs
p For user-facing apps, better match the 99th-percentile response-time 

deadlines

22



DSA Design Guidelines (cont.)
• Use dedicated memories to minimize the distance over which 

data is moved
− Hardware cache à software-controlled scratchpad

p Compiler writers and programmers of DSAs understand their domain
p Software-controlled memories are much more energy efficient

• Invest the resources saved from dropping advanced u-arch 
optimizations into more arithmetic units or bigger memories

− Owing to the superior understanding of the execution of programs

• Use the easiest form of parallelism that matches the domain
− Target domains for DSAs almost always have inherent parallelism

p How to utilize that parallelism and how to expose it to the software?
− Design the DSA around the natural granularity of the parallelism and 

expose that parallelism simply in the programming model
p SIMD > MIMD, VLIW > OoO

23



DSA Design Guidelines (cont.)
• Reduce data size and type to the simplest needed for the 

domain
− Apps in many domains are typically memory-bound, using 

narrower data types helps increase the effective memory 
bandwidth and on-chip memory utilizations

− Narrower and simpler data also enable to pack more arithmetic 
units into the same chip area

• Use a domain-specific programming language to port 
code to the DSA

− WRONG: you new arch is so attractive that programmers will 
rewrite their code just for you hw

− Fortunately, domain-specific languages were popular even 
before architects’ switched attentions

p Halide for vision processing, TensorFlow for DNNs

24



The Trend
• The ABC of AI: Algorithm + Big-data + Computing

25



Example Domain
• Deep neural networks (DNNs)

− Revolutioning many areas of computing today
− Are applicable to a wide range of problems

p So, a DNN-specific arch can be reused for solutions in speech, vision, 
language, translation, search ranking, and many more areas

• DNN structure
− Inspired by neuron of the brain

p Each neuron simply computes the sum over a set of products of weights 
or parameters and data values
• E.g., pixels for image-processing

− The sum is then put through a nonlinear function to determine 
its output

p E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU)
p Output is called activation

• The output of the neuron that has been “activated”
26



DNNs
• Most practitioners will choose an existing design

− Topology
− Data type

• Training (learning)[训练]
− Calculate weights using backpropagation algorithm
− Supervised learning:  stochastic graduate descent

• Inference[推理]
− Use neural network for classification

27



Multilayer Perceptron[多层感知机]

• Feed-forward neural networks
− The units are arranged into a graph without any cycles

p so that all the computation can be done sequentially
− Fully connected: every unit in one layer is connected to every 

unit in the next layer 

• MLP is just a vector matrix multiply of the input vector 
times the weights array

28

Parameters:
Dim[i]:  number of neurons
Dim[i-1]:  dimension of input vector
Number of weights:  Dim[i-1] x Dim[i]
Operations:  2 x Dim[i-1] x Dim[i]
Operations/weight:  2



Convolutional Neural Network[卷积]

• CNNs are widely used for computer vision applications
• Each layer raises the level of abstraction

− Lines à corners à shapes à …

• Feature map: a set of 2D maps produced by each neural 
layer

− Each cell is identifying one feature in the area of the input

• Stencil computation: uses neighboring cells in a fixed 
pattern to update all the elements of an array

29



Convolutional Neural Network (cont.)
• Parameters:

− DimFM[i-1]: Dimension of the (square) input Feature 
Map

− DimFM[i]: Dimension of the (square) output Feature 
Map

− DimSten[i]: Dimension of the (square) stencil
− NumFM[i-1]: Number of input Feature Maps
− NumFM[i]: Number of output Feature Maps
− Number of neurons: NumFM[i] x DimFM[i]2

− Number of weights per output Feature Map: 
NumFM[i-1] x DimSten[i]2

− Total number of weights per layer: NumFM[i] x 
Number of weights per output Feature Map

− Number of operations per output Feature Map: 2 x 
DimFM[i]2 x Number of weights per output Feature 
Map

− Total number of operations per layer: NumFM[i] x 
Number of operations per output Feature Map = 2 x 
DimFM[i]2 x NumFM[i] x Number of weights per 
output Feature Map = 2 x DimFM[i]2 x Total number 
of weights per layer

− Operations/Weight: 2 x DimFM[i]2

30



Recurrent Neural Network[循环]

• Popular for speech recognition on language translations
• RNNs can remember facts

− Long short-term memory (LSTM) network

31



Recurrent Neural Network (cont.)
• Parameters:

− Number of weights per cell: 
3 x (3 x Dim x Dim)+(2 x Dim 
x Dim) + (1 x Dim x Dim) = 
12 x Dim2

− Number of operations for 
the 5 vector-matrix 
multiplies per cell: 2 x 
Number of weights per cell 
= 24 x Dim2

− Number of operations for 
the 3 element-wise 
multiplies and 1 addition 
(vectors are all the size of 
the output): 4 x Dim

− Total number of operations 
per cell (5 vector-matrix 
multiplies and the 4 
element-wise operations): 
24 x Dim2 + 4 x Dim

− Operations/Weight: ~2
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Example Domain: DNNs
• Batches[批]

− Reuse weights once fetched from memory across multiple 
inputs

p Increases operational intensity

• Quantization[量化]
− Numerical precision is less important for DNNs than for many 

applications
p Use 8- or 16-bit fixed point

• Summary: need the following kernels
− Matrix-vector multiply
− Matrix-matrix multiply
− Stencil
− ReLU
− Sigmoid
− Hyperbolic tangent

33



Tensor Processing Unit (TPU)
• Google’s first custom ASIC DSA for WSCs

− Its domain is the inference phase of DNNs
− It is programmed using the TensorFlow framework
− The first TPU was been deployed in 2015

p Originated as far back as 2006, to improve perf by 10x over GPUs

34



TPU Chip Overview
• TPU chip is half the size of the other chips

− 28 nm process with a die size ≤ 331 mm
− This is partially due to simplification of control logic

• Floor plan of TPU die
− 50%+ on arithmetic

and memory 

35



TPU Architecture[架构]

• A coprocessor on the PCIe I/O bus
• A large software-managed on-chip memory

36
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc


TPU ISA[指令]

• The host CPU sends TPU instructions over the PCIe bus 
into an instruction buffer[指令发送]

− TPU has no PC, and it has no branch instructions
− 5 main (CISC) instructions (11 in total)

p Other: alternate host memory read/write, set configuration, two 
versions of synchronization, intrrupt host, debug-tag, nop and halt

• Instruction execution[指令执行]
− Average clock cycles per instruction: > 10
− 4-stage overlapped execution, 1 instruction type/stage

p Execute other instructions while matrix multiplier busy

• Complexity in software[软件复杂性]
− No branches, in-order issue
− SW controlled buffers, SW controlled pipeline synchronization

37
https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc


TPU ISA (cont.)
• Read_Host_Memory

− Reads memory from the CPU memory into the unified buffer 
• Read_Weights

− Reads weights from the Weight Memory into the Weight FIFO as 
input to the Matrix Unit

• MatrixMultiply/Convolve
− Perform a matrix-matrix multiply, a vector-matrix multiply, an 

element-wise matrix multiply, an element-wise vector multiply, or a 
convolution from the Unified Buffer into the accumulators 

p Takes a variable-sized B*256 input, multiplies it by a 256x256 constant 
input, and produces a B*256 output, taking B pipelined cycles to complete

• Activate
− Computes activation function

• Write_Host_Memory
− Writes data from unified buffer into host memory

38



TPU Microarchitecture[微架构]

• The u-arch philosophy of TPU is to keep the Matrix 
Multiply Unit busy

− Hide the execution of the other insts by overlapping with the 
MatrixMultiply inst

p Each of the other 4 insts have separate execution hw

• Problem: energy/time for repeated SRAM accesses of 
matrix multiply

− Solution: “Systolic execution” to compute data on the fly in 
buffers by pipelining control and data[脉动阵列执行]

39



TPU Software[软件]

• Software stack had to be compatible with CPUs/GPUs[兼容]
− So that applications could be ported quickly
− The portion of the app run on the TPU is typically written using 

TensorFlow and is compiled into an API that can run on CPUs/GPUs

• Like GPUs, the TPU stack is split into[分层]
− Kernel Driver: lightweight and handles only memory management 

and interrupts
p Designed for long-term stability

− Use Space Driver: changes frequently, and 
handles the following

p Sets up and controls TPU execution
p Reformats data into TPU order
p Translates API calls into TPU insts and turns

them into an app binary

40



How TPU Follows the Guidelines
• Use dedicated memories

− 24 MB dedicated buffer, 4 MB accumulator buffers

• Invest resources in arithmetic units and dedicated 
memories

− 60% of the memory and 250X the arithmetic units of a server-
class CPU

• Use the easiest form of parallelism that matches the 
domain

− Exploits 2D SIMD parallelism

• Reduce the data size and type needed for the domain 
− Primarily uses 8-bit integers

• Use a domain-specific programming language
− Uses TensorFlow
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TPU Performance[性能]

42

• Compare using six benchmarks
− Representing 95% of TPU inference workload in Google data 

center in 2016
− Typically written in TensorFlow, pretty short (100-1500 LOCs)

• Chips/servers being compared
− CPU server: Intel 18-core, dual-socket Haswell; host server for 

GPUs/TPUs
− GPU accelerator: Nvidia K80



Roofline Performance Model[屋顶线]

• The roofline model was introduced in 2009
− Samuel Williams, Andrew Waterman, and David Patterson. 

2009. Roofline: an insightful visual performance model for 
multicore architectures. Commun. ACM

• It provides an easy way to get performance bounds for 
compute and memory bandwidth bound computations
• It relies on the concept of Computational Intensity (CI)

− Sometimes also called Arithmetic or Operational Intensity

• The model provides a relatively simple way for 
performance estimates based on the computational 
kernel and hardware characteristics

− Performance [GF/s] = function (hardware and software 
characteristics)

43
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf


Roofline Performance Model(cont.)
• Basic idea

− Plot peak FP throughput as a function of arithmetic intensity
− Ties together FP performance and memory performance for a 

target machine

• Arithmetic intensity[运算密度]
− Ratio of FP operations per byte of memory accessed

p (total #FP operations for a program) / (total data bytes transferred to 
main memory during program execution)

44
Book,§4.3, SIMD Instruction Set Extensions for Multimedia



Arithmetic Intensity
• 𝐴. 𝐼. = !

"
(FLOP/Byte)

− W: amount of work / i.e floating point operations required
− Q: memory transfer / i.e access from DRAM to lowest level 

cache

• Examples

45

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i] 

1 ADD
2 (8 byte) loads
1 (8 byte) write 
AI = 1 / (2*8 + 8) = 1/24 

for (i = 0; i < N; ++i)
z[i] = x[i]+y[i]*x[i] 

1 ADD 
1 MUL
2 (8 byte) loads
1 (8 byte) write 
AI = 2 / (2*8 + 8) = 1/12

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf


Example

• Amount of FLOPS: 3(N-2)
− For every i: out[I] = in[i-1]-2*in[i]+in[i+1] à 3 flop
− Loop over: for (int i=1; i<N-1; i++) à (N-2) repetitions

• Memory accesses Q: depends on cache size
− No cache (read directly from slow memory) à every data 

accessed is counted
p 4 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/16

− Perfect cache (infinite sized cache) à data is read & written 
only once

p 2 accesses x (N-2) repetitions x 4 bytes à A.I. = 3/8

46

float in[N], out[N];
for (int i=1; i<N-1; i++)

out[i] = in[i-1]-2*in[i]+in[i+1]; 

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf


Roofline Analysis
• ”Roofline” sets an upper bound on perf of a kernel 

depending on its arithmetic intensity
− Think of arithmetic intensity as a pole that hits the roof

p Hits the flat part: perf is computationally limited
p Hits the slanted part: perf is ultimately limited by memory bandwidth

• Ridge point: the diagonal and horizontal roofs meet
− Far to right: only very intensive kernels can achieve max perf
− Far to left: almost any kernel can potentially hit max perf

47
Book,§4.3, SIMD Instruction Set Extensions for Multimedia



Example
• Consider: for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]

− For each “i” :
p 1 addition, 1 multiplication
p 2 loads of 8 bytes each
p 1 store

• Execution on BlueGene/Q
− Peak 204.8 GFLOP/node 

• Performance estimates:
− AI = 2/(3*8) = 1 / 12 1/12 < 7.11 → We are in the memory BW 

limited area on the Roofline plot
− 7.11/(1/12)= 85.32
− 204.8 / 85.32 = 2.4 GF/s

48
https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf
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TPU Roofline Performance
• TPU: its ridge point is far to the right at 1350

− CNN1 is much further below its Roofline than the other DNNs
p Waiting for weights to be loaded into the matrix unit

− Ridge point comparison:
p CPU: 13, GPU: 9 à better balanced, but perf a lot lower
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Cost-Performance
• Cost metric: performance per watt

− “Total”: includes the power consumed by the host CPU server 
when calculating perf/watt for the GPU and TPU

− “Incremental”: subtracts the host CPU power from the total

• Total: GPU is 2.1x CPU, TPU is 34x CPU
• Incremental: TPU is 83x CPU, 29x GPU

50
https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads

https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads


Microsoft Catapult
• Needed to be general purpose 

and power efficient
− Uses FPGA PCIe board with 

dedicated 20 Gbps network in 6 x 
8 torus

− Each of the 48 servers in half the 
rack has a Catapult board 

− Limited to 25 watts
− 32 MB Flash memory
− Two banks of DDR3-1600 (11 

GB/s) and 8 GB DRAM
− FPGA (unconfigured) has 3962 18-

bit ALUs and 5 MB of on-chip 
memory

− Programmed in Verilog RTL
− Shell is 23% of the FPGA
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Catapult Applications

52

• The processing element (PE) of 
the CNN Accelerator for Catapult

• The architecture of FPGA 
implementation of the Feature 
Extraction stage in search 
acceleration



How Catapult Follows the Guidelines
• Use dedicated memories

− 5 MB dedicated memory

• Invest resources in arithmetic units and dedicated 
memories

− 3926 ALUs

• Use the easiest form of parallelism that matches the 
domain

− 2D SIMD for CNN, MISD parallelism for search scoring

• Reduce the data size and type needed for the domain 
− Uses mixture of 8-bit integers and 64-bit floating-point

• Use a domain-specific programming language
− Uses Verilog RTL; Microsoft did not follow this guideline
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