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N GIED,

e |Instruction-level Parallelism

— Pipelining, branch prediction, dynamic scheduling, ...

e Data-level Parallelism/GPU

— SIMD/SIMT, GPU architecture, CUDA programming, ...

* Memory System

- Memory hierarchy, cache optimizations, ...
— (TLP) coherence and consistency, ...

* Others
— Quantitative evaluation and metrics
- Warehouse scale computing
— Interconnects and domain specific architectures

»;'G‘i
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Industry[T 5

* Nvidia, 04/2021: Grace, ARM-based data-center CPUI1!

* Apple, 11/2020: M1, ARM-based SoC!?

* AMD, 10/2020: Acquire Xilinx[3]

* Intel, 09/2020: Xe GPU

e Samsung, 11/2019: Cease CPU development!®]

 Amazon, 11/2018: AWS Graviton!>!

* Intel/IBM/ARM, 01/2018: Meltdown and Spectre

* Micron, 03/2021: Cease 3D-XPoint, invest CXL!’!

* Al Chips: Graphcore, Habana Labs, Cerebras, Cambricon...

[1] https://www.nvidia.com/en-us/data-center/grace-cpu/

[2] https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html

[3] https://www.amd.com/en/corporate/xilinx-acquisition

[4] https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html

[5] https://aws.amazon.com/ec2/graviton/

[6] https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development

[7] https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-
address-growing



https://www.nvidia.com/en-us/data-center/grace-cpu/
https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
https://www.amd.com/en/corporate/xilinx-acquisition
https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
https://aws.amazon.com/ec2/graviton/
https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

Academia[= AR

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson
> o Current challenges
2020 2025 2030
D W— - End of Moore's Law and
S b : Dennard Scaling
— Overlooked security
Q Cloud as architecture L. .
s s L ¢ * Future opportunities in
. computer architecture
eep - 5
integration — Domain-specific
) architectures
XK > Computing closer 2 . . e
o} to phyisics - Domaln—SpECIfIC

languages

% Machine leaming ¢ - — Open architectures
as key workload .

— Agile hardware
development

[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

6 Dhige



https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Top-tier Conferences[liZgk =iy

* ISCA

— The International Symposium on Computer Architecture (ISCA)
- 2021: 48, 76/407 papers (18.6% acceptance rate)
* MICRO

— The IEEE/ACM International Symposium on Microarchitecture
— 2021: 54t 94/430 papers (21.8% acceptance rate)

* HPCA

— |EEE International Symposium on High-Performance Computer
Architecture

- 2021: 27t, 63/258 papers (24.4% acceptance rate)
* ASPLOS

— ACM International Conference on Architectural Support for
Programming Languages and Operating Systems

- 2021: 26th, 75/398 (18.8% acceptance rate)

A\ ¥
(&) T b K NG
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Arch vs. Al

ISCA '19

ISCA 17

ISCA "13

ISCA '12

ISCA 11

ISCA 10

@1t

b KB

SUN YAT-SEN UNIVERSITY
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# of Papers

Accepted
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47

40

10000

7500

5000

2500

2010 2011

Rate

17%

17%

19%

18%

19%

18%

B Abstracts Submitted [ Accepted
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H PCA’ 2021 (High-Performance Computer Architecture)

* Sessions
— Security Architecture
— Security Attacks
— Accelerators for Machine Learning (2)
— Systems for Machine Learning (2)
— Hardware Accelerators Beyond Machine Learning
— Storage Systems
- Memory and Storage Architectures
— Cache Design
- Network on Chip
- High Throughput Architectures
- Power Efficiency and Resiliency
- Emerging Technologies and Applications
- Quantum Computing

| 1] https://hpca-conf.org/2021/main-program/ |



https://hpca-conf.org/2021/main-program/

ASPLOS'2021 (Arch Support for Prog. Lang. and OS)

* Sessions
- Memory Systems
- Persistence (2)
- Solid State Drives
- Flow
- Microservices
- Systems Software
- Pages and Machine Architecture
- Language and Systems (2)
- Towards Improved Throughputs
- Tools and Frameworks
- Mapping and Management of Quantum and Cloud
- Quantum Abstractions
- Beyond the Pixels
- Races and Concurrency
— Supporting Hardware Parallelism
- Robots, Optimization, and Robo-optimization
- Better Hardware through Compilers
- Data Driven Optimization
- Neural Net Optimization
- Beyond Neural Nets

1] https://asplos-conference.org/program/

) 10 | @
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https://asplos-conference.org/program/

|SCA, 2021 (Computer Architecture)

* Sessions
— Industry Track
— Microarchitecture (2)
- Memory (3)
— Machine Learning (2)
— Processing In/Near Memory
— Data Center
— Security (2)
— Accelerators (3)
— Compilers
— Graph Processing
— Low Temperature/Low Energy Computing
— Network Storage & Acceleration
— Quantum/Photonics
— Reliability & Security
- DRAM/I0/Network
— Sparse Processing

| 1] https://www.iscaconf.org/isca2021/program/ |



https://www.iscaconf.org/isca2021/program/

V] |CRO, 2021 (Microarchitecture)

* Sessions
— Best Paper
- Non-Volatile Memory
— Energy Efficiency & Low Power
— Security & Privacy (3)
— Processing In/Near Memory
— Parallelism
— Accelerators (3)
— Reliability & Verification
- GPGPU
— Microarchitecture (2)
— Superconducting & Quantum
— Sparse Processing
— Graph Processing
— Virtual Memory & Prefetching

| 1] https://www.microarch.org/micro54/program/ .,
@) Tx% 12 K



https://www.microarch.org/micro53/program/

Selected Topics

* HPCA’2021

— Accelerators for Machine
Learning (2)

— Systems for Machine Learning
(2)

- Hardware Accelerators
Beyond Machine Learning

* ASPLOS’2021

- Mapping and Management of
Quantum and Cloud

— Data Driven Optimization
— Neural Net Optimization
— Beyond Neural Nets

AV

(e T b

A )

\&u$/ SUN YAT-SEN UNIVERSITY

* [SCA’2021

— Machine Learning (2)
— Accelerators (3)

— Graph Processing

— Sparse Processing

* MICRO’2021

— Accelerators (3)
— Sparse Processing
— Graph Processing

ﬂn’ﬂi
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HW Companies Building Custom Chips

ANNOUNCING
NVIDIA BLUEFIELD-2 DPU

Data Center Infrastructure-on-a-Chip

Ascend 910
Meet the world's most powerful Al processor *
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Innovation from the Data Center to the Edge

£ 0UNX
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Leadership x86 CPU Adaptive Acceleration CDNA-Optimized

3 Dense Compute
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engnes driving leadership from and Adaptive SOCs enabling High-performance engine for
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SW Companies are Bmldmg HW

Chips Off the Old Block: Computers Are
Taking Design Cues From Human Brains
(September 16, 2017)

After training a speech-recognition algorithm,

for example, Microsoft offers it up as an online

service, and it actually starts identifying - S T L
commands that people speak into their R 2B
smartphones. G.P.U.s are not quite as :
efﬁci:nt during this stage of :‘he process. AWS Inferentia
So, many companies are now building

chips specifically to do what the other

chips have learned.

Google built its own specialty chip, a Tensor L TS
Processing Unit, or T.P.U. Nvidia is building a j

similar chip. And Microsoft has

reprogrammed specialized chips from i E = :
Altera, which was acquired by Intel, so that it S : Ee"

too can run neural networks more easily. ' - . ﬁhaz—aauemmmg




Startups Building Custom Hardware
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All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.
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https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-93-2019/
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https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

Past General-Purpose[i&

* Moore’s Law enabled:
— Deep memory hierarchy
- Wide SIMD units
— Deep pipelines
— Branch prediction
— Out-of-order execution
— Speculative prefetching
- Multithreading 1
- Multiprocessing

40 years of Processor Performance

e vs. VAX11-780

Performanc

- cisc

iy 2X13.5yrs
(22%iy1)

* The sophisticated architectures targeted general-purpose
code
— Architects treated code as black boxes
— Extract performance from software that is oblivious to

architecture 4
& ***3 18 Dy




Domain-Specific Architecture4utsi %

* Hard to keep improving performance
— More transistors means more power

— Energy budget is limited: higher performance - lower
energy/operation

- Enhancing existing cores may only boost 10% performance

* Need factor of 100 improvements in number of
operations per instruction

- Requires domain specific architectures

10-50X improvement 100-1000X improvement

].1 in TOPS & TOPS /W In TOPS & TOPS /W
' \ '.””t‘”‘ sers '
e St

Frequency/Ease of Use

. Performance / Power Efficiency

g



Domain-Specific Architecture (cont.)

* Computers will be much more heterogeneous[&#4]
— Standard processors to run conventional large programs
o E.g., operating system
— Domain-specific processors doing only a narrow range of tasks
o But they do them extremely well

* DSA opportunities[HLi]
- Preceding architecture from the past may not be a good match
to some domains

o E.g., caches are excellenet general-purpose architectures but not
necessarily for DSAs

— Domain-specific algorithms are almost always for small
compute-intensive kernels of larger systems

o DSAs should focus on the subset and not plan to run the entire program

‘ ' 'l L
(2 £ “l’ 5
\% &) 4
v$/  SUN YAT-SEN UNIVERSITY ) ¥ ‘




DSA Challenges[#kdk]

* Architects must expand their areas of expertise
— Must now learn application domains and algorithms

* Nonrecurring engineering (NRE) costs[—X 4 T 2R A]
- Find a target whose demand is large enough to justify allocating

dedicated silicon on an SOC or even a custom chip

o The costs are amortized over the number of chips manufactured, so
unlikely to make economic sense if you need only 1000 chips

— For smaller volume applications, use reconfigurable chips such
as FPGAs

o Several different applications may reuse the same reconfigurable

hardware to amortize costs
o However, the hardware is less efficient than custom chips, so the gains

from FPGAs are more modest

e Port software[fSiEER{4)

- Programming languages and compilers

r‘v;'ﬂi




DSA Design Guidelinespgit &

* Why guidelines?
- Lead to increased area and energy efficiency

— Provide two valuable bonus effects
o Lead to simpiler designs, reducing the cost of NRE of DSAs
o For user-facing apps, better match the 99th-percentile response-time

deadlines

Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC  PMD ASIC/SOC 1P

1. Dedicated 24 MiB Unified Buffer, Vanes N.A Per core: 128 KiB line
memones 4 MiB Accumulators buffer, 64 KiB P.E.

memory

2. Larger 65,536 Mulaply- Vanes N.A Per core: 256 Multiply-
anthmetic unit  accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD,  SIMD, MISD N.A MPMD, SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit integer  21-bit F. PL. 8-bit, 16-bit, 32-hit integer
size 32-bit Fl. PL

5. Domain- TensorFlow Venlog TensorFlow Halide/TensorFlow

specific lane.

cE 1A A 1
\ s / s;)fv,:'l-"mﬁ % 22 u"lﬂg_



DSA Design Guidelines (cont.)

* Use dedicated memories to minimize the distance over which
data is moved
— Hardware cache = software-controlled scratchpad

o Compiler writers and programmers of DSAs understand their domain
o Software-controlled memories are much more energy efficient

* Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

— Owing to the superior understanding of the execution of programs

e Use the easiest form of parallelism that matches the domain
— Target domains for DSAs almost always have inherent parallelism
o How to utilize that parallelism and how to expose it to the software?

— Design the DSA around the natural granularity of the parallelism and
expose that parallelism simply in the programming model

o SIMD > MIMD, VLIW > Oo0

o “‘ 1\ [ f
(@) T X% 23 Dl




DSA Design Guidelines (cont.)

* Reduce data size and type to the simplest needed for the
domain

— Apps in many domains are typically memory-bound, using
narrower data types helps increase the effective memory
bandwidth and on-chip memory utilizations

- Narrower and simpler data also enable to pack more arithmetic
units into the same chip area

e Use a domain-specific programming language to port
code to the DSA

— WRONG: you new arch is so attractive that programmers will
rewrite their code just for you hw

- Fortunately, domain-specific languages were popular even
before architects’ switched attentions

o Halide for vision processing, TensorFlow for DNNs

) el ¢
: ivﬂmﬁsﬁ 24 w ’ ‘IG \i




The Trenad

* The ABC of Al: Algorithm + Big-data + Computing

EXPLODING MODEL COMPLEXITY

175
30,000X in 5 Years | Now Doubling Every 2 Months 180 17528
1.E+04 149
@ GPT-3
140
1.E+03 *'. Megatron-BERT
i o g 120
o 1.E+02 Megatron-GPT2 ..' Turing NLG
2 GPT.. @ § 100
) 1.E+01 & E
L BERT @ : 80
o 1.E+00 b
“Tg ResNet 60
&  1E01 o®
9> 40
AlexNet _  oe®
LE02 oo 5 I
1.E-03 " ,—7LL-7L.Ji,I o [0 - -
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Example Domain

* Deep neural networks (DNNs)
— Revolutioning many areas of computing today

— Are applicable to a wide range of problems

o So, a DNN-specific arch can be reused for solutions in speech, vision,
language, translation, search ranking, and many more areas

* DNN structure

— Inspired by neuron of the brain

o Each neuron simply computes the sum over a set of products of weights
or parameters and data values

* E.g., pixels for image-processing

— The sum is then put through a nonlinear function to determine
its output

o E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU)

in,

. out
in,

o Output is called activation
* The output of the neuron that has been “activated”

/N p
(D} o L
\% ) L
avus/  SUN YAT-SEN UNIVERSITY ) Al
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DNNSs

* Most practitioners will choose an existing design
— Topology
— Data type

* Training (learning)[ilIZ]
— Calculate weights using backpropagation algorithm
— Supervised learning: stochastic graduate descent

* Inference[}EIH]
— Use neural network for classification

To=X I T>

Fv:';;:!\:r:'; Image)  (Input Layer) Hidden Layer 1) (Hidden Layer 2) i yye
"\‘;\»_\ /. ‘\\ ® g Name DNN layers Weights Operations/Weight
@\ TN MLPO 5 20M 200
_'f\\\ 4754{. 7 .\\ ‘ MLPI 4 SM 168
XS K XY NN
ﬁé’/\ 765" SO LSTMO 58 52M 64
/7 X /AN N >
’Q.}///x AN ® 7 ‘ 74 ‘ LSTMI 56 34M 9%
/X \ X o \\ o——— N —
-@ /*\ : /\\. @@ CNNO 16 8™ 2888
0// \\\‘ > ./ : \' CNNI 89 100M 1750

( R \ | f (
\ s ‘ iyﬁmﬁ % 27 U"lﬂi




Multilayer Perceptron|Z E=&0#1)

* Feed-forward neural networks

— The units are arranged into a graph without any cycles
o so that all the computation can be done sequentially

— Fully connected: every unit in one layer is connected to every
unit in the next layer

 MLP is just a vector matrix multiply of the input vector
times the weights array

Layerfi-1] Layerfi]
) Parameters:
il S s Dim[i]: number of neurons
\Q/M;J_,(af\;_. Output Dim[i-1]: dimension of input vector
4 ;‘ [/] Number of weights: Dim[i-1] x Dim[i]
imy

Operations: 2 x Dim[i-1] x Dim[i]

| Operations/weight: 2
Weights

1
N
Dim(i-1]

A*E ' f Q




Convolutional Neural Network[& )

* CNNs are widely used for computer vision applications

* Each layer raises the level of abstraction
— Lines = corners = shapes =2 ...

* Feature map: a set of 2D maps produced by each neural
layer
— Each cell is identifying one feature in the area of the input

 Stencil computation: uses neighboring cells in a fixed
pattern to update all the elements of an array

Input image Output feature map

I I
= | F
[ (rut ) Nonlinear function | 'EJ
R e | | 4
—————————————————————— Py




Convolutional Neural Network (cont.)

e Parameters:

- DimFM][i-1]: Dimension of the (square) input Feature

Layerfi-1] Layeri] Map
input feat output feat . I .
R A e - DimFM][i]: Dimension of the (square) output Feature

— l/// Map
7 ~ DimSten[i]: Dimension of the (square) stencil
- NumFM][i-1]: Number of input Feature Maps

NumFM[/]

- NumFM][i]: Number of output Feature Maps

NumFM[i-1]

- Number of neurons: NumFM][i] x DimFM[i]?

- Number of weights per output Feature Map:
NumFMI[i-1] x DimSten[i]?

- Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

/ \
Q/MX Vector matrix multiply
g

NumFM[i-1]

(i) Nonlinear function - N.umber‘of operations per putput Feature Map: 2 x
PN~z i DimFM[i]?2 x Number of weights per output Feature
Map

- Total number of operations per layer: NumFM[i] x
Number of operations per output Feature Map = 2 x
DimFM[i]2x NumFM][i] x Number of weights per
output Feature Map = 2 x DimFM][i]? x Total number
of weights per layer

- Operations/Weight: 2 x DimFM[i]2

: ) ) G
‘ / S;J*Y;YATJ-S‘ENﬁEﬁ 30 u"l@i




Recurrent Neural Network[f&IR]

 Popular for speech recognition on language translations

* RNNs can remember facts
- Long short-term memory (LSTM) network

“now” —{ LSTMo0 LSTM1 — ... —={ LSTMn |—

! ! !
‘is" —| LSTMo | —{ LSTM1 |~ ... —[LSTMn |-~

H B! i i
‘the” —[ LSTMO |~ LSTM1 |~ ... —{LSTMn |~
L |

“time” —{ LSTMO0 LSTM1 |— ... —={ LSTMn |—

! !
<end_input> —| LSTM0 |—{ LSTM1 |— “momento”
! '

“‘momento” —=| LSTMO LSTM1 oo LSTMn “el”

! ! i

“el" —| LSTMO |—{ LSTM1 |~ ... —{ LSTMn |— “es’
B! B! R

“es" —={ LSTMoO LSTM1 ...—= LSTMn “ahora”
1§ R :
b “ahora” —-| LSTMo |—~{ LSTM1 l—- . LSTMn <end_output>
b Pt

Time

* IR




Recurrent Neural Network (cont.)

* Parameters:
— Number of weights per cell:

[LTMemoryin | [STMemoryin |
|

@‘\j_._('r,_,,‘\\ ?/1)9 Vector matrix muiltiply 3 X (3 X Dlm X Dlm)+(2 X Dlm
NN — X Dim) + (1 x Dim x Dim) =
T N C) Element-wise multiply 12 X D|m2
Output gate /-:\ .
weights . (+) Etement-wise addition — Number of operations for
= e A N () Noninear uncton the 5 vector-matrix
VMX } (if } o ) e T .
\T/ & \_/\ L - p— WUHZI IC|§>I|esfper .celilt. 2 X '
N e vt umber of weights per ce
\ . - L
Fov:g:e‘; :t:te |>;\HM/&1\\'_::/_:\ - 24 X D|m .
Input ‘ / = Ty [ ] — Number of operations for
._.\Mx\_.@ / the 3 element-wise
% J multiplies and 1 addition
WA o vectors are all the size of
Input gate i} &S .
weights /}’- i the output): 4 x Dim
(oY’ Shrt term — Total number of operations
f —— per cell (5 vector-matrix
i multiplies a_md the 4 _
weights element-wise operations):
24 x Dim2+ 4 x Dim

' 1
LTMemoryout | [ STMemoryout

— Operations/Weight: ~2

Y 32 D
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Example Domain: DNNs
* Batches[ill]

- Reuse weights once fetched from memory across multiple
inputs
o Increases operational intensity
e Quantization[2{4]

— Numerical precision is less important for DNNs than for many
applications

o Use 8- or 16-bit fixed point

 Summary: need the following kernels
- Matrix-vector multiply

- Matrix-matrix multiply E"' i D

— Stencil g N

- RelLU I R T
- Sigmoid

.
E— !
- Hyperbolic tangent - ®

l"! | R |
:‘7 ‘ iyﬁmﬁ % 33 U"lﬂi




Tensor Processing Unit (TPU)

e Google’s first custom ASIC DSA for WSCs
- Its domain is the inference phase of DNNs
- It is programmed using the TensorFlow framework

— The first TPU was been deployed in 2015
o Originated as far back as 2006, to improve perf by 10x over GPUs

oy

=
.“
.,7I
.“
.'.l
.lﬂ'
-
.“

-
e
@ :

TPU v1 TPUv2
Launched in 2015 Launched in 2017
Inference only Inference and training

g‘», 1. b 3
\& vusS / svi}fv:fs'mﬁ ’% 34 U"'GL{



TPU Chip Overview

* TPU chip is half the size of the other chips
— 28 nm process with a die size £331 mm
— This is partially due to simplification of control logic

* Floor plan of TPU die

— 50%+ on arithmetic

Na memaor ,
° d =" Y woeal m:nt;ffe ror Matrix multiply unit
(96Kx256x8b = 24 MiB) ‘256"256"323; 64K MAC)
29% of chip °

Host Accumulators
Interf. 2% | | (4Kx256x32b = 4 MiB) 6%

D

R

A

M ' = :

33."9 | Activation pipeline 6% | port
3%

PCle | 3%
Interface 3% Misc. VO 1% |

o
35 Dhig:




TPU Architecture[z2#s)

* A coprocessor on the PCle I/O bus
* A large software-managed on-chip memory

e The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units il igh—level Chi P
e 700 MHz clock rate Architect
e Peak: 92T operations/second rcnitecure

o 65536*2*700M

e >25X as many MACs vs GPU
e >100X as many MACs vs CPU
e 4 MiB of on-chip Accumulator
memory .
e 24 MiB of on-chip Unified Buffer,, . jg —
(activation memory) =T =
e 3.5X as much on-chip memory
vs GPU
e Two 2133MHz DDR3 DRAM
channels S
e 8 GiB of off-chip weight DRAM gm:;jl
memory [ omtet: 15

N 1o Soake

Ard
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TPU [SA[3ES]

* The host CPU sends TPU instructions over the PCle bus
into an instruction buffer[#8<$ &1X]

— TPU has no PC, and it has no branch instructions

— 5 main (CISC) instructions (11 in total)

o Other: alternate host memory read/write, set configuration, two
versions of synchronization, intrrupt host, debug-tag, nop and halt

* Instruction execution[} 5<SHI1T]
— Average clock cycles per instruction: > 10
— 4-stage overlapped execution, 1 instruction type/stage
o Execute other instructions while matrix multiplier busy
* Complexity in software[B{FEEZ¥ 4]
— No branches, in-order issue
- SW controlled buffers, SW controlled pipeline synchronization

p
g El |Ei
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TPU ISA (cont.)

e Read _Host_Memory
- Reads memory from the CPU memory into the unified buffer
 Read Weights
— Reads weights from the Weight Memory into the Weight FIFO as
input to the Matrix Unit
* MatrixMultiply/Convolve

— Perform a matrix-matrix multiply, a vector-matrix multiply, an
element-wise matrix multiply, an element-wise vector multiply, or a
convolution from the Unified Buffer into the accumulators

o Takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to complete

* Activate
— Computes activation function

* Write_Host_Memory
— Writes data from unified buffer into host memory

/N p
(D} o L
\% ) L
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TPU Microarchitecture[#zea

* The u-arch philosophy of TPU is to keep the Matrix
Multiply Unit busy
— Hide the execution of the other insts by overlapping with the
MatrixMultiply inst

o Each of the other 4 insts have separate execution hw

* Problem: energy/time for repeated SRAM accesses of
matrix multiply

— Solution: “Systolic execution” to compute data on the fly in
buffers by pipelining control and data[fxaii&E7#117]

—m— = Dal l "
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TPU Software[#{4
A

 Software stack had to be compatible with CPUs/GPUs[FRE

— So that applications could be ported quickly
— The portion of the app run on the TPU is typically written using

TensorFlow and is compiled into an API that can run on CPUs/GPUs
* Like GPUs, the TPU stack is split into[93/£]

— Kernel Driver: lightweight and handles only memory management
and interrupts

o Designed for long-term stability y e
— Use Space Driver: changes frequently, and — — L Google
L TensoirFIow /\ Applff:atlon )
handles the following J— S —
o Sets up and controls TPU execution R S"eamEx‘fC“m’AP' J |
o Reformats data into TPU order  § User Space Driver
I \ ;
o Translates API calls into TPU insts and turns | Kernel Driver | ;

them into an app binary R —

Tensor Processing Unit
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How TPU Follows the Guidelines

* Use dedicated memories
— 24 MB dedicated buffer, 4 MB accumulator buffers

e Invest resources in arithmetic units and dedicated
memories

- 60% of the memory and 250X the arithmetic units of a server-
class CPU

e Use the easiest form of parallelism that matches the

domain
— Exploits 2D SIMD parallelism

* Reduce the data size and type needed for the domain
— Primarily uses 8-bit integers

e Use a domain-specific programming language
- Uses TensorFlow

xa 1.' [ y
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FEE
 Compare using six benchmarks

- Representing 95% of TPU inference workload in Google data
center in 2016

- Typically written in TensorFlow, pretty short (100-1500 LOCs)
* Chips/servers being compared

— CPU server: Intel 18-core, dual-socket Haswell; host server for
GPUs/TPUs

— GPU accelerator: Nvidia K80
Inference Datacenter Workload (95%)

TPU Performancer

Layers B TPU Ops /| TPU o
Name |[LOC i Weights| Weight | Batch s
Sunction = . | Deployed
FC |Conv|Vector|Pool| Total Byte Size
MLPO 0.1k] 5 5 ReLU | 20M 200 200 61%
MLPI1 | Ik | 4 4 ReLU SM 168 168 ¢
LSTMO| 1k | 24 34 sg [SIBMOId, [ oo | 64 64
tanh
: d 29%
LSTMI|1.5k 37 19 56 |TENLC | 34M | 96 96
CNNO | 1k 16 16 | RelLU 8M 2888 8 50
J /0
CNNI [ 1k | 4 | 72 13| 89 | ReLU |[100M| 1750 32
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Roofline Performance Model[BETR&

* The roofline model was introduced in 2009

— Samuel Williams, Andrew Waterman, and David Patterson.
2009. Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM

* It provides an easy way to get performance bounds for
compute and memory bandwidth bound computations

* It relies on the concept of Computational Intensity (Cl)
- Sometimes also called Arithmetic or Operational Intensity

* The model provides a relatively simple way for
performance estimates based on the computational
kernel and hardware characteristics

— Performance [GF/s] = function (hardware and software
characteristics)

*J' X% »;'G‘i
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Roofline Performance Model(cont.)

* Basic idea
— Plot peak FP throughput as a function of arithmetic intensity

- Ties together FP performance and memory performance for a
target machine

* Arithmetic intensitylzE& % E]
— Ratio of FP operations per byte of memory accessed

o (total #FP operations for a program) / (total data bytes transferred to
main memory during program execution)

O(“ Oflog(N)) Of',rl‘”
g . i A

/l ~ i ™

Arithmetic intensity
\JQ * * ®
Spectral

izaur]ie methods Dense N-body
(SoMV) (FFTs) matrix ‘ (Particle
priv) (BLAS3) methods)
Structured | Structured
grids grids

(Stencils, (Lattice
PDEs) methods)

44 ok
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Arithmetic Intensity

e A1 = %(FLOP/Byte)

— W: amount of work / i.e floating point operations required
— Q: memory transfer / i.e access from DRAM to lowest level

cache
* Examples 1 ADD
for (i =0; i < N; ++i) 2 (8 byte) loads
z[i] = x[i]+y[i] 1 (8 byte) write
Al=1/(2*8 +8)=1/24
1 ADD
for (i=0; i< N; ++i) 1 MUL
z[i] = x[i]+yl[i]*x[i] 2 (8 byte) loads
1 (8 byte) write
Al=2/(2*8 +8) =1/12
‘ iyﬂmﬁ,;ﬁ https://www.dam.brown.edu/peopIe/Igrinb/APMAZ%?l/Lectures 2015/APMA2821H-L _roof line_model.pdf
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Example

float in[N], out[N];
for (int i=1; i<N-1; i++)
out[i] = in[i-1]-2*in[i]+in[i+1];

 Amount of FLOPS: 3(N-2)
— For every i: out[l] = in[i-1]-2*in[i]+in[i+1] = 3 flop
— Loop over: for (int i=1; i<N-1; i++) = (N-2) repetitions

* Memory accesses Q: depends on cache size
— No cache (read directly from slow memory) = every data
accessed is counted
o 4 accesses x (N-2) repetitions x 4 bytes 2 A.l. =3/16

— Perfect cache (infinite sized cache) = data is read & written
only once

o 2 accesses x (N-2) repetitions x 4 bytes 2> A.l. = 3/8

46 i
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Roofline Analysis

* "Roofline” sets an upper bound on perf of a kernel
depending on its arithmetic intensity

— Think of arithmetic intensity as a pole that hits the roof

o Hits the flat part: perf is computationally limited
o Hits the slanted part: perf is ultimately limited by memory bandwidth

* Ridge point: the diagonal and horizontal roofs meet
— Far to right: only very intensive kernels can achieve max perf
— Far to left: almost any kernel can potentially hit max perf

Pecformance [GPLOPS)
Bound based on bandwidth |

Bound based on peak performance

>
App,
o
App,

L
ADP,

Operationad Intensity (FLOPSbyvie)

R ~ 4
" 2 t : 4 s L) 33 oA 128 256 $7! ) lﬂi
Book, 3 4.3, SIMD Instruction Set Extensions for Multimedia 44




Example

* Consider: for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]
uin .

— For each
o 1 addition, 1 multiplication

o 2 loads of 8 bytes each g

o 1 store g |204.8
 Execution on BlueGene/Q :
~ Peak 204.8 GFLOP/node o

 Performance estimates: 7.1

- Al=2/(3*8)=1/121/12<7.11 > pithmetic Intensity (FLOPS/BYTE)
limited area on the Roofline plot

- 7.11/(1/12)= 85.32
- 204.8 / 85.32 = 2.4 GF/s

48 .‘;@
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TPU Roofline Performance

 TPU: its ridge point is far to the right at 1350

— CNN1 is much further below its Roofline than the other DNNs

o Waiting for weights to be loaded into the matrix unit
— Ridge point comparison:
o CPU: 13, GPU: 9 = better balanced, but perf a lot lower

100 = TPU Roofline
= K80 Roofline
HSW Roofline
* LSTMO
S LSTM1

10

* MLP1
* MLPO
+ CNNO
= CNN1
A LSTMO

LSTM1

TeraOps/sec (log scale)

@
s rStar = TPU

& WMLPO A Triangle = GPU
A CNNO OCircle = CPU

4 CNN1

® LSTMO

LSTMI
Operational intensity: Ops/weight byte (log scale)

1 10 100 1000

w;‘@%



Cost-Performance

* Cost metric: performance per watt

- “Total”: includes the power consumed by the host CPU server
when calculating perf/watt for the GPU and TPU

- “Incremental”: subtracts the host CPU power from the total

e Total: GPU is 2.1x CPU, TPU is 34x CPU
* Incremental: TPU is 83x CPU, 29x GPU

B cru/cPu ] TPU/CPU TPU/GPU [} TPU/CPU TPU/GPU

196
t?. 200
Qo
S
& 150
2
Q
§ 100 86 83
@ 69
&
]
% % “ 34 41
8 17
E 1.2I l 21 1.7, 2.9
o
't 0
& Total Perf./Watt GM Total Perf./Watt WM Incrementa Incrementa
Perf./Watt GM Perf./Watt WM

Figure 9. Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to CPU server, and TPU server to GPU
— server (orange bar). TPU" is an improved TPU (Sec. 7). The green bar shows its ratio to the CPU server and the lavender bar shows its p
39) * JJ relation to the GPU server. Total includes host server power, but incremental doesn’t. GM and WM are the geometric and weighted means. U IGL}_
; A
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Microsoft Catapult

* Needed to be general purpose
and power efficient

— Uses FPGA PCle board with

dedicated 20 Gbps network in 6 x Coosoom ccc soomm
8 torus T — . e
— Each of the 48 servers in half the —’J°°"3°°'°°r*°m°°'°‘
rack has a Catapult board ; Con) |+ oepy
~ Limited to 25 watts | —
- 32 MB Flash memory tost _ 9‘ (£0s
— Two banks of DDR3-1600 (11 L ensars
GB/s) and 8 GB DRAM - 1 e
— FPGA (unconfigured) has 3962 18- L e reconig
bit ALUs and 5 MB of on-chip ———————
memory sum | | sum | | sum | | sum
— Programmed in Verilog RTL T I R

— Shell is 23% of the FPGA

/ * , b
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Catapult Applications

* The processing element (PE) of < The architecture of FPGA
the CNN Accelerator for Catapult implementation of the Feature

- Extraction stage in search
== [ omoan acceleration
mﬂm
m;ggri‘:?g‘er m.mm%[ | -l m;.. .
| Ceareete Hit vector
P ' —| preprocessing
: ::1} g FSM
S0 - e =
] :@ T T
v L .,.,.... network ;
e i Om%qtnﬂhv. T
B N 4_. E
Amy__ | Feature extraction FSMs
[mctmaniz|
= e~
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How Catapult Follows the Guidelines

e Use dedicated memories
- 5 MB dedicated memory

e Invest resources in arithmetic units and dedicated
memories

- 3926 ALUs

e Use the easiest form of parallelism that matches the
domain
— 2D SIMD for CNN, MISD parallelism for search scoring

* Reduce the data size and type needed for the domain
- Uses mixture of 8-bit integers and 64-bit floating-point

e Use a domain-specific programming language
— Uses Verilog RTL; Microsoft did not follow this guideline
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