LS _—|I:\ S~
ARITE
cRESS (15%)
- HFE: 6%
o ReviewT—E 7] )J—ZT\%%}U_F% -2%
- Quiz: 3% x3
o PERHAE: -3% (B, HikquizZrN0)
o R -4% (B, *{RquizsrN-1)
o fOFERE: -5% (B, iRquizsr N-2)
« EMV (35%)
- hwil:10% (Fi$)
- hw2:10% (ig30)
- hw3: 15% (A7)
« IR (50%)
- [AE (P, REARIESCHRE)

! Dg:




HAAR =11,

* BYEJHE R
- 2022.1.12(H =) 14:30-16:30
o VE: 4ANHEG—IR], AS[ER R
- B201

- R
- EEE(30): 3’ x 10 } o
- TR & 81(20): 5" x 4
- MZFRER(30): 15’ x 2
- ZE(20): 20 x 1 _

— 100’

U L)) v
‘ ) SUN YAT-SEN UNIVERSITY ﬂ ' ‘ -




N GIED,

e |Instruction-level Parallelism

— Pipelining, branch prediction, dynamic scheduling, ...

e Data-level Parallelism/GPU

— SIMD/SIMT, GPU architecture, CUDA programming, ...

* Memory System

- Memory hierarchy, cache optimizations, ...
— (TLP) coherence and consistency, ...

* Others
— Quantitative evaluation and metrics
- Warehouse scale computing
— Interconnects and domain specific architectures

»;'G‘i



@) Ftux#  [id; ERBEE Mo

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Architecture

= ot B AR &R S5

3!

Vavay

NN

= 1313f: Advanced Topics

l—a
|—a

5

hub.io

Xlanweiz.git

DCS5367, 12/28/2021

wi@%


https://xianweiz.github.io/

Industry[T 5

* Nvidia, 04/2021: Grace, ARM-based data-center CPUI1!

* Apple, 11/2020: M1, ARM-based SoC!?

* AMD, 10/2020: Acquire Xilinx[3]

* Intel, 09/2020: Xe GPU

e Samsung, 11/2019: Cease CPU development!®]

 Amazon, 11/2018: AWS Graviton!>!

* Intel/IBM/ARM, 01/2018: Meltdown and Spectre

* Micron, 03/2021: Cease 3D-XPoint, invest CXL!’!

* Al Chips: Graphcore, Habana Labs, Cerebras, Cambricon...

[1] https://www.nvidia.com/en-us/data-center/grace-cpu/

[2] https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html

[3] https://www.amd.com/en/corporate/xilinx-acquisition

[4] https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html

[5] https://aws.amazon.com/ec2/graviton/

[6] https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development

[7] https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-
address-growing



https://www.nvidia.com/en-us/data-center/grace-cpu/
https://pdf.wondershare.com/macos/everything-about-apple-m1-chip.html
https://www.amd.com/en/corporate/xilinx-acquisition
https://www.intel.com/content/www/us/en/products/discrete-gpus/iris-xe-aic.html
https://aws.amazon.com/ec2/graviton/
https://www.anandtech.com/show/15061/samsung-to-cease-custom-cpu-development
https://investors.micron.com/news-releases/news-release-details/micron-updates-data-center-portfolio-strategy-address-growing

Academia[= AR

Architecture 2030 Workshop @ ISCA 2016 John L. Hennessy, David A. Patterson
> o Current challenges
2020 2025 2030
D W— - End of Moore's Law and
S b : Dennard Scaling
— Overlooked security
Q Cloud as architecture L. .
s s L ¢ * Future opportunities in
. computer architecture
eep - 5
integration — Domain-specific
) architectures
XK > Computing closer 2 . . e
o} to phyisics - Domaln—SpECIfIC

languages

% Machine leaming ¢ - — Open architectures
as key workload .

— Agile hardware
development

[1] Arch2030, https://arxiv.org/pdf/1612.03182.pdf (2016)
[2] A New Golden Age for Computer Architecture (2019)

6 Dhige



https://arxiv.org/pdf/1612.03182.pdf
https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

Top-tier Conferences[liZgk =iy

* ISCA

— The International Symposium on Computer Architecture (ISCA)
- 2021: 48, 76/407 papers (18.6% acceptance rate)
* MICRO

— The IEEE/ACM International Symposium on Microarchitecture
— 2021: 54t 94/430 papers (21.8% acceptance rate)

* HPCA

— |EEE International Symposium on High-Performance Computer
Architecture

- 2021: 27t, 63/258 papers (24.4% acceptance rate)
* ASPLOS

— ACM International Conference on Architectural Support for
Programming Languages and Operating Systems

- 2021: 26th, 75/398 (18.8% acceptance rate)

A\ ¥
(&) T b K NG
/  SUN YAT-SEN UNIVERSITY ’ y ‘




Arch vs. Al

ISCA '19

ISCA 17

ISCA "13

ISCA '12

ISCA 11

ISCA 10

@1t

b KB

SUN YAT-SEN UNIVERSITY

Submitted

365

322

288

262

208

# of Papers

Accepted
62
54
56
47

40

10000

7500

5000

2500

2010 2011

Rate

17%

17%

19%

18%

19%

18%

B Abstracts Submitted [ Accepted

AAAI

2012 2013 2014

Year

Year

ASPLOS '19

ASPLOS "18

ASPLOS "17

Submitted

351

319

320

232

287

217

9945
8843

2015 2016 2017 2018 2019 2020 2021

Accepted

74

56

53

53

48

49

Rate

21%

18%

17%

23%

17%

23%



H PCA’ 2021 (High-Performance Computer Architecture)

* Sessions
— Security Architecture
— Security Attacks
— Accelerators for Machine Learning (2)
— Systems for Machine Learning (2)
— Hardware Accelerators Beyond Machine Learning
— Storage Systems
- Memory and Storage Architectures
— Cache Design
- Network on Chip
- High Throughput Architectures
- Power Efficiency and Resiliency
- Emerging Technologies and Applications
- Quantum Computing

| 1] https://hpca-conf.org/2021/main-program/ |



https://hpca-conf.org/2021/main-program/

ASPLOS'2021 (Arch Support for Prog. Lang. and OS)

* Sessions
- Memory Systems
- Persistence (2)
- Solid State Drives
- Flow
- Microservices
- Systems Software
- Pages and Machine Architecture
- Language and Systems (2)
- Towards Improved Throughputs
- Tools and Frameworks
- Mapping and Management of Quantum and Cloud
- Quantum Abstractions
- Beyond the Pixels
- Races and Concurrency
— Supporting Hardware Parallelism
- Robots, Optimization, and Robo-optimization
- Better Hardware through Compilers
- Data Driven Optimization
- Neural Net Optimization
- Beyond Neural Nets

1] https://asplos-conference.org/program/

) 10 | @
\ by ivﬂmﬁnﬁ u ' ‘l JL



https://asplos-conference.org/program/

|SCA, 2021 (Computer Architecture)

* Sessions
— Industry Track
— Microarchitecture (2)
- Memory (3)
— Machine Learning (2)
— Processing In/Near Memory
— Data Center
— Security (2)
— Accelerators (3)
— Compilers
— Graph Processing
— Low Temperature/Low Energy Computing
— Network Storage & Acceleration
— Quantum/Photonics
— Reliability & Security
- DRAM/I0/Network
— Sparse Processing

| 1] https://www.iscaconf.org/isca2021/program/ |



https://www.iscaconf.org/isca2021/program/

V] |CRO, 2021 (Microarchitecture)

* Sessions
— Best Paper
- Non-Volatile Memory
— Energy Efficiency & Low Power
— Security & Privacy (3)
— Processing In/Near Memory
— Parallelism
— Accelerators (3)
— Reliability & Verification
- GPGPU
— Microarchitecture (2)
— Superconducting & Quantum
— Sparse Processing
— Graph Processing
— Virtual Memory & Prefetching

| 1] https://www.microarch.org/micro54/program/ .,
@) Tx% 12 K



https://www.microarch.org/micro53/program/

Selected Topics

* HPCA’2021

— Accelerators for Machine
Learning (2)

— Systems for Machine Learning
(2)

- Hardware Accelerators
Beyond Machine Learning

* ASPLOS’2021

- Mapping and Management of
Quantum and Cloud

— Data Driven Optimization
— Neural Net Optimization
— Beyond Neural Nets

AV

(e T b

A )

\&u$/ SUN YAT-SEN UNIVERSITY

* [SCA’2021

— Machine Learning (2)
— Accelerators (3)

— Graph Processing

— Sparse Processing

* MICRO’2021

— Accelerators (3)
— Sparse Processing
— Graph Processing

ﬂn’ﬂi



Domain Specific Architecture

14 wiﬂi




HW Companies Building Custom Chips

ANNOUNCING
NVIDIA BLUEFIELD-2 DPU

Data Center Infrastructure-on-a-Chip

Ascend 910
Meet the world's most powerful Al processor *

HHERMAILERS — FEO10IEVESR

b HUAWEI

SUN YAT-SEN UNIVERSITY

<= INTEL” NERVANA™
- EURAL NETWORK PROCESS0"

o s, . FORINFERENCE

-
e

@

Innovation from the Data Center to the Edge

£ 0UNX

AMDD
FPGA Accaleraton CDNA

Leadership x86 CPU Adaptive Acceleration CDNA-Optimized

3 Dense Compute
Industry’s best x88 compute Leadership FPGAS, accalerators

engnes driving leadership from and Adaptive SOCs enabling High-performance engine for
Enterprise 1o Cloud to HPC emerging workioad acceleration HPC, Artificial Inteligence, By
from Al 1o sman networking and Data Analytics
software-defined infrastructure




SW Companies are Bmldmg HW

Chips Off the Old Block: Computers Are
Taking Design Cues From Human Brains
(September 16, 2017)

After training a speech-recognition algorithm,

for example, Microsoft offers it up as an online

service, and it actually starts identifying - S T L
commands that people speak into their R 2B
smartphones. G.P.U.s are not quite as :
efﬁci:nt during this stage of :‘he process. AWS Inferentia
So, many companies are now building

chips specifically to do what the other

chips have learned.

Google built its own specialty chip, a Tensor L TS
Processing Unit, or T.P.U. Nvidia is building a j

similar chip. And Microsoft has

reprogrammed specialized chips from i E = :
Altera, which was acquired by Intel, so that it S : Ee"

too can run neural networks more easily. ' - . ﬁhaz—aauemmmg




Startups Building Custom Hardware

(l
k)

e

s

Tech Giants/System
Google

B® Microsoft

aws

Alibaba G
FEEET

HUAWEI
(]
BaiNo®

T

| —
Hewlett Pack
Enterprise

D
FUJITSU

ey

Western Digital.

NOKIA

o

All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date.

240

>y TN "
SUN YAT-SEN UNIVERSITY

Al Chip Landscape

S

IC Vender/Fabless — Startup in China = - Startup Worldwide IP/Design Sevice —
(in/t;D Cambricon @ FPGA arm
“
SAMSUNG @2y - ‘ SYNoPsys
BITMAIN ettt 0
@ nviDIA.
intell Tusion Graphcore Processing in Memory imagnation
Quaic =xa'e
< Think Force CEVA
AMDQD1
[ Feat shabana cadence
£ XILINX. e W mainoy
HAIE Optical Computing B sirive
T UNISOC (IE""“me € thinci ll}‘ ARTERISH
‘\ -
4 () l:, KALRAY 88 LIGHTMATTER s\ cortec
Pk groq Design service with
L In-house IP
neuromorphic
National Ct HLL&! D ‘;’
‘M o B aicTx Dsiscon
Automated Driving e -
N Esperanto '
» el & brainchip © BROADCOM
A
m \ €
Qﬂlbus S PEZY Computing P Risferred LR
alkchip
RENESAS [Rokid| M Eta Compute (@feron
TOSHIBA SPESCH B4 > & FARADAY
LT AL GREEN &
IS72 & pam e ;
More on https://basicmi.github.io/Al-Chip/
Compilers
e = ré "
F TensorFlow & O GLOW L @ NVIDIA. TensorR] MLPerf AI - Benchmark Al Matrix.
PAN\VAN & DAWNBench

Boiaiavi

nGraph

28 ATEEmuNRSE

https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-93-2019/

g


https://www.servethehome.com/dell-emc-talks-deep-learning-and-ai-q3-2019/

Past General-Purpose[i&

* Moore’s Law enabled:
— Deep memory hierarchy
- Wide SIMD units
— Deep pipelines
— Branch prediction
— Out-of-order execution
— Speculative prefetching
- Multithreading 1
- Multiprocessing

40 years of Processor Performance

e vs. VAX11-780

Performanc

- cisc

iy 2X13.5yrs
(22%iy1)

* The sophisticated architectures targeted general-purpose
code
— Architects treated code as black boxes
— Extract performance from software that is oblivious to

architecture 4
& ***3 18 Dy




Domain-Specific Architecture4utsi %

* Hard to keep improving performance
— More transistors means more power

— Energy budget is limited: higher performance - lower
energy/operation

- Enhancing existing cores may only boost 10% performance

* Need factor of 100 improvements in number of
operations per instruction

- Requires domain specific architectures

10-50X improvement 100-1000X improvement

].1 in TOPS & TOPS /W In TOPS & TOPS /W
' \ '.””t‘”‘ sers '
e St

Frequency/Ease of Use

. Performance / Power Efficiency

g



Domain-Specific Architecture (cont.)

* Computers will be much more heterogeneous[&#4]
— Standard processors to run conventional large programs
o E.g., operating system
— Domain-specific processors doing only a narrow range of tasks
o But they do them extremely well

* DSA opportunities[HLi]
- Preceding architecture from the past may not be a good match
to some domains

o E.g., caches are excellenet general-purpose architectures but not
necessarily for DSAs

— Domain-specific algorithms are almost always for small
compute-intensive kernels of larger systems

o DSAs should focus on the subset and not plan to run the entire program

‘ ' 'l L
(2 £ “l’ 5
\% &) 4
v$/  SUN YAT-SEN UNIVERSITY ) ¥ ‘




DSA Challenges[#kdk]

* Architects must expand their areas of expertise
— Must now learn application domains and algorithms

* Nonrecurring engineering (NRE) costs[—X 4 T 2R A]
- Find a target whose demand is large enough to justify allocating

dedicated silicon on an SOC or even a custom chip

o The costs are amortized over the number of chips manufactured, so
unlikely to make economic sense if you need only 1000 chips

— For smaller volume applications, use reconfigurable chips such
as FPGAs

o Several different applications may reuse the same reconfigurable

hardware to amortize costs
o However, the hardware is less efficient than custom chips, so the gains

from FPGAs are more modest

e Port software[fSiEER{4)

- Programming languages and compilers

r‘v;'ﬂi




DSA Design Guidelinespgit &

* Why guidelines?
- Lead to increased area and energy efficiency

— Provide two valuable bonus effects
o Lead to simpiler designs, reducing the cost of NRE of DSAs
o For user-facing apps, better match the 99th-percentile response-time

deadlines

Guideline TPU Catapult Crest Pixel Visual Core

Design target Data center ASIC Data center FPGA Data center ASIC  PMD ASIC/SOC 1P

1. Dedicated 24 MiB Unified Buffer, Vanes N.A Per core: 128 KiB line
memones 4 MiB Accumulators buffer, 64 KiB P.E.

memory

2. Larger 65,536 Mulaply- Vanes N.A Per core: 256 Multiply-
anthmetic unit  accumulators accumulators (512 ALUs)

3. Easy Single-threaded, SIMD,  SIMD, MISD N.A MPMD, SIMD, VLIW
parallelism in-order

4. Smaller data 8-Bit, 16-bit integer 8-Bit, 16-bit integer  21-bit F. PL. 8-bit, 16-bit, 32-hit integer
size 32-bit Fl. PL

5. Domain- TensorFlow Venlog TensorFlow Halide/TensorFlow

specific lane.

cE 1A A 1
\ s / s;)fv,:'l-"mﬁ % 22 u"lﬂg_



DSA Design Guidelines (cont.)

* Use dedicated memories to minimize the distance over which
data is moved
— Hardware cache = software-controlled scratchpad

o Compiler writers and programmers of DSAs understand their domain
o Software-controlled memories are much more energy efficient

* Invest the resources saved from dropping advanced u-arch
optimizations into more arithmetic units or bigger memories

— Owing to the superior understanding of the execution of programs

e Use the easiest form of parallelism that matches the domain
— Target domains for DSAs almost always have inherent parallelism
o How to utilize that parallelism and how to expose it to the software?

— Design the DSA around the natural granularity of the parallelism and
expose that parallelism simply in the programming model

o SIMD > MIMD, VLIW > Oo0

o “‘ 1\ [ f
(@) T X% 23 Dl




DSA Design Guidelines (cont.)

* Reduce data size and type to the simplest needed for the
domain

— Apps in many domains are typically memory-bound, using
narrower data types helps increase the effective memory
bandwidth and on-chip memory utilizations

- Narrower and simpler data also enable to pack more arithmetic
units into the same chip area

e Use a domain-specific programming language to port
code to the DSA

— WRONG: you new arch is so attractive that programmers will
rewrite their code just for you hw

- Fortunately, domain-specific languages were popular even
before architects’ switched attentions

o Halide for vision processing, TensorFlow for DNNs

) el ¢
: ivﬂmﬁsﬁ 24 w ’ ‘IG \i




The Trenad

* The ABC of Al: Algorithm + Big-data + Computing

EXPLODING MODEL COMPLEXITY

175
30,000X in 5 Years | Now Doubling Every 2 Months 180 17528
1.E+04 149
@ GPT-3
140
1.E+03 *'. Megatron-BERT
i o g 120
o 1.E+02 Megatron-GPT2 ..' Turing NLG
2 GPT.. @ § 100
) 1.E+01 & E
L BERT @ : 80
o 1.E+00 b
“Tg ResNet 60
&  1E01 o®
9> 40
AlexNet _  oe®
LE02 oo 5 I
1.E-03 " ,—7LL-7L.Ji,I o [0 - -
2012 2014 2017 2020 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

@T&K&

SUN YAT-SEN UNIVERSITY

AL ALY SRR

25

D



Example Domain

* Deep neural networks (DNNs)
— Revolutioning many areas of computing today

— Are applicable to a wide range of problems

o So, a DNN-specific arch can be reused for solutions in speech, vision,
language, translation, search ranking, and many more areas

* DNN structure

— Inspired by neuron of the brain

o Each neuron simply computes the sum over a set of products of weights
or parameters and data values

* E.g., pixels for image-processing

— The sum is then put through a nonlinear function to determine
its output

o E.g., f(x) = max(x, 0) --- rectified linear unit (ReLU)

in,

. out
in,

o Output is called activation
* The output of the neuron that has been “activated”

/N p
(D} o L
\% ) L
avus/  SUN YAT-SEN UNIVERSITY ) Al

in
n




DNNSs

* Most practitioners will choose an existing design
— Topology
— Data type

* Training (learning)[ilIZ]
— Calculate weights using backpropagation algorithm
— Supervised learning: stochastic graduate descent

* Inference[}EIH]
— Use neural network for classification

To=X I T>

Fv:';;:!\:r:'; Image)  (Input Layer) Hidden Layer 1) (Hidden Layer 2) i yye
"\‘;\»_\ /. ‘\\ ® g Name DNN layers Weights Operations/Weight
@\ TN MLPO 5 20M 200
_'f\\\ 4754{. 7 .\\ ‘ MLPI 4 SM 168
XS K XY NN
ﬁé’/\ 765" SO LSTMO 58 52M 64
/7 X /AN N >
’Q.}///x AN ® 7 ‘ 74 ‘ LSTMI 56 34M 9%
/X \ X o \\ o——— N —
-@ /*\ : /\\. @@ CNNO 16 8™ 2888
0// \\\‘ > ./ : \' CNNI 89 100M 1750

( R \ | f (
\ s ‘ iyﬁmﬁ % 27 U"lﬂi




Multilayer Perceptron|Z E=&0#1)

* Feed-forward neural networks

— The units are arranged into a graph without any cycles
o so that all the computation can be done sequentially

— Fully connected: every unit in one layer is connected to every
unit in the next layer

 MLP is just a vector matrix multiply of the input vector
times the weights array

Layerfi-1] Layerfi]
) Parameters:
il S s Dim[i]: number of neurons
\Q/M;J_,(af\;_. Output Dim[i-1]: dimension of input vector
4 ;‘ [/] Number of weights: Dim[i-1] x Dim[i]
imy

Operations: 2 x Dim[i-1] x Dim[i]

| Operations/weight: 2
Weights

1
N
Dim(i-1]

A*E ' f Q




Convolutional Neural Network[& )

* CNNs are widely used for computer vision applications

* Each layer raises the level of abstraction
— Lines = corners = shapes =2 ...

* Feature map: a set of 2D maps produced by each neural
layer
— Each cell is identifying one feature in the area of the input

 Stencil computation: uses neighboring cells in a fixed
pattern to update all the elements of an array

Input image Output feature map

I I
= | F
[ (rut ) Nonlinear function | 'EJ
R e | | 4
—————————————————————— Py




Convolutional Neural Network (cont.)

e Parameters:

- DimFM][i-1]: Dimension of the (square) input Feature

Layerfi-1] Layeri] Map
input feat output feat . I .
R A e - DimFM][i]: Dimension of the (square) output Feature

— l/// Map
7 ~ DimSten[i]: Dimension of the (square) stencil
- NumFM][i-1]: Number of input Feature Maps

NumFM[/]

- NumFM][i]: Number of output Feature Maps

NumFM[i-1]

- Number of neurons: NumFM][i] x DimFM[i]?

- Number of weights per output Feature Map:
NumFMI[i-1] x DimSten[i]?

- Total number of weights per layer: NumFM[i] x
Number of weights per output Feature Map

/ \
Q/MX Vector matrix multiply
g

NumFM[i-1]

(i) Nonlinear function - N.umber‘of operations per putput Feature Map: 2 x
PN~z i DimFM[i]?2 x Number of weights per output Feature
Map

- Total number of operations per layer: NumFM[i] x
Number of operations per output Feature Map = 2 x
DimFM[i]2x NumFM][i] x Number of weights per
output Feature Map = 2 x DimFM][i]? x Total number
of weights per layer

- Operations/Weight: 2 x DimFM[i]2

: ) ) G
‘ / S;J*Y;YATJ-S‘ENﬁEﬁ 30 u"l@i




Recurrent Neural Network[f&IR]

 Popular for speech recognition on language translations

* RNNs can remember facts
- Long short-term memory (LSTM) network

“now” —{ LSTMo0 LSTM1 — ... —={ LSTMn |—

! ! !
‘is" —| LSTMo | —{ LSTM1 |~ ... —[LSTMn |-~

H B! i i
‘the” —[ LSTMO |~ LSTM1 |~ ... —{LSTMn |~
L |

“time” —{ LSTMO0 LSTM1 |— ... —={ LSTMn |—

! !
<end_input> —| LSTM0 |—{ LSTM1 |— “momento”
! '

“‘momento” —=| LSTMO LSTM1 oo LSTMn “el”

! ! i

“el" —| LSTMO |—{ LSTM1 |~ ... —{ LSTMn |— “es’
B! B! R

“es" —={ LSTMoO LSTM1 ...—= LSTMn “ahora”
1§ R :
b “ahora” —-| LSTMo |—~{ LSTM1 l—- . LSTMn <end_output>
b Pt

Time

* IR




Recurrent Neural Network (cont.)

* Parameters:
— Number of weights per cell:

[LTMemoryin | [STMemoryin |
|

@‘\j_._('r,_,,‘\\ ?/1)9 Vector matrix muiltiply 3 X (3 X Dlm X Dlm)+(2 X Dlm
NN — X Dim) + (1 x Dim x Dim) =
T N C) Element-wise multiply 12 X D|m2
Output gate /-:\ .
weights . (+) Etement-wise addition — Number of operations for
= e A N () Noninear uncton the 5 vector-matrix
VMX } (if } o ) e T .
\T/ & \_/\ L - p— WUHZI IC|§>I|esfper .celilt. 2 X '
N e vt umber of weights per ce
\ . - L
Fov:g:e‘; :t:te |>;\HM/&1\\'_::/_:\ - 24 X D|m .
Input ‘ / = Ty [ ] — Number of operations for
._.\Mx\_.@ / the 3 element-wise
% J multiplies and 1 addition
WA o vectors are all the size of
Input gate i} &S .
weights /}’- i the output): 4 x Dim
(oY’ Shrt term — Total number of operations
f —— per cell (5 vector-matrix
i multiplies a_md the 4 _
weights element-wise operations):
24 x Dim2+ 4 x Dim

' 1
LTMemoryout | [ STMemoryout

— Operations/Weight: ~2

Y 32 D

SUN YAT-SEN UNIVERSITY




Example Domain: DNNs
* Batches[ill]

- Reuse weights once fetched from memory across multiple
inputs
o Increases operational intensity
e Quantization[2{4]

— Numerical precision is less important for DNNs than for many
applications

o Use 8- or 16-bit fixed point

 Summary: need the following kernels
- Matrix-vector multiply

- Matrix-matrix multiply E"' i D

— Stencil g N

- RelLU I R T
- Sigmoid

.
E— !
- Hyperbolic tangent - ®

l"! | R |
:‘7 ‘ iyﬁmﬁ % 33 U"lﬂi




Tensor Processing Unit (TPU)

e Google’s first custom ASIC DSA for WSCs
- Its domain is the inference phase of DNNs
- It is programmed using the TensorFlow framework

— The first TPU was been deployed in 2015
o Originated as far back as 2006, to improve perf by 10x over GPUs

oy

=
.“
.,7I
.“
.'.l
.lﬂ'
-
.“

-
e
@ :

TPU v1 TPUv2
Launched in 2015 Launched in 2017
Inference only Inference and training

g‘», 1. b 3
\& vusS / svi}fv:fs'mﬁ ’% 34 U"'GL{



TPU Chip Overview

* TPU chip is half the size of the other chips
— 28 nm process with a die size £331 mm
— This is partially due to simplification of control logic

* Floor plan of TPU die

— 50%+ on arithmetic

Na memaor ,
° d =" Y woeal m:nt;ffe ror Matrix multiply unit
(96Kx256x8b = 24 MiB) ‘256"256"323; 64K MAC)
29% of chip °

Host Accumulators
Interf. 2% | | (4Kx256x32b = 4 MiB) 6%

D

R

A

M ' = :

33."9 | Activation pipeline 6% | port
3%

PCle | 3%
Interface 3% Misc. VO 1% |

o
35 Dhig:




TPU Architecture[z2#s)

* A coprocessor on the PCle I/O bus
* A large software-managed on-chip memory

e The Matrix Unit: 65,536 (256x256)

8-bit multiply-accumulate units il igh—level Chi P
e 700 MHz clock rate Architect
e Peak: 92T operations/second rcnitecure

o 65536*2*700M

e >25X as many MACs vs GPU
e >100X as many MACs vs CPU
e 4 MiB of on-chip Accumulator
memory .
e 24 MiB of on-chip Unified Buffer,, . jg —
(activation memory) =T =
e 3.5X as much on-chip memory
vs GPU
e Two 2133MHz DDR3 DRAM
channels S
e 8 GiB of off-chip weight DRAM gm:;jl
memory [ omtet: 15

N 1o Soake

Ard
36 ) hﬂq
oy wrsevonvessiy Wt ps - / /www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc U' §



https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU [SA[3ES]

* The host CPU sends TPU instructions over the PCle bus
into an instruction buffer[#8<$ &1X]

— TPU has no PC, and it has no branch instructions

— 5 main (CISC) instructions (11 in total)

o Other: alternate host memory read/write, set configuration, two
versions of synchronization, intrrupt host, debug-tag, nop and halt

* Instruction execution[} 5<SHI1T]
— Average clock cycles per instruction: > 10
— 4-stage overlapped execution, 1 instruction type/stage
o Execute other instructions while matrix multiplier busy
* Complexity in software[B{FEEZ¥ 4]
— No branches, in-order issue
- SW controlled buffers, SW controlled pipeline synchronization

p
g El |Ei
g5 swv wrsmomms https: //www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc #¥ ¥



https://www.anandtech.com/show/11749/hot-chips-google-tpu-performance-analysis-live-blog-3pm-pt-10pm-utc

TPU ISA (cont.)

e Read _Host_Memory
- Reads memory from the CPU memory into the unified buffer
 Read Weights
— Reads weights from the Weight Memory into the Weight FIFO as
input to the Matrix Unit
* MatrixMultiply/Convolve

— Perform a matrix-matrix multiply, a vector-matrix multiply, an
element-wise matrix multiply, an element-wise vector multiply, or a
convolution from the Unified Buffer into the accumulators

o Takes a variable-sized B*256 input, multiplies it by a 256x256 constant
input, and produces a B*256 output, taking B pipelined cycles to complete

* Activate
— Computes activation function

* Write_Host_Memory
— Writes data from unified buffer into host memory

/N p
(D} o L
\% ) L
avus/  SUN YAT-SEN UNIVERSITY ) Al



TPU Microarchitecture[#zea

* The u-arch philosophy of TPU is to keep the Matrix
Multiply Unit busy
— Hide the execution of the other insts by overlapping with the
MatrixMultiply inst

o Each of the other 4 insts have separate execution hw

* Problem: energy/time for repeated SRAM accesses of
matrix multiply

— Solution: “Systolic execution” to compute data on the fly in
buffers by pipelining control and data[fxaii&E7#117]

—m— = Dal l "
%E o i i - inputs
o

L —L \ weights
@t uxe w39 T

w;‘ﬂ‘*



TPU Software[#{4
A

 Software stack had to be compatible with CPUs/GPUs[FRE

— So that applications could be ported quickly
— The portion of the app run on the TPU is typically written using

TensorFlow and is compiled into an API that can run on CPUs/GPUs
* Like GPUs, the TPU stack is split into[93/£]

— Kernel Driver: lightweight and handles only memory management
and interrupts

o Designed for long-term stability y e
— Use Space Driver: changes frequently, and — — L Google
L TensoirFIow /\ Applff:atlon )
handles the following J— S —
o Sets up and controls TPU execution R S"eamEx‘fC“m’AP' J |
o Reformats data into TPU order  § User Space Driver
I \ ;
o Translates API calls into TPU insts and turns | Kernel Driver | ;

them into an app binary R —

Tensor Processing Unit

A0BIS Nd.L



How TPU Follows the Guidelines

* Use dedicated memories
— 24 MB dedicated buffer, 4 MB accumulator buffers

e Invest resources in arithmetic units and dedicated
memories

- 60% of the memory and 250X the arithmetic units of a server-
class CPU

e Use the easiest form of parallelism that matches the

domain
— Exploits 2D SIMD parallelism

* Reduce the data size and type needed for the domain
— Primarily uses 8-bit integers

e Use a domain-specific programming language
- Uses TensorFlow

xa 1.' [ y
(@) T X% 41 UH'ELZ




FEE
 Compare using six benchmarks

- Representing 95% of TPU inference workload in Google data
center in 2016

- Typically written in TensorFlow, pretty short (100-1500 LOCs)
* Chips/servers being compared

— CPU server: Intel 18-core, dual-socket Haswell; host server for
GPUs/TPUs

— GPU accelerator: Nvidia K80
Inference Datacenter Workload (95%)

TPU Performancer

Layers B TPU Ops /| TPU o
Name |[LOC i Weights| Weight | Batch s
Sunction = . | Deployed
FC |Conv|Vector|Pool| Total Byte Size
MLPO 0.1k] 5 5 ReLU | 20M 200 200 61%
MLPI1 | Ik | 4 4 ReLU SM 168 168 ¢
LSTMO| 1k | 24 34 sg [SIBMOId, [ oo | 64 64
tanh
: d 29%
LSTMI|1.5k 37 19 56 |TENLC | 34M | 96 96
CNNO | 1k 16 16 | RelLU 8M 2888 8 50
J /0
CNNI [ 1k | 4 | 72 13| 89 | ReLU |[100M| 1750 32

42 Dhig:



Roofline Performance Model[BETR&

* The roofline model was introduced in 2009

— Samuel Williams, Andrew Waterman, and David Patterson.
2009. Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM

* It provides an easy way to get performance bounds for
compute and memory bandwidth bound computations

* It relies on the concept of Computational Intensity (Cl)
- Sometimes also called Arithmetic or Operational Intensity

* The model provides a relatively simple way for
performance estimates based on the computational
kernel and hardware characteristics

— Performance [GF/s] = function (hardware and software
characteristics)

*J' X% »;'G‘i



https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Roofline Performance Model(cont.)

* Basic idea
— Plot peak FP throughput as a function of arithmetic intensity

- Ties together FP performance and memory performance for a
target machine

* Arithmetic intensitylzE& % E]
— Ratio of FP operations per byte of memory accessed

o (total #FP operations for a program) / (total data bytes transferred to
main memory during program execution)

O(“ Oflog(N)) Of',rl‘”
g . i A

/l ~ i ™

Arithmetic intensity
\JQ * * ®
Spectral

izaur]ie methods Dense N-body
(SoMV) (FFTs) matrix ‘ (Particle
priv) (BLAS3) methods)
Structured | Structured
grids grids

(Stencils, (Lattice
PDEs) methods)

44 ok
Book, § 4.3, SIMD Instruction Set Extensions for Multimedia 44



Arithmetic Intensity

e A1 = %(FLOP/Byte)

— W: amount of work / i.e floating point operations required
— Q: memory transfer / i.e access from DRAM to lowest level

cache
* Examples 1 ADD
for (i =0; i < N; ++i) 2 (8 byte) loads
z[i] = x[i]+y[i] 1 (8 byte) write
Al=1/(2*8 +8)=1/24
1 ADD
for (i=0; i< N; ++i) 1 MUL
z[i] = x[i]+yl[i]*x[i] 2 (8 byte) loads
1 (8 byte) write
Al=2/(2*8 +8) =1/12
‘ iyﬂmﬁ,;ﬁ https://www.dam.brown.edu/peopIe/Igrinb/APMAZ%?l/Lectures 2015/APMA2821H-L _roof line_model.pdf

w;‘ﬂ‘*


https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

Example

float in[N], out[N];
for (int i=1; i<N-1; i++)
out[i] = in[i-1]-2*in[i]+in[i+1];

 Amount of FLOPS: 3(N-2)
— For every i: out[l] = in[i-1]-2*in[i]+in[i+1] = 3 flop
— Loop over: for (int i=1; i<N-1; i++) = (N-2) repetitions

* Memory accesses Q: depends on cache size
— No cache (read directly from slow memory) = every data
accessed is counted
o 4 accesses x (N-2) repetitions x 4 bytes 2 A.l. =3/16

— Perfect cache (infinite sized cache) = data is read & written
only once

o 2 accesses x (N-2) repetitions x 4 bytes 2> A.l. = 3/8

46 i
https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01 slides.pdf P -



https://www.cse-lab.ethz.ch/wp-content/uploads/2021/09/ex01_slides.pdf

Roofline Analysis

* "Roofline” sets an upper bound on perf of a kernel
depending on its arithmetic intensity

— Think of arithmetic intensity as a pole that hits the roof

o Hits the flat part: perf is computationally limited
o Hits the slanted part: perf is ultimately limited by memory bandwidth

* Ridge point: the diagonal and horizontal roofs meet
— Far to right: only very intensive kernels can achieve max perf
— Far to left: almost any kernel can potentially hit max perf

Pecformance [GPLOPS)
Bound based on bandwidth |

Bound based on peak performance

>
App,
o
App,

L
ADP,

Operationad Intensity (FLOPSbyvie)

R ~ 4
" 2 t : 4 s L) 33 oA 128 256 $7! ) lﬂi
Book, 3 4.3, SIMD Instruction Set Extensions for Multimedia 44




Example

* Consider: for (i = 0; i < N; ++i) y[i] = a*x[i]+y[i]
uin .

— For each
o 1 addition, 1 multiplication

o 2 loads of 8 bytes each g

o 1 store g |204.8
 Execution on BlueGene/Q :
~ Peak 204.8 GFLOP/node o

 Performance estimates: 7.1

- Al=2/(3*8)=1/121/12<7.11 > pithmetic Intensity (FLOPS/BYTE)
limited area on the Roofline plot

- 7.11/(1/12)= 85.32
- 204.8 / 85.32 = 2.4 GF/s

48 .‘;@
wry https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures 2015/APMA2821H-L roof line model.pdf Pr W -

s
() F b K
(B}

v/ SUN YAT-SEN UNIVE



https://www.dam.brown.edu/people/lgrinb/APMA2821/Lectures_2015/APMA2821H-L_roof_line_model.pdf

TPU Roofline Performance

 TPU: its ridge point is far to the right at 1350

— CNN1 is much further below its Roofline than the other DNNs

o Waiting for weights to be loaded into the matrix unit
— Ridge point comparison:
o CPU: 13, GPU: 9 = better balanced, but perf a lot lower

100 = TPU Roofline
= K80 Roofline
HSW Roofline
* LSTMO
S LSTM1

10

* MLP1
* MLPO
+ CNNO
= CNN1
A LSTMO

LSTM1

TeraOps/sec (log scale)

@
s rStar = TPU

& WMLPO A Triangle = GPU
A CNNO OCircle = CPU

4 CNN1

® LSTMO

LSTMI
Operational intensity: Ops/weight byte (log scale)

1 10 100 1000

w;‘@%



Cost-Performance

* Cost metric: performance per watt

- “Total”: includes the power consumed by the host CPU server
when calculating perf/watt for the GPU and TPU

- “Incremental”: subtracts the host CPU power from the total

e Total: GPU is 2.1x CPU, TPU is 34x CPU
* Incremental: TPU is 83x CPU, 29x GPU

B cru/cPu ] TPU/CPU TPU/GPU [} TPU/CPU TPU/GPU

196
t?. 200
Qo
S
& 150
2
Q
§ 100 86 83
@ 69
&
]
% % “ 34 41
8 17
E 1.2I l 21 1.7, 2.9
o
't 0
& Total Perf./Watt GM Total Perf./Watt WM Incrementa Incrementa
Perf./Watt GM Perf./Watt WM

Figure 9. Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to CPU server, and TPU server to GPU
— server (orange bar). TPU" is an improved TPU (Sec. 7). The green bar shows its ratio to the CPU server and the lavender bar shows its p
39) * JJ relation to the GPU server. Total includes host server power, but incremental doesn’t. GM and WM are the geometric and weighted means. U IGL}_
; A

N bS] /www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads



https://www.extremetech.com/computing/247199-googles-dedicated-tensorflow-processor-tpu-makes-hash-intel-nvidia-inference-workloads

Microsoft Catapult

* Needed to be general purpose
and power efficient

— Uses FPGA PCle board with

dedicated 20 Gbps network in 6 x Coosoom ccc soomm
8 torus T — . e
— Each of the 48 servers in half the —’J°°"3°°'°°r*°m°°'°‘
rack has a Catapult board ; Con) |+ oepy
~ Limited to 25 watts | —
- 32 MB Flash memory tost _ 9‘ (£0s
— Two banks of DDR3-1600 (11 L ensars
GB/s) and 8 GB DRAM - 1 e
— FPGA (unconfigured) has 3962 18- L e reconig
bit ALUs and 5 MB of on-chip ———————
memory sum | | sum | | sum | | sum
— Programmed in Verilog RTL T I R

— Shell is 23% of the FPGA

/ * , b
() FTHx % o1 Dhig:



Catapult Applications

* The processing element (PE) of < The architecture of FPGA
the CNN Accelerator for Catapult implementation of the Feature

- Extraction stage in search
== [ omoan acceleration
mﬂm
m;ggri‘:?g‘er m.mm%[ | -l m;.. .
| Ceareete Hit vector
P ' —| preprocessing
: ::1} g FSM
S0 - e =
] :@ T T
v L .,.,.... network ;
e i Om%qtnﬂhv. T
B N 4_. E
Amy__ | Feature extraction FSMs
[mctmaniz|
= e~

whAed
52 W H



How Catapult Follows the Guidelines

e Use dedicated memories
- 5 MB dedicated memory

e Invest resources in arithmetic units and dedicated
memories

- 3926 ALUs

e Use the easiest form of parallelism that matches the
domain
— 2D SIMD for CNN, MISD parallelism for search scoring

* Reduce the data size and type needed for the domain
- Uses mixture of 8-bit integers and 64-bit floating-point

e Use a domain-specific programming language
— Uses Verilog RTL; Microsoft did not follow this guideline

T *
() F b X B 53
%f SUN YAT-SEN UNIV] TY

D



