
Advanced Computer
Architecture

高级计算机体系结构

第3讲： ISA and ILP (2)
张献伟

xianweiz.github.io
DCS5367, 9/28/2021

https://xianweiz.github.io/

Review Questions
• List some goals of architecture designs?

• Amdahl‘s Law ?

• If 80% of a program can be parallelized to run 4x faster,
what’s the overall speedup? The theoretical max?

• CPI vs. IPC?

• ISA vs. u-arch?

• CISC vs. RISC

2

Speedup is limited by the fraction.

1 / (20% + 80%/4) = 2.5x max: 1 / 20% = 5

Cycles per instruction instructions per cycle

u-arch is the specific implementation of ISA. Arch = ISA + u-arch

Functional, high performance, reliable, low cost, low power, …

Complex vs. reduced, differences on instructions, perf, code size, …

RISC-V Instructions[指令]

• All RISC-V instructions are 32 bits long, have 6 formats
− R-type: instructions using 3 register inputs
− I-type: instructions with immediates, loads
− S-type: store instructions
− B-type: branch instructions (beq, bge)
− U-type: instructions with upper immediates
− J-type: jump instructions (jal)

3
https://riscv.org/wp-content/uploads/2018/05/13.15-13-50-Talk-riscv-base-isa-20180507.pdf

Example

• Fields of R-type
− opcode: partially specifies what instruction it is
− funct7+funct3: combined with opcode, these two fields

describe what operation to perform
− rs1 (source register #1): specifies register of first operand
− rs2: specifies second register operand
− rd (destination register): specifies register which will receive

result of computation
p Each register field holds a 5-bit unsigned integer (0-31) corresponding to

a register number (x0-x31)

• add x18,x19,x10

4
=10 =19 =18

Executing an Instruction[执行指令]

• Very generally, what steps do you take to figure out the
effect/result of the next RISC-V instruction?

− Get the instruction[获取指令]
p add x18,x19,x10

− What instruction is it?[操作符?]
p add

− Gather data read[操作数?]
p R[x19], R[x10]

− Perform operation[操作]
p calc R[x19]+R[x10]

− Store result[结果]
p save into x18

5
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture11.pdf

Five-Stage Execution(§C.1)[5阶段执行]

• Instruction fetch (IF)[取指令]/(IM: instruction memory)
− Fetch the next instruction from memory (and update PC to the

next sequential instruction)
• Instruction decode (ID)[解码]/(REG: register fetch)

− Decode the inst and read the registers corresponding to register
source specifiers

• Execution/effective address (EX)[执行]/(ALU)
− Operate on the operands prepared in the prior cycle

• Memory access (MEM)[访存]/(DM: data memory)
− Load: read using the effective address
− Store: write to memory

• Write-back (WB)[回写]/(REG)
− Writes the result into the register

6

Examples
• Arithmetic/logic instructions: R-type rd, rs1, rs2

− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: compute result (use ALU)
− WB: write to register rd

• Load instructions: lw rd, c(rs1)
− IF: fetch instruction
− ID: read register rs1 (and rs2 ??)
− EX: use ALU to compute memory address = content of rs1 + c
− MEM: read from memory
− WB: write to register rd

• Store instructions: sw rs2, c(rs1)
− IF: fetch instruction
− ID: read registers rs1 and rs2
− EX: use ALU to compute memory address = content of rs1 + c
− WB: write value of rs2 to memory at address rs1+c

7

Why Five Stages?
• Could we have a different number of stages?

− Yes, and other architectures do

• So why does RISC-V have five if instructions tend to idle
for at least one stage?

− The five stages are the union of all the operations needed by all
the instructions

− There is one instruction that uses all five stages: load (lw/lb)

8

lw rd, c(rs1)
IF: fetch instruction
ID: read register rs1
EX: use ALU to compute address = rs1 + c
MEM: read from memory
WB: write to register rd

R-type rd, rs1, rs2
IF: fetch instruction
ID: read registers rs1 and rs2
EX: compute result (use ALU)
WB: write to register rd

Pipelining[指令流水]

• Pipelining: an implementation technique whereby
multiple instructions are overlapped in execution

− Just like an assembly line
− Takes advantage of parallelism that exists among the actions

needed to execute an instruction
− Pipelining is the key technique to make fast processors

9

Visualize Pipelining[表示?]

10

Revisiting Pipeline
• Automobile assembly line[汽车流水线]

− How often a completed car exits the assembly line (i.e.,
#cars/hour)[产能]

− The longest step determines the time between advancing the
line

• Instruction pipelining[指令流水线]
− Throughput: how often an instruction exits the pipeline[吞吐]
− Processor cycle: the time required between moving an inst one

step down the pipeline
p The length of a processor cycle is determined by the time required for

the slowest pipe stage
p Usually 1 clock cycle

• Pipeline designer should balance the length of each stage

11

Pipelining Effects[效果]

• If stages are perfectly balanced, then the time per inst on
the pipelined processor (assuming ideal conditions)

− !"#$ %$& "'()&*+)",' ,' *'%"%$-"'$. #/+0"'$
1*#2$& ,3 %"%$ ()/4$(

• Speedup from pipelining equals the number of stages
− An assembly pipeline with n stages can ideally produce cars n

times fast
− Instruction exit: every n cycles vs. every single cycle

• Pipelining reduces the avg execution time per inst
− Baseline of multi clock cycles/inst: pipelining reduces CPI
− Baseline of single clock cycle/inst: pipelining decreases the

clock cycle time

12

Pipelining Effects (cont.)
• Pipelining exploits parallelism among the insts[并行]

− Not visible to the programmer

• Pipelining improves instruction throughput rather
instruction latency[提高吞吐]

− Goal is to make programs, not individual insts, go faster
− Single instruction latency

p Doesn’t really matter, billions of insts in a program
p Difficult to reduce anyway

− In fact, pipelining usually slightly increases the execution time
of each inst

13

Performance Issues in Pipelining[问题]

• Impossible to reach the ideal speedup (= n stages)
− Usually, the stages will not be perfectly balanced[不平衡]

p The clock can run no faster than the time needed for the slowest
pipeline stage

− Furthermore, pipelining does involve some overhead[开销]
p Pipeline register delay + clock skew[时钟漂移]

14

Example: one unpipelined processor has 1ns clock cycle and
instructions are ALUs (4 cycles, 40%), branches (4 cycles, 20%),
memory (5 cycles, 40%). Suppose that pipelining the processor
adds 0.2ns overhead to the clock. How much pipelining speedup?
- Unpipelined processor, avg inst exe time = clock cycle x avg CPI = 1 ns x (40%x4 +

20%x4 + 40%x5) = 4.4ns
- Pipelined processor, avg inst exe time = 1 + 0.2 ns = 1.2 ns

Dependences and Hazards[依赖和冒险]
• Dependence[依赖]: relationship between two insts

− Data: two insts use same storage location
− Control: one inst affects whether another executes at all
− Not a bad thing, programs would be boring without them
− Enforced by making older inst go before younger one

p Happens naturally in single-/multi-cycle designs
p But not in a pipeline

• Hazard[冒险]: dependence & possibility of wrong inst
order

− Effects of wrong inst order cannot be externally visible
p Stall: for order by keeping younger inst in same stage

− Hazards are a bad thing: stalls reduce performance

15
https://www.cis.upenn.edu/~milom/cis501-Fall11/lectures/04_pipeline.pdf

Pipeline Hazards (§C.2)[流水冒险]

• Hazards prevent next instruction from executing during its
designated clock cycle[妨碍执行]

− Hazards reduce the performance from the ideal speedup gained
by pipelining

• Three classes of hazards
− Structural hazards[结构]: HW cannot support some

combination of instructions
− Data hazards[数据]: An instruction depends on result of prior

instruction still in the pipeline
− Control hazards[控制]: Pipelining of branches & other

instructions stall the pipeline until the hazard bubbles in the
pipeline

16

Structural Hazards[结构冒险]

• Different instructions are using the same resource at the
same time[资源冲突]

− Some functional unit is not fully pipelined
p Then a sequence of insts using that unpipelined unit cannot proceed at

the rate of one per clock cycle
− Some resource has not been duplicated enough

• To fix structural hazards: proper ISA/pipeline design[解决]
− Each inst uses every structure exactly one, for at most one cycle
− Always at the same stage relative to Fetch

• Tolerate structural hazards[容忍]
− Add stall logic to stall pipeline when hazards occur

17

Structural Hazards (cont.)
• Register file[寄存器]

− Accessed in two stages
p Read during stage 2 (ID)
p Write during stage 5 (WB)

− Solution: one read port, one write port

• Memory[内存]
− Accessed in two stages

p Instruction fetch during stage 1 (IF)
p Data read/write during stage 4 (MEM)

− Solution: separate instruction cache and data cache

18

REGIM EX DM WB

REGIM EX DM WB

REGIM EX DM WB

REGIM EX DM WB

Structural Hazards (cont.)
• Bubbles are inserted

− Wasted cycles à performance loss

19

REGIM EX DM WB

REGIM EX DM WB

IM

REGIM EX DM WB

REGIM EX DM

Data Hazards[数据冒险]

• Pipeline changes the order of read/write accesses to
operands

− The order may differ from the order seen by sequentially
executing insts on an unpipelined processor

• Example
− All the instructions after the DADD use the result of the DADD

instruction
p What if the old result is being accessed?

• DADD writes into R1, happening in stage 5 (WB)
• DSUB reads from R1, happening in stage 2 (ID)

20

DADD R1, R2, R3
DSUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9
XOR R10, R1, R11

Data Hazards (cont.)

21

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

• DSUB is not even deterministic
− Right, if an interrupt occurs between DADD and DSUB
− Wrong, otherwise

REGIM EX DM WB
Pr

og
ra

m
 o

rd
er

Forwarding[转发]

• Minimizing data hazards stalls by forwarding
− a.k.a., bypassing, short-circuiting
− The result is not really needed by the DSUB until after the DADD

actually produces it
− If the result can be moved from the pipeline register where the
DADD stores it to where the DSUB needs it, then the need for a
stall can be avoided

22

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

CC 1 CC 2 CC 3 CC 4 CC 5

REGIM EX DM WB

Forwarding (cont.)

23

DADD R1, R2, R3

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

REGIM EX

REGIM

CC 1 CC 2 CC 3 CC 4 CC 5

ADD R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11

• ALU inputs could use forwarded inputs from either the
same pipeline register or from different pipeline registers

REGIM EX DM WB

Forwarding is Insufficient[仅转发不够]

24

LD R1, 0(R2)

DSUB R4, R1, R5 REGIM EX DM WB

REGIM EX DM

CC 1 CC 2 CC 3 CC 4 CC 5

AND R6, R1, R7

REGIM EX DM WB

REGIM EXOR R8, R1, R9

• LD can bypass its results to AND and OR instructions
• But not to the DSUB

− Forwarding the result in “negative time”！

Pipeline Interlock[互锁]

• Bypassing alone isn’t sufficient
− Hardware solution: detect this situation and inject a stall cycle
− Software solution: ensure compiler doesn’t generate such code

• Pipeline interlock should be added to detect a hazard and
stall the pipeline until the hazard is cleared

− The interlock stalls the pipeline, beginning with the inst that
wants to use the data until the source inst produces it

− The interlock introduces a stall or bubble

25

LD R1, 0(R2) IF ID EX MEM WB

DSUB R4, R1, R5 IF ID stall EX MEM WB

AND R6, R1, R7 IF stall ID EX MEM WB

OR R8, R1, R9 stall IF ID EX MEM WB

Control[控制]

26

• Question: what should the fetch PC be in the next cycle?
• Answer: the address of the next instruction

− If the fetched inst is a non-control-flow inst:
p Next Fetch PC is the address of the next-sequential inst

− If the inst that is fetched is a control-flow inst:
p How do we determine the next Fetch PC

• Branch (beq, bne) determines flow of control
− Fetching next inst depends on branch outcome
− Pipeline cannot always fetch correct inst

beq R9, R10, L
add R1, R2, R3
sw R6, 200(R8)
sub R4, R5, R6
mult R1, R2, R3

… …
L: lw R7, 100(R8)

Branch Hazards[分支冒险]

• Control hazard: branch has a delay in determining the
proper inst to fetch
• Basic implementation

− Branch decision is unknown until MEM stage
− 3 clock cycles are wasted

27

beq R9, R10, L
add R1, R2, R3
sw R6, 200(R8)
sub R4, R5, R6
mult R1, R2, R3

… …
… …
L: lw R7, 100(R8)

beq R9, R10, L IF ID EX MEM WB

add R1, R2, R3 IF ID EX MEM WB

sw R6, 200(R8) IF ID EX MEM WB

sub R4, R5, R6 IF ID EX MEM WB

mult OR lw IF ID EX MEM WB

Depending on the beq condition

Branch Stall Impact[停顿]

• If CPI = 1, 10% branch, stall 3 cycles à new CPI = 1.3
• Two-part solution

− Determine branch taken (or not) sooner, and[分支是否执行]
− Compute taken branch address earlier[目标地址计算]

• RISC-V solution
− Move Zero test to ID/EX stage
− Adder to calculate new PC in ID/EX stage
− 1 clock cycle penalty for branch vs. 3

• One stall cycle for every branch will yield a performance
loss of 10% - 30% depending on the branch frequency

− Need to deal with this loss

28

Pipeline Stall Reductions[减少停顿]

• #1: Stall until branch direction is clear[保持停顿]
− Freeze or flush the pipeline, holding or deleting any insts after

the branch until the branch destination is known

• #2: Predict branch not taken[预测分支不执行]
− Treat every branch as taken as not taken, simply allowing the

HW to continue as if the branch were not taken
− If branch actually taken, turn fetched insts into no-op and

restart the fetch at the target address

• #3: Predict branch taken[预测分支执行]
− As soon as the branch is decoded and the target address is

computed, begin fetching and executing at the target
− One cycle improvement when the branch is actually taken

29

Pipeline Stall Reductions (cont.)
• #4: Delayed branch[延后分支]

− Change semantics such that branching takes place AFTER the n
insts following the branch execute

− Branch delay slot: the sequential successor
p This inst is executed whether or not the branch is taken
p Typically one inst delay in practice
p Compiler should make the successor insts valid and useful

− One slot delay in the 5-stage pipeline if branch condition and
target are resolved in the ID stage

30

branch instruction
sequential successor1

branch target if taken

Performance of Branch Schemes[性能]

• When accounting for branch hazards
− CPI = 1 + hazard_frequency * hazard_penalty

• Example: assume a pipeline in which the target address is
known in stage 3 and the branch condition is evaluated in
stage 4. Find the effective addition to the CPI arising from
branches for this pipeline.

− Assume that you know the percentages of branch instructions,
and the probabilities for branch taken/not taken.

− See textbook C-21

• Compilers technology can be used to increase efficiency
of code if it knows branch probabilities (static branch
prediction - profiling)

31

Performance of Branch Schemes
• When accounting for branch hazards

− CPI = 1 + hazard_frequency * hazard_penalty

• Compilers technology can be used to increase efficiency
of code if it knows branch probabilities (static branch
prediction - profiling)

32

Example: assume a pipeline in which the target address is known
in stage 3 and the branch condition is evaluated in stage 4. Find
the effective addition to the CPI arising from branches for this
pipeline.
- Assume that you know the percentages of branch instructions, and the probabilities

for branch taken/not taken.
- See textbook C-21

Summary
• Pipelining overlaps multiple instructions in execution

− Speed up programs
• Hazards reduce effective of pipelining

− Structural hazards: conflict in use of a datapath component
− Data hazards: need to wait for result of a previous instruction
− Control hazards: address of next instruction uncertain/unknown

• To increase processor performance
− Clock rate

p Limited by technology and power dissipation
− Pipelining

p Deeper pipeline is challenging
− Multi-issue processor

p Several instructions executed simultaneously

33

Instruction-Level Parallelism(§3.1)
• ILP: overlap execution of instructions[指令级并行]

− Overlap among instructions[重叠]
p Pipelining or multiple instruction execution

− Fine-grained parallelism[细粒度]
p In contrast to process-/task/thread-level parallelism (coarse-grained)

• Pipelining: exploits ILP by executing several instructions
“in parallel”

− Overlaps execution of different instructions
− Execute all steps in the execution cycle simultaneously, but on

different instructions

• Pipeline CPI = Ideal pipeline CPI + stalls due to hazards
− Structural stalls + Data hazard stalls + Control stalls

34
https://courses.cs.washington.edu/courses/cse471/09sp/lectures/pipeliningBasics.pdf

Instruction-Level Parallelism(cont.)
• Approaches to exploit ILP[利用方法]

− Rely on hardware to help discover and exploit the parallelism
dynamically

− Rely on software technology to find parallelism, statically at
compile-time

• What determines the degree of ILP?[并行度]
− Dependences: property of the program
− Hazards: property of the pipeline (or the architecture)

• ILP challenge: overcoming data and control dependencies

35

Techniques to Improve ILP

36

Types of Dependences[依赖类型]

• True data dependences: may cause RAW hazards[数据]
− Instruction Q uses data produced by instruction P or by an

instruction which is data dependent on P
− Easy to determine for registers but hard to determine for

memory locations since addresses are computed dynamically
p Example: is 100(R1) the same location as 200(R2)?

• Name dependences: two instructions use the same name
but do not exchange data (no data dependency)[名字]

− Anti-dependence[反依赖]: instruction P reads from a register
(or memory) followed by instruction Q writing to that register
(or memory). May cause WAR hazards

− Output dependence[输出依赖]: instructions P and Q write to
the same location. May cause WAW hazards.

37

Example

38

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f0, -8(x1)

fadd.d f4, f0, f2

fsd f4, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

• Data dependence
− RAW: read after write

• Anti-dependence
− WAR: write after read

• Output dependence
− WAW: write after write

Register Renaming[重命名]

• How to remove name
dependences?

− Rename the dependent
uses of f0 and f4

39

Loop: fld f0, 0(x1)

fadd.d f4, f0, f2

fsd f4, 0(x1)

fld f8, -8(x1)

fadd.d f9, f8, f2

fsd f9, -8(x1)

addi x1, x1, #-16

bne x1, x0, loop

