
Advanced Computer
Architecture

高级计算机体系结构

第3讲： ISA and ILP (3)
张献伟

xianweiz.github.io
DCS5367, 10/12/2021

https://xianweiz.github.io/

Review Questions (1)
• Five-stage execution?

• Stages of ‘add R3, R1, R2’ ?

• What is Pipelining?

• Ideal speedup of pipelining?

• Impossible to reach the ideal speedup, why?

• Pipeline hazards?

2

IF, ID, EX, WB

Multi instructions are overlapped in execution

N (number of stages)

Imbalanced stages, pipelining overhead

Inst fetch (IF), Inst decode (ID), Execution (EX), Mem access (MEM), Write back (WB)

Structural, data, control

Review Questions (2)
• Explain data hazard.

• How to avoid data hazards?

• Is forwarding sufficient to clear all data hazards?

• Cause of branch hazard?

• Types of dependences.

• How to remove name dependences?

3

Forwarding

Nope. Stalls may be needed.

Branch has a delay in determining the proper inst to fetch

Data dependence, name dependence (anti & output)

Pipeline changes the order of read/write accesses to operands

Register renaming

Control Dependences[控制依赖]

• Determine the order of instructions with respect to
branches[相对分支的指令顺序]

S1 is control dependent on P1 and
S2 is control dependent on P2 (and P1 ??)

• An instruction that is control dependent on P cannot be
moved to a place where it is no longer control dependent
on P, and visa-versa[不可移动]

4

if P1 then S1 ;
if P2 then S2 ;

Example 1:
add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

Example 2:
add x1, x2, x3
beq x12, x0, skip
sub x4, x5, x6
add x5, x4, x9

skip:
or x7, x8, x9

“or” depends on the execution flow possible to move “sub” before
”beq” (if x4 is not used after skip)

Compiler Techniques to Expose ILP
• Scheduling[调度]

− To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be
overlapped in the pipeline[重叠]

− To avoid a pipeline stall, the execution of a dependent inst must
be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[分隔]

• A compiler’s ability to perform the scheduling depends on
− Amount of ILP in the program[程序特性]
− Latencies of the functional units in the pipeline[硬件特性]

• Compiler can increase the amount of available of ILP by
transforming loops[循环转换]

5

Loop Dependences(§3.2) [循环依赖]

• [有]There is a loop carried
dependence since the
statement in an iteration
depends on an earlier iteration

• [无]There is no loop carried
dependence

6

for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

for (i = 999; i >= 0; i = i-1)
x[i+1] = x[i] + y[i];

• The iterations of a loop can be executed in parallel if
there is no loop carried dependence

Example: Loop Transformation[循环转换]

• Assume the latencies of FP operations
− 3 cycles if an FP ALU op follows and depends on an FP ALU op
− 2 cycles if an FP store follows and depends on an FP ALU op
− 1 cycle is an FP ALU op follows and depends on an FP load
− 1 cycle if a branch follows and depends on on Integer ALU op

7

for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

Loop: fld f0, 0(x1) //f0=array element
fadd.d f4, f0, f2 //add scalar in f2
fsd f4, 0(x1) //store result
addi x1, x1, -8 //decrement pointer

//8 bytes (per DW)
bne x1, x2, Loop //branch x1 != x2

Basic Scheduling[简单调度]

• Re-order the statements
− Actual work: load, add and store
− loop overhead: addi, bne, two stalls

8

cycle
Loop: fld f0, 0(x1) 1

stall 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 0(x1) 6
addi x1, x1, -8 7
stall 8
bne x1, x2, loop 9

9 clock cycles per iteration

cycle
Loop: fld f0, 0(x1) 1

addi x1, x1, -8 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 8(x1) 6
bne x1, x2, loop 7

7 clock cycles per iteration

Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations
to be scheduled together[消除分支，共同调度]

9

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
addi x1, x1, -8
bne x1, x2, loop

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1) //drop addi & bne
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1) //drop addi & bne
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1) //drop addi & bne
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1) //drop addi & bne
addi x1, x1, -32
bne x1, x2, loop

Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations
to be scheduled together[消除分支，共同调度]

10

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1)
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1)
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

A total of 14 clock cycles
(3.5 cycles per element)

Unrolling Limitations[限制]

• The gains from loop unrolling are
limited by

− A decrease in the amount of
overhead amortized with each unroll

p Unrolled 4 times à 8 times: ½
cycle/element à ¼ cycle/element

− Growth in code size caused by
unrolling

p May increase in the inst cache miss rate
p May bring register pressure (more live

values)
− Compiler limitations

p Sophisticated transformations increases
the compiler complexity

11

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Branch Prediction(§3.3)[分支预测]
• Branches hurt pipeline performance

− Branch hazards and stalls

• Static branch prediction[静态分支预测]
− The default is to assume that branches are not taken
− May have a design which predicts that branches are taken

• Reasonable to assume that[假设]
− Forward branches are often not taken
− Backward branches are often taken

12

add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

add x1, x2, x3
skip:

or x7, x8, x9
beq x12, x0, skip
sub x4, x5, x6

✘

• More predictors based on branch
directions

− Profiling is the standard technique for
predicting the probability of branching

− Dynamic predictors rely on the history to
predict the future branch direction

✓

Dynamic Branch Prediction(§C2.7)[动态]

• Performance depends on the accuracy of prediction and
the cost of miss-prediction[性能影响]

• The simplest branch prediction scheme: Branch
Prediction Buffer[分支预测缓存]:

− 1-bit table (cache) indexed by some bits of the address of the
branch instructions (can be accessed in decode stage) ->
hashing[指令地址的低位作为索引]

− Record whether or not the branch was taken last time – may
have collision[冲突]

− Will cause two miss-predictions in a loop (at start and end of
loop)

13

Predict taken
1

Not taken

Taken

Predict untaken
0

Taken Not taken

Two-bit Branch Predictors
• Change your prediction only if you miss-predict twice[稳定性]

− A branch that strongly favors take or not taken (many branches do),
will be miss-predicted less often than with a 1-bit predictor

• In general, n-bit predictors are called Local Predictors[局部预测
器]

− Use a saturated counter (++ on correct prediction, -- on wrong
prediction)

− n-bit prediction is not much better than 2-bit prediction (n > 2).
− A BHT with 4K entries is as good as an infinite size BHT[无限缓冲区]

14

Predict taken
10

Predict taken
11

Not taken
Taken

Predict not taken
00

Predict not taken
01

Taken

Not taken

Taken

Taken

Not taken

Correlating Branch Predictors[关联预测]
• Hypothesis[假设]: recent branches are correlated (behavior of

recently executed branches affects prediction of current branch)
• Example 1:

If B1 is not taken (aa==2) and B2 is not taken (bb==2), then B3 will be
taken (aa==bb)
If B1 and B2 are taken (aa!=2, bb!=2), then B3 will probably not be
taken
• Example 2:

15

if (aa==2)
aa=0;

if (bb==2)
bb=0;

if (aa!=bb) {

addi x3,x1, -2
bnez x3, L1 … //B1 (aa != 2)
add x1, x0, x0 //aa=0

L1: addi x3, x2, -2
bnez x3, L2 //B2 (bb != 2)
add x2, x0, x0 //bb=0

L2: sub x3, x1, x2 //x3=aa-bb
beqz x3, L3 //B3 (aa == bb)

if (d == 0) d = 1 ;
if (d == 1)

Correlating Branch Predictors (cont.)
• Keep history of the m most recently

executed branches in an m-bit shift
register[移位寄存器]

− Record the prediction for each branch
inst, and each of the 2m combinations

• In general, (m,n) predictor means
record last m branches to select
between 2m history tables each with n-
bit predictor

− Simple access scheme (double indexing).
− A (0,n) predictor is a local n-bit predictor.

• Size of table is N*n*2m

− N is the number of table entries
− There is a tradeoff between N

(determines collision), n (accuracy of local
prediction) and m (determines history)

16

Branch address (4 bits)

2-bits per branch
local predictors

2-bit global
branch history
(01 = not taken then taken)

Prediction

Tournament predictor[竞赛预测器]
• Combines a global predictor and a local predictor with a

strategy for selecting the appropriate predictor (multi-level
predictors)

• The Alpha 21264 selects between
− A (12,2) global predictor with 4K entries
− A local predictor which selects a prediction based on the outcome of

the last 10 executions of any given branch.

17

Use predictor 2Use predictor 1

1/0, 0/0/, 1/1

Use predictor 2Use predictor 1

0/1

1/0

1/0

0/0, 1/1

0/1, 0/0/, 1/1

0/1 0/1 1/0

0/0, 1/1

p1/p2 == predictor 1 is correct/ predictor 2 is correct

Performance[性能]

18

• Miss prediction rate for three different predictors

Branch Target Buffers(§3.9)[目标缓冲区]

• To increase instruction fetch bandwidth
− Store the address of the branch’s target, in addition to the prediction

• Can determine the target address while fetching the branch
instruction

− How do you even know that the instruction is a branch?
− Can’t afford to use wrong branch address due to collision -- why?

19

Branch Prediction & Pipelining
• Assuming that branch condition and target are resolved in ID

stage

• A similar chart may be drawn if branch condition/target are
resolved in EX

20

Evaluation Example
• Assume

− access branch target buffer in IF stage
− branch condition determined in ID
− branch address determined in EX stage

• What is the branch penalty if:
− penalty for correct prediction = 0 cycle
− penalty for wrong prediction = 1 (or 2) cycles for non-taken (or taken)

branch (assuming that target is not stored in BTB if “predict not
taken”)

− penalty if cannot predict and the branch is taken = 2 cycles
− branch taken frequency = 60%
− BTB hit rate = 80% (assume not taken in case of inability to predict)
− BTB prediction accuracy = 90%
− The correct instruction is fetched 0.8*0.9+0.2*0.6 = 84% of the time

• May store the target instruction and not only the address -
useful when access of table needs more than one cycle.

21

Dynamically Scheduled Pipelines (§3.4)
• Key idea: allow instructions behind stall to proceed

− Enables out-of-order (OoO) execution
− Can lead to out-of-order completion

• Using Scoreboards[记分板] (§ C.7):
− Dates to the first supercomputer, the CDC 6600 in 1963
− Split the ID stage into

p Issue - decode and check for structural hazards,
p Read operands - wait until no data hazards, then read operands.

− Instructions wait in a queue and may move to the EX stage
(dispatched) out of order.

22

fdiv F0, F2, F4
fadd F10, F0, F8
fsub F12, F8, F14

RAW -> Stall

No dependency

A Scoreboard Architecture

• The scoreboard is responsible for instruction issue and
execution, including hazard detection. It is also controlling the
writing of the results

• The “scoreboard” consists of 3 tables to keep track of
execution progress and the associated intelligence to
determine when to dispatch instructions

• One entry (buffer) in the “wait queue” is associated with each
functional unit

23

Scoreboard Information (3 tables)
• Instruction status[指令状态]

− issued, read operands and started execution (dispatched), completed
execution or wrote result,

• Functional unit status (assuming non-pipelined units) [功能单
元状态]

− busy/not busy
− operation (if unit can perform more than one operation)
− destination register - Fi
− source registers (containing source operands) - Fj and Fk
− the unit producing the source operands (if stall to avoid RAW hazards)

- Qj and Qk
− flags to indicate that source operands are ready - Rj and Rk

• Register result status[寄存器结果状态]
− Indicates the functional unit that contains an instruction which will

write into each register (if any)

24

Four Stages of Scoreboard Control
• Issue only if no structural, WAR or WAW hazards

− Issue (and reserve the functional unit) if the functional unit is free
and

p No issued or dispatched instruction (in state “issued” or “dispatched”) will
write to the destination register (to avoid WAW)

p No issued instruction (in state “issued”) will read from the destination
register (to avoid WAR)

− otherwise, stall, and block subsequent instructions
− the fetch unit stalls when the queue between the fetch and the issue

stages is full (may be only one buffer).
• Read operands only if no RAW hazard

− If a RAW hazard is detected, wait until the operands are ready,
− When the operands are ready, read the registers and move to the

execution stage,
− Note that instructions may proceed to the EX stage out-of-order.

• Execution
− When execution terminates, notify the scoreboard.

• Write result to register file
25

Scoreboard Example

26

Structure hazard, WAR

RAW
RAW

RAW

Scoreboard Example (cont.)
• when “fld F2, 45(R3)” is writing

27

Scoreboard Example (cont.)
• 3 cycles after “fsub.d” finished writing

28

fadd.d F6, F8, F2

Costs and Benefits
• Limitations of the scoreboard approach[局限]

− No forwarding structural hazards are cleared before instruction
“issue”

− WAW and WAR hazards are cleared before instruction “issue”
− Did not discuss control hazards
− Execution units are not pipelined

• Possible enhancement[提升]
− If we can have “k” write-backs to registers per cycle and “k”

parallel buses between registers and pipeline units, them
p k functional units may be released per cycle
p k instructions may be dispatched per cycles.
p k instructions may be issued per cycle.

• Need to extend the scoreboard to the case where the
execution units are pipelined?

29

Tomasulo’s Algorithm
• A computer arch. Hardware algo. For dynamic scheduling

of instructions, allowing OoO execution. Including:
− Common data bus
− Instruction order
− Register renaming
− Exceptions

30

Tomasulo’s Algorithm (cont.)
• Step 1:

− Issue: Instructions are issued for execution if all operands and
reservation stations are ready or else they are stalled. Register
are renamed in this step, eliminating WAR and WAW hazards.

31

Tomasulo’s Algorithm (cont.)
• Step 2:

− Execute: The instruction operations are carried out. Instructions
are delayed here until all of their operands are available,
eliminating RAW hazards.

32

Tomasulo’s Algorithm (cont.)
• Step 3:

− Write Result: ALU operations results are written back to
registers and store operations are written back to memory

− If the instruction was an ALU operation
− If the result is available, write it on the CDB and from

there into the registers and any reservation stations
waiting for this result

− Else write the data to memory during this step

33

Tomasulo’s Algorithm (cont.)
• Example:

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x16 != x2

34

Tomasulo’s Algorithm (cont.)
• Example:

35

Hardware-Based Speculation[推断]

• Basic Concept
− Overcome control dependence by hardware speculating on

outcome of branches and executing program as if guesses were
correct

− If prediction is wrong, it need a hardware to handle it
− Extension over branch prediction with dynamic scheduling

− Speculation fetch, issue, and execute instructions as if
branch predictions were always correct

− Dynamic scheduling only fetches and issues such
instructions

− A data flow execution model: Operations execute as soon as
their operands are available

36

Hardware-Based Speculation (cont.)
• 3 components

− Dynamic branch prediction
− Speculation
− Dynamic scheduling

• 3 rules
− Extending Tomasulo’s algorithm
− OoO. execution but in-order commit
− The register file is not updated until instruction commits

37

Hardware-Based Speculation (cont.)
• Key idea

− Allow instructions to execute OoO.
− Force instructions to commit in order
− Prevent any irrevocable action (such as updating state or taking

an exception) until an instruction commits

• Hence:
− Must separate execution from allowing instruction to finish or

“commit”
− Instructions may finish execution considerably before they

are ready to commit

38

Reorder Buffer[重排序缓存]

• Function
− Holds the result of instruction between completion and commit

• Four fields
− Instruction type: branch / store / register
− Destination field: register number
− Value field: output value
− Ready field: completed execution

• Modify reservation stations
− Operand source is now reorder buffer instead of functional unit

39

Reorder Buffer Procedure[过程]

• Issue
− Allocate reservation station(R.S.) and Reorder Buffer(R.O.B),

read available operands

• Execute
− Begin execution when operand values are available

• Write Result
− Write result and R.O.B. tag on C.D.B.

• Commit
− When R.O.B. reaches head of R.O.B., update register
− When a mispredicted branch reaches head of R.O.B., discard all

entries

40

Reorder Buffer
• Register values and memory values are not written until

an instruction commits
• On misprediction:

− Speculated entries in
R.O.B. are cleared

• Exceptions:
− Not recognized until

it is ready to commit

41

Reorder Buffer (cont.)

42

Reorder Buffer (cont.)

43

Reorder Buffer (cont.)

44

Reorder Buffer (cont.)

45

Multiple Issue Processor[多发射]

• To achieve CPI < 1, need to complete multiple instructions
per clock

• Solutions:
− Statically scheduled superscalar processors
− VLIW (very long instruction word) processors
− Dynamically scheduled superscalar processors

46

VLIW Processor[超长指令字]

• Package multiple operations into one instruction
• Example VLIW processor:

− One integer instruction (or branch)
− Two independent floating-point operations
− Two independent memory references

• Muse be enough parallelism in code to fill the available
slots

47

VLIW Processor (cont.)

• Disadvantages:
− Statically finding parallelism
− Code size
− No hazard detection hardware
− Binary code compatibility

48

