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Review Questions (1)

* Five-stage execution?
Inst fetch (IF), Inst decode (ID), Execution (EX), Mem access (MEM), Write back (WB)

e Stages of ‘add R3, R1, R2’ ?
IF, ID, EX, WB
* What is Pipelining?
Multi instructions are overlapped in execution
* |[deal speedup of pipelining?
N (number of stages)
* Impossible to reach the ideal speedup, why?
Imbalanced stages, pipelining overhead
* Pipeline hazards?

Structural, data, control
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Review Questions (2)

* Explain data hazard.
Pipeline changes the order of read/write accesses to operands

e How to avoid data hazards?
Forwarding

* Is forwarding sufficient to clear all data hazards?
Nope. Stalls may be needed.

e Cause of branch hazard?
Branch has a delay in determining the proper inst to fetch

* Types of dependences.
Data dependence, name dependence (anti & output)
* How to remove name dependences?

Register renaming
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Control Dependences[# &k i]

* Determine the order of instructions with respect to
branches[FHX} 53 > 14582 i 7]
if P1then S1; S1iscontrol dependent on P1 and
if P2then S2; S2is control dependent on P2 (and P1 ??)

* An instruction that is control dependent on P cannot be
moved to a place where it is no longer control dependent
on P, and visa-versa[AsA] #3h]

Example 2:
Example 1: add x1, x2, x3
add x1, x2, x3 beq x12, x0, skip
beq x4, x0,L sub x4, x5, x6
sub x1, x5, x6 add x5, x4, x9
L: ... skip:
or X7, X1, x8 or X7, X8, x9
or” depends on the execution flow possible to move “sub” before

"beq” (if x4 is not used after skip) |
@ tux WSk




Compiler Technigues to Expose ILP

* Scheduling[ifJF]

— To keep a pipeline full, parallelism among insts must be
exploited by finding sequences of unrelated insts that can be
overlapped in the pipeline[E Z]

— To avoid a pipeline stall, the execution of a dependent inst must
be separated from the source insts by a distance in clock cycles
equal to the pipeline latency of that source inst[/) %]

* A compiler’s ability to perform the scheduling depends on

— Amount of ILP in the program[f& /5514

— Latencies of the functional units in the pipeline[f# 445 ]

 Compiler can increase the amount of available of ILP by
transforming loops[fa ¥ #]
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Loop Dependences(§3.2) (B #i]

* [B1There is a loop carried
for (i=999; i >= 0; i = i-1) dependence since the
x[i+1] = x[i] + y[il; statement in an iteration
depends on an earlier iteration

for (i=999; i >=0;i=i-1)  [t]There is no loop carried
x[i] = x[i] +s; dependence

* The iterations of a loop can be executed in parallel if
there is no loop carried dependence
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Example: Loop Transformation[#& 5 4% #)

Loop: fld f0, 0(x1) //f0=array element
for (i = 999; i >= 0; i = i-1) fadd.d f4,f0,f2  //add scalar in f2
fsd f4, 0(x1) //store result
addi x1,x1,-8 //decrement pointer
//8 bytes (per DW)
bne  x1, x2, Loop //branch x1 !=x2

X[i] = x[i] + s;

* Assume the latencies of FP operations
— 3 cycles if an FP ALU op follows and depends on an FP ALU op
— 2 cycles if an FP store follows and depends on an FP ALU op
— 1 cycle is an FP ALU op follows and depends on an FP load
— 1 cycle if a branch follows and depends on on Integer ALU op

(B) T )G
\%, ), [
\lavus/  SUN YAT-SEN UNIVERSITY ‘ N



&

Basic Scheduling|fai i,

* Re-order the statements
— Actual work: load, add and store
- loop overhead: addi, bne, two stalls

cycle cycle
Loop: fld fo, O(x1) 1 Loop: fld fo, O(x1) 1
stall 2 addi x1,x1,-8 2
fadd.d f4, f0, f2 3 fadd.d f4, f0, {2 3
stall 4 stall 4
stall 5 stall 5
fsd f4, 0(x1) 6 fsd f4, 8(x1) 6
addi x1,x1,-8 7 bne  x1, x2, loop 7

stall 8

7 clock cycles per iteration
bne x1, x2, loop 9

9 clock cycles per iteration
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Loop Unrolling

TEA

It

e Simply replicates the

- Eliminates branches, thus allowing insts from different iterations
to be scheduled together[JE k&4 >, F:[AIHEE]

Loop: fld f0, O(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
addi x1,x1, -8
bne  x1, x2, loop

oop body multiple times, adjusting
the loop termination code[ & fill-> & %]

— Increases the number of insts relative to the branch and
overhead insts[¥ G 52 21 ]

Loo

p: fld fo, 0(x1)
fadd.d f4, fO, f2
fsd f4, 0(x1)
fld 6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1)
fld fo, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1)
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

//drop addi & bne

//drop addi & bne

//drop addi & bne

//drop addi & bne



Loop Unrolling[#&F & T

* Simply replicates the loop body multiple times, adjusting
the loop termination code[ & fill-> & %]
— Increases the number of insts relative to the branch and
overhead insts[3% G #3524k
- Eliminates branches, thus allowing insts from different iterations
to be scheduled together[#[%2r 32, FL[HEEE]

Loop: fld fo, 0(x1) Loop: fld fo, 0(x1)
fadd.d f4, O, f2 fld 6, -8(x1)
fsd f4, O(x1) fld fo, -16(x1)
fld 6, -8(x1) fld f14, -24(x1)
fadd.d f8, 6, f2 fadd.d f4, f0, f2
fsd f8, -8(x1) fadd.d f8, 6, f2 A total of 14 clock cycles
fld fo, -16(x1) fadd.d f12, fO, f2 (3.5 cycles per element)
fadd.d f12, fO, f2 fadd.d f16, f14, f2
fsd f12, -16(x1) fsd f4, 0(x1)
fld f14, -24(x1) fsd f8, -8(x1)
fadd.d f16, f14, f2 fsd f12, -16(x1)
fsd f16, -24(x1) fsd f16, -24(x1)
addi  x1, x1, -32 addi  x1, x1, -32

bne  x1, x2, loop bne  x1, x2, loop ﬂy"'ﬂ‘




Unrolling Li

mitations|fR il

* The gains from loop unrolling are

limited by
— A decrease in the amount of
overhead amortized with each unroll

o Unrolled 4 times =2 8 times: ¥
cycle/element 2 % cycle/element

— Growth in code size caused by
unrolling
o May increase in the inst cache miss rate

o May bring register pressure (more live
values)

— Compiler limitations

o Sophisticated transformations increases
the compiler complexity

Loop: fld
fld
fld
fld
fadd.d
fadd.d
fadd.d
fadd.d
fsd
fsd
fsd
fsd
addi
bne

fO, O(x1)

f6, -8(x1)
fo, -16(x1)
f14, -24(x1)
f4, fO, f2

f8, f6, 2
f12, fo, f2
fie, f14, f2
f4, 0(x1)

f8, -8(x1)
f12, -16(x1)
f16, -24(x1)
x1, x1, -32
x1, x2, loop
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Branch Prediction(§3.3) 4 3 i)

* Branches hurt pipeline performance
— Branch hazards and stalls

e Static branch prediction[&# 72 32 Hl]
— The default is to assume that branches are not taken
- May have a design which predicts that branches are taken

 Reasonable to assume that[{x %] add  x1,x2, x3
— Forward branches are often not taken beq x4, 0, L
( sub x1, x5, x6
— Backward branches are often taken L: ...
* More predictors based on branch orx7, x1, x8
directions add x1,x2, x3

predicting the probability of branching E;q Z'zxi'oxzkip

— Dynamic predictors rely on the history to sub x4, X5, x6
_ . predict the future branch direction
@) Tux%

— Profiling is the standard technique for éSkip:
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Dynamic Branch Prediction(§C2.7)[3h %]

* Performance depends on the accuracy of prediction and
the cost of miss-prediction[{4: Rz H]

* The simplest branch prediction scheme: Branch
Prediction Buffer[ 4> =2 Filill 2% 1£]:

- 1-bit table (cache) indexed by some bits of the address of the
branch instructions (can be accessed in decode stage) ->

hashing[$i54-Hutik B ALAE A R 5]

— Record whether or not the branch was taken last time — may
have collision[2€]

- Will cause two miss-predictions in a loop (at start and end of

loop)
e Taken Not taken
— PN Not taken

PO indexing I8 Predict taken Predict untaken
/ — 1 0

taken/not -take — < k
(= Taken ol ¢
- 13 aKe h‘ﬂ -




Two-bit Branch Predictors

* Change your prediction only if you miss-predict twice[f2 & 4]

— A branch that strongly favors take or not taken (many branches do),
will be miss-predicted less often than with a 1-bit predictor

Taken
a A Not taken
Predict taken Predict taken
L Taken L
Taken A Not taken . v
Predict not taken Predict not taken
o ... Taken &
\/
i ] Not taken . N .
* |[n general, n-bit predictors are called Local Predictors| J5 7 i
]
— Use a saturated counter (++ on correct prediction, -- on wrong
prediction)

— n-bit prediction is not much better than 2-bit prediction (n > 2).
— A BHT with 4K entries is as good as an infinite size BHT[TCPRZZ P [X ]
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Correlating Branch Predictors[s<E:Fsiim]

 Hypothesis[fix1%]: recent branches are correlated (behavior of
recently executed branches affects prediction of current branch)

 Example 1:

addi x3,x1, -2
bnez x3, L1 ...
if (aa==2) add x1, x0, x0
aa=0; L1: addi x3, x2, -2
if (bb==2) bnez X3, L2
bb=0; add x2, x0, x0
if (aa!=bb) { L2: sub x3, x1, x2
beqz x3, L3

//B1 (aa !=2)
//aa=0

//B2 (bb = 2)
//bb=0
//x3=aa-bb

//B3 (aa == bb)

If B1 is not taken (aa==2) and B2 is not taken (bb==2), then B3 will be

taken (aa==bb)

If B1 and B2 are taken (aal=2, bb!=2), then B3 will probably not be

taken

* Example 2: if(d==0) d=1;
if (d==1) ...
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Correlating Branch Predictors (cont.)

» Keep history of the m most recently
executed branches in an m-bit shift
register[#2 4 & 17 4%

— Record the prediction for each branch
inst, and each of the 2™ combinations

* |n general, (m,n) predictor means
record last m branches to select
between 2™ history tables each with n-
bit predictor

— Simple access scheme (double indexing).
— A (0O,n) predictor is a local n-bit predictor.

e Size of table is N*n*2™m

— N is the number of table entries

— There is a tradeoff between N
(determines collision), n (accuracy of local
prediction) and m (determines history)

Branch address (4 bits)
I

2-bits per branch
local predictors

—-
| Prediction

EREN (NRE

H>I i

2-bit global
branch history
(01 = not taken then taken)
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Tournament predictor[==Z=FuNEE

 Combines a global predictor and a local predictor with a
strategy for selecting the appropriate predictor (multi-level

/\ T
Use predictor 1 Use predictor 2
1/0 4 lon o/t o/1 1 L 1/0
Use predictor 1 1/0 Use predictor 2
e N
0/0, 1/1 0/0,1/1

pl/p2 == predictor 1 is correct/ predictor 2 is correct

* The Alpha 21264 selects between
- A (12,2) global predictor with 4K entries

— A local predictor which selects a prediction based on the outcome of
the last 10 executions of any given branch.
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Performance[4:gg]

* Miss prediction rate for three different predictors

80/0 o N R R R R e i e P e S R A S B

+
Local 2-bit predictors

60/0 - m e e e e e e e e e e e e e e e e e e e e e e s e e e e e e e s es ek e s s e s s ame e sms e s emeseamsasesemeesemeaeaas

A% —Kcroe U £ S A S e e

30/0 — e = s = miwm o e e o e o e e e e o e e e b mieiet= S e e e = mes e /o e el e e

|
Correlating predictors

A

Conditional branch misprediction rate

OO/O I T I | I | I I | | |

Tournament predictors

0 32 64 96
Total predictor size

-
(:¢057) d X 18
vus/ SUN YAT-SEN UNIVERSITY
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128 160 192 224 256 288 320 352 384 416 448 480 512
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Branch Target Buffers(§3.9)[BfrEE P X]

* To increase instruction fetch bandwidth
— Store the address of the branch’s target, in addition to the prediction

I PC of instruction to fetch
Look up Predicted PC

Number of
entries

in branch-
target

buffer :

\

No: instruction is not
—» predicted to be a taken
branch; proceed normally

Yes: then instruction is taken branch and predicted
PC should be used as the next PC

e Can determine the target address while fetching the branch
instruction
- How do you even know that the instruction is a branch?
— Can’t afford to use wrong branch address due to collision -- why?
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Branch Prediction & Pipelining

e Assuming that branch condition and target are resolved in ID
stage

Send PC to memory and
branch-target buffer

Mispredicted branch,
kil fetched instruction;
restart fetch at other con
target; delete entry
from target buffer

EX

* A similar chart may be drawn if branch condition/target are
resolved in EX

2 Dy




Evaluation Example

* Assume
— access branch target buffer in IF stage
— branch condition determined in ID
— branch address determined in EX stage

 What is the branch penalty if:
— penalty for correct prediction = 0 cycle

— penalty for wrong prediction = 1 (or 2) cycles for non-taken (or taken)
brlzzmch)(assuming that target is not stored in BTB if “predict not
taken”

— penalty if cannot predict and the branch is taken = 2 cycles

— branch taken frequency = 60%

— BTB hit rate = 80% (assume not taken in case of inability to predict)
— BTB prediction accuracy = 90%

— The correct instruction is fetched 0.8*0.9+0.2*0.6 = 84% of the time

* May store the target instruction and not only the address -
useful when access of table needs more than one cycle.
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Dynamically Scheduled Pipelines (§3.4)

* Key idea: allow instructions behind stall to proceed

fdiv FO, F2, F4
fadd F10, FO, F8 > RAW -> Stall

fsub F12, F8, F14 __, No dependency
— Enables out-of-order (Oo0) execution
— Can lead to out-of-order completion

e Using Scoreboards[id#x] (§ C.7):
— Dates to the first supercomputer, the CDC 6600 in 1963

— Split the ID stage into
o Issue - decode and check for structural hazards,
o Read operands - wait until no data hazards, then read operands.

- Instructions wait in a queue and may move to the EX stage
(dispatched) out of order.
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A Scoreboard Architecture

ettt g el i Sl Gl i 1
* Int unit Mem :
I
) > FP mult.
Register \
file FP mult. ——_x|Write result

» / to Reg
7 FPadd
........ .
issue dispatch|| [z ~ Div.

e
.
e
e
.

TN "
IIF D || Wait queue [*7
* The scoreboard is responsible for instruction issue and

execution, including hazard detection. It is also controlling the
writing of the results

‘l.
.
.
.
.
o
.
.
.
.
»
.
.
.
o

* The “scoreboard” consists of 3 tables to keep track of
execution progress and the associated intelligence to
determine when to dispatch instructions

* One entry (buffer) in the “wait queue” is associated with each
functional unit
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Scoreboard Information (3 tables)

* Instruction status[354- R 4]

— issued, read operands and started execution (dispatched), completed
execution or wrote result,

* Functional unit status (assuming non-pipelined units) [Z}fE
TR
— busy/not busy
— operation (if unit can perform more than one operation)
— destination register - F,
— source registers (containing source operands) - F;and F,

— the unit producing the source operands (if stall to avoid RAW hazards)
- Q;and Q

- flags to indicate that source operands are ready - R;and Ry

* Register result status[Z Fas 45 F RS

— Indicates the functional unit that contains an instruction which will
write into each register (if any)
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Four Stages of Scoreboard Control

* |ssue only if no structural, WAR or WAW hazards

- Issge (and reserve the functional unit) if the functional unit is free
an

o No issued or dispatched instruction (in state “issued” or “dispatched”) will
write to the destination register (to avoid WAW)

o No issued instruction (in state “issued”) will read from the destination
register (to avoid WAR)

— otherwise, stall, and block subsequent instructions

- the fetch unit stalls when the queue between the fetch and the issue
stages is full (may be only one buffer).

* Read operands only if no RAW hazard

— If a RAW hazard is detected, wait until the operands are ready,

— When the operands are ready, read the registers and move to the
execution stage,

— Note that instructions may proceed to the EX stage out-of-order.

* Execution
- When execution terminates, notify the scoreboard.

e Write result to register file
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Scoreboard Example

T

élnstruction Issue Read op. Exec. Completed  Write result :
 fid F6, 34(R2) X X X X : done

_ ifid F2, 45(R3) X X X
Instruction:
RAW  fsub,d F8, Fe@ X
RAW fdivd 10 ‘12 X :
Structure hazard, WAR fad d ﬂg F2 NOt
iin
f Unit Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes
Func. unit§ Mult1 Yes  Mult FO F2 F4 Int. No Yes
status i muiz  No
Add Yes  Sub F8 F6 F2 Int. Yes No
idivide Yes Div  F10 FO  F12 Mult1 No  Yes
Register FO F2 F4 F6 F8 F10 F12 .. F30 !
stalus fFync.U Muit! Int. Add  Div :

7 N4 +
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Scoreboard Example (cont.)

 when “fld F2, 45(R3)” is writing

Instruction
status

f Instruction Issue Read op. Exec. Completed  Write result :
ifd  F6, 34(R2) X X % X : done
ffid F2,45(R3) X X X X :
ffmuld  FO, F2, F4 X
fsub,d F8, F6, F2 X
 fdivd  F10, FO, F12 X
fadd.d F6, F8, F2 o
: Unit Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer Yes Load F2 R3 Yes

Func.uniti Mult!  Yes Mult FO  F2  F4 Yes  Yes

status  imuit2  No
Add Yes Sub F8 F6 F2 Yes Yes
‘divide Yes Div F10 FO  F12 Multt No  Yes
Register§ FO F2 F4 F6 F8 F10 Fi2 F30 i
status TEunc. U Multt! Add  Div
27
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Scoreboard Example (cont.)

* 3 cycles after “fsub.d” finished writing

Instruction :

status

Func. unit

status

Register

status

Instruction Issue Read op. Exec. Completed  Write result
fid  F6,34(R2) X X X X
fld F2,45(R3) X X X X
: fmul.d FO, F2, F4 X X X
ffsubd F8, F6, F2 X X X X
fdivd  F10, FO, F12 X
fadd.d F6,F8, F2 X X X
£ Unit Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No

Mult1 Yes  Mult FO F2 F4 Yes Yes
:Mult2  No
Add Yes add F4 F8 F2 Yes Yes
divide  Yes Div F10 FO F12  Mult1 No Yes

FO F2 F4 F6 F8  F10 F12 F30 i
FU  Mult Add 7 Div :
28
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Costs and Benefits

* Limitations of the scoreboard approach[J=FR]
- No forwarding structural hazards are cleared before instruction

— WAW and WAR hazards are cleared before instruction “issue”
— Did not discuss control hazards
— Execution units are not pipelined

* Possible enhancement[#27}]

- If we can have “k” write-backs to registers per cycle and “k”
parallel buses between registers and pipeline units, them

o k functional units may be released per cycle
o k instructions may be dispatched per cycles.
o k instructions may be issued per cycle.

* Need to extend the scoreboard to the case where the
execution units are pipelined?
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Tomasulo’s Algorithm

* A computer arch. Hardware algo. For dynamic scheduling
of instructions, allowing OoO execution. Including:

— Common data bus
— Instruction order
— Register renaming

STORAGE BUS INSTRUC
L]
—
( = ¥
— N .
8
FLOATING-POINT 5 G
POINT
TROL OPERAND !
ACK (FLOS)
T R
1
—J e *
————+————» DECODER i.ig ‘
STORE
- - TROL|T UFFE
T | T h
L8
! * ‘ - DS
v v v y
AG SOUR CTRL

AG | S | SOUR CTAL 3 . '3

AG | SOUR CTAL TAG| SINK |TAG| SO! CTRL

TAG| SNK |TAG CTRL
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Tomasulo’s Algorithm (cont.)

* Step 1:

— Issue: Instructions are issued for execution if all operands and
reservation stations are ready or else they are stalled. Register
are renamed in this step, eliminating WAR and WAW hazards.

Instruction status

Instruction Issue Execute Write result
f1d £6,32(x2) v v v
fld £2,44(x3) v v
fmul.d f0,f2,f4 v
fsub.d f8,f2,f6 v
fdiv.d f0,f0,f6 v
fadd.d f6,f8,f2 v
Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl No
Load2 Yes Load 44 + Regs[x3
Addl Yes SUB Mem[32 + Regs[x21]] Load2
Add2 Yes ADD Addl Load2
Add3 No
Mult1 Yes MUL Regs[f4] Load2
Mult2 Yes DIV Mem[32 + Regs[x2]] Multl
Register status
Field fo f2 f4 f6 f8 f10 f12 30
Qi Multl Load? Add2 Addl Mult? Y
31 I pﬂa{
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Tomasulo’s Algorithm (cont.)

* Step 2:
— Execute: The instruction operations are carried out. Instructions

are delayed here until all of their operands are available,
eliminating RAW hazards.

Instruction status

Instruction Issue Execute Write result
fld : / 4
fld f2,44(x3)
fmul.d f0,f2,f4
fsub.d f8,f2,f6
fdiv.d f0,f0,f6

V vV
J

fadd.d f6,f8,f2

< |< | |<|<|<

Reservation stations

Name Busy Op Vj Vk Qj Qk A

Loadl No

Load2 Yes Load 44 + Regs[x3
Addl Yes SUB Mem[32 + Regs[x2]] Load2

Add2 Yes ADD Addl Load2

Add3 No

Multl Yes MUL Regs[f4] Load2

Mult2 Yes DIV Mem[32 + Regs[x2]] Multl

Register status

Field fo f2 f4 fé6 f8 f10 f12 f30
Multl Load2 Add2 Addl Mul2

* Dy




Tomasulo’s Algorithm (cont.)

* Step 3:
— Write Result: ALU operations results are written back to
registers and store operations are written back to memory
— |f the instruction was an ALU operation

— If the result is available, write it on the CDB and from
there into the registers and any reservation stations
waiting for this result

— Else write the data to memory during this step

() F bk % 33 i
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Tomasulo’s Algorithm (cont.)

* Example:

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x16 1= x2

g& ’E I - &
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Tomasulo’s Algorithm (cont.

* Example:

Instruction status

Instruction From iteration Issue Execute Write result
fld £0,0(x1) 1 v v
fmul.d f4,f0,f2 1 v
fsd f4,0(x1) 1 Vv
fld £0,0(x1) v Vv
fmul.d f4,f0,f2 2 Vv
fsd f4,0(x1) 2 Vv

Reservation stations
Name Busy Op Vj Vk Q Qk A
Loadl Yes Load Regs[x1]+ 0
Load2 Yes Load Regs[x1] -8
Addl No
Add2 No
Add3 No
Mult ] Yes MUL Regs[f2] Loadl
Mult2 Yes MUL Regs[f2] Load2
Storel Yes Store Regs([x1] Multl
Store2 Yes Store Regs[x1] — 8 Mult2

Register status

Field fo f2 f4 fé6 f8 f10 f12 f30
O Load2 Mult2

‘ruhx'g‘ 35
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Hardware-Based Speculation[##n

* Basic Concept

— Overcome control dependence by hardware speculating on
outcome of branches and executing program as if guesses were
correct

- If prediction is wrong, it need a hardware to handle it
— Extension over branch prediction with dynamic scheduling

- Speculation = as if
branch predictions were always correct

= only such
instructions

— A data flow execution model: Operations execute as soon as
their operands are available
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Hardware-Based Speculation (cont.)

* 3 components
— Dynamic branch prediction
— Speculation
— Dynamic scheduling

* 3rules
— Extending Tomasulo’s algorithm
— 000. execution but in-order commit
— The register file is not updated until instruction commits
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Hardware-Based Speculation (cont.)

* Key idea
— Allow instructions to execute 000.
— Force instructions to commit in order

— Prevent any irrevocable action (such as updating state or taking
an exception) until an instruction commits

* Hence:

— Must separate execution from allowing instruction to finish or
“‘commit”

— Instructions may finish execution considerably before they
are ready to commit
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Reorder Buffer|[ &7 224%]

* Function
— Holds the result of instruction between completion and commit

* Four fields
— Instruction type: branch / store / register
— Destination field: register number
— Value field: output value
— Ready field: completed execution

* Modify reservation stations
— Operand source is now reorder buffer instead of functional unit
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Reorder Buffer Procedure[id#4]

* [ssue

— Allocate reservation station(R.S.) and Reorder Buffer(R.O.B),
read available operands

* Execute
- Begin execution when operand values are available

* Write Result
— Write result and R.O.B. tag on C.D.B.

* Commit
— When R.O.B. reaches head of R.0O.B., update register

- When a mispredicted branch reaches head of R.0.B., discard all
entries
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Reorder Buffer

* Register values and memory values are not written unti
i !

an instruction commits

* On misprediction:

— Speculated entries in
R.O.B. are cleared

* Exceptions:

- Not recognized until
it is ready to commit

Reorder buffer
From instruction unit

Load/store
operations

Reg

Data

#
Instruction
queue
FP registers

Y

address

y Load buffers ,

A
"
Operation bus
2 1
Store 3 2

Store
data Y

Operand

" operaons e

operations

Yy v L
2 Reservation 1
1 stations

Address

Load
data

FP adders FP multipliers
Common data bus (CDB)
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Reorder Buffer (cont.)

Reorder buffer

Entry Busy Instruction State Destination Value
] No fld f6,32(x2) Commit 6 Mem[32 + Regs[x2]]
2 No fld 2,44(x3) Commit f2 Mem[44 + Reqs[x3]]
3 Yes fmul .d £f0.72, 14 Write result f0 #2 x Regs[f4]
4 Yes fsub.d f8,f2,f6 Wnte result f8 #2 — #1
5 Yes fdiv.d f0,f0, f6 Execute f0
6 Yes fadd.d f6,f8, f2 Write result f6 #4 + #2
Reservation stations
Name Busy Op Vj Vk Q Qk  Dest L.
Loadl No
Load2 No
Addl No
Add2 No
Add3 No
Multl No fmul.d Mem[44 + Regs[x3]] Regs[f4] #3
Mult2 Yes fdiv.d Mem[32 + Regs[x2]] #3 #5
FP register status
Field fo f1 f2 f3 f4 f5 fé 7 f8 f10
Reorder # 3 6 4 5
Busy Yes No No No No No Yes i Yes Yes
()
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Reorder Buffer (cont.)

Tomasulo With Reorder buffer:

Dest. Value Instruction Done?

FP Op ﬁ ROB7 Newest
Queue ROB6

Reorder Buffer

Oldest

LD F0,16 (R2) FO LD FO0,16(R2) N | rROB1
ADDD F10,F4,F0 ' 1
DIVD F2,F10,F6
Registers . To
. Memory

Dest

Dest

Reservation
Stations
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Reorder Buffer (cont.)

Tomasulo With Reorder buffer:

Dest. Value Instruction Done?

FP OP ﬁ ROB7 Newest
Queue "ROB6

Reorder Buffer

F10 ADDD F10,F4,F0 |N |
Ml Oldest
LD FO,16 (R2) FO LD FO0,16(R2) N | ROB1
ADDD F10,F4,FO0 ‘ E
DIVD F2,F10,F6
Registers . To
Memory

Dest Dest from

DD |[R(F4) ,ROE1

Reservation
Stations
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Reorder Buffer (cont.)

Tomasulo With Reorder buffer:

Dest. Value Instruction Done?

FP Op ﬁ ROB7 Newest
Queue ROB6

Reorder Buffer

F2 DIVD F2,F10,F6 | N
F10 ADDD F10,F4,FO0 | N

Oldest

LD F0,16 (R2) FO LD FO,16(R2) N | rOB1
ADDD F10,F4,F0 f
DIVD F2,F10,F6
Registers . To
. Memory
Dest
— Dest from
2 ADDD |R (F4) ,ROBI ] ROBT R(Fe)] Memory

TI@@W

Reservation
Stations
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Multiple Issue Processor[£ k4t

* To achieve CPl < 1, need to complete multiple instructions
per clock

* Solutions:
— Statically scheduled superscalar processors
- VLIW (very long instruction word) processors
— Dynamically scheduled superscalar processors

Common Issue Hazard Distinguishing
name structure  detection Scheduling characteristic Examples
Superscalar Dynamic Hardware  Static In-order execution Mostly in the embedded
(statc) space: MIPS and ARM,
including the Cortex-AS3
Superscalar Dynamic Hardware  Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculaton
Superscalar Dynamic Hardware  Dynamic with  Out-of-order execution Intel Core 13, 15, i7; AMD
(speculative) speculation with speculation Phenom: IBM Power 7
VLIW/LIW  Static Primanly  Static All hazards determined Most examples are in signal
software and indicated by compiler  processing, such as the Tl
(often implicidy) Coéx
EPIC Pnmanly Primanly  Mostly static All hazards determined Itanium
static software and indicated explicitly
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VLIW Processor[#E-1s4 )

* Package multiple operations into one instruction

* Example VLIW processor:
- One integer instruction (or branch)
- Two independent floating-point operations
- Two independent memory references

* Muse be enough parallelism in code to fill the available
slots
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VLIW Processor (cont.)

Memory Memory Integer
reference 1 reference 2 FP operation 1 FP operation 2 operation/branch

fld f0,0(x1) fld f6,-8(x1)

f1d f10,-16(x1) fldfl4,-24(x1)

fld f18,-32(x1) fldf22,-40(x1) fadd.d f4,f0,f2 fadd.d f8, f6,f2

fld f26,-48(x1) fadd.d f12,f0,f2 fadd.d f16,f14,f2

fadd.d 20,18, 1

f2
fsd f4,0(x1)  fsd f8,-8(x1) fadd.d f28,26,f24

fsdfl2,-16(x1) fsdfl6,-24(x1) addi x1,x1,-56
fsd f20,24(x1) fsd f24,16(x1)
fsd £28,8(x1) bne x1,x2,Loop

* Disadvantages:
— Statically finding parallelism
— Code size
— No hazard detection hardware
— Binary code compatibility




