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Review Questions (1)
• Five-stage execution?

• Stages of ‘add R3, R1, R2’ ?

• What is Pipelining?

• Ideal speedup of pipelining?

• Impossible to reach the ideal speedup, why?

• Pipeline hazards?
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IF, ID, EX, WB

Multi instructions are overlapped in execution

N (number of stages)

Imbalanced stages, pipelining overhead

Inst fetch (IF), Inst decode (ID), Execution (EX), Mem access (MEM), Write back (WB)

Structural, data, control



Review Questions (2)
• Explain data hazard.

• How to avoid data hazards?

• Is forwarding sufficient to clear all data hazards?

• Cause of branch hazard?

• Types of dependences.

• How to remove name dependences?
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Forwarding

Nope. Stalls may be needed.

Branch has a delay in determining the proper inst to fetch

Data dependence, name dependence (anti & output)

Pipeline changes the order of read/write accesses to operands

Register renaming



Control Dependences[控制依赖]

• Determine the order of instructions with respect to 
branches[相对分支的指令顺序]

S1 is control dependent on P1 and
S2 is control dependent on P2 (and P1 ??)

• An instruction that is control dependent on P cannot be 
moved to a place where it is no longer control dependent 
on P, and visa-versa[不可移动]
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if P1 then S1 ;
if P2 then S2 ;

Example 1:
add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

Example 2:
add x1, x2, x3
beq x12, x0, skip
sub x4, x5, x6
add     x5, x4, x9

skip:
or x7, x8, x9

“or” depends on the execution flow possible to move “sub” before 
”beq” (if x4 is not used after skip)



Compiler Techniques to Expose ILP
• Scheduling[调度]

− To keep a pipeline full, parallelism among insts must be 
exploited by finding sequences of unrelated insts that can be 
overlapped in the pipeline[重叠]

− To avoid a pipeline stall, the execution of a dependent inst must 
be separated from the source insts by a distance in clock cycles 
equal to the pipeline latency of that source inst[分隔]

• A compiler’s ability to perform the scheduling depends on
− Amount of ILP in the program[程序特性]
− Latencies of the functional units in the pipeline[硬件特性]

• Compiler can increase the amount of available of ILP by 
transforming loops[循环转换]
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Loop Dependences(§3.2) [循环依赖]

• [有]There is a loop carried 
dependence since the 
statement in an iteration 
depends on an earlier iteration

• [无]There is no loop carried 
dependence
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for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

for (i = 999; i >= 0; i = i-1)
x[i+1] = x[i] + y[i];

• The iterations of a loop can be executed in parallel if 
there is no loop carried dependence



Example: Loop Transformation[循环转换]

• Assume the latencies of FP operations
− 3 cycles if an FP ALU op follows and depends on an FP ALU op
− 2 cycles if an FP store follows and depends on an FP ALU op
− 1 cycle is an FP ALU op follows and depends on an FP load
− 1 cycle if a branch follows and depends on on Integer ALU op
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for (i = 999; i >= 0; i = i-1)
x[i] = x[i] + s;

Loop: fld f0, 0(x1) //f0=array element
fadd.d f4, f0, f2 //add scalar in f2
fsd f4, 0(x1) //store result
addi x1, x1, -8 //decrement pointer

//8 bytes (per DW)
bne x1, x2, Loop //branch x1 != x2



Basic Scheduling[简单调度]

• Re-order the statements
− Actual work: load, add and store
− loop overhead: addi, bne, two stalls
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cycle
Loop: fld f0, 0(x1) 1

stall 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 0(x1) 6
addi x1, x1, -8 7
stall 8
bne x1, x2, loop 9

9 clock cycles per iteration

cycle
Loop: fld f0, 0(x1) 1

addi x1, x1, -8 2
fadd.d f4, f0, f2 3
stall 4
stall 5
fsd f4, 8(x1) 6
bne x1, x2, loop 7

7 clock cycles per iteration



Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting 
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and 
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations 
to be scheduled together[消除分支，共同调度]
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Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
addi x1, x1, -8
bne x1, x2, loop

Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1) //drop addi & bne
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1) //drop addi & bne
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1) //drop addi & bne
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1) //drop addi & bne
addi x1, x1, -32
bne x1, x2, loop



Loop Unrolling[循环展开]

• Simply replicates the loop body multiple times, adjusting 
the loop termination code[复制->调整]

− Increases the number of insts relative to the branch and 
overhead insts[增加有效指令数]

− Eliminates branches, thus allowing insts from different iterations 
to be scheduled together[消除分支，共同调度]
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Loop: fld f0, 0(x1)
fadd.d f4, f0, f2
fsd f4, 0(x1)
fld f6, -8(x1)
fadd.d f8, f6, f2
fsd f8, -8(x1)
fld f0, -16(x1)
fadd.d f12, f0, f2
fsd f12, -16(x1)
fld f14, -24(x1)
fadd.d f16, f14, f2
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop

A total of 14 clock cycles
(3.5 cycles per element)



Unrolling Limitations[限制]

• The gains from loop unrolling are 
limited by

− A decrease in the amount of 
overhead amortized with each unroll

p Unrolled 4 times à 8 times: ½ 
cycle/element à ¼ cycle/element

− Growth in code size caused by 
unrolling

p May increase in the inst cache miss rate
p May bring register pressure (more live 

values)
− Compiler limitations

p Sophisticated transformations increases 
the compiler complexity
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Loop: fld f0, 0(x1)
fld f6, -8(x1)
fld f0, -16(x1)
fld f14, -24(x1)
fadd.d f4, f0, f2
fadd.d f8, f6, f2
fadd.d f12, f0, f2
fadd.d f16, f14, f2
fsd f4, 0(x1)
fsd f8, -8(x1)
fsd f12, -16(x1)
fsd f16, -24(x1)
addi x1, x1, -32
bne x1, x2, loop



Branch Prediction(§3.3)[分支预测]
• Branches hurt pipeline performance

− Branch hazards and stalls

• Static branch prediction[静态分支预测]
− The default is to assume that branches are not taken
− May have a design which predicts that branches are taken

• Reasonable to assume that[假设]
− Forward branches are often not taken
− Backward branches are often taken
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add x1, x2, x3
beq x4, x0, L
sub x1, x5, x6

L: …
or x7, x1, x8

add x1, x2, x3
skip:

or x7, x8, x9
beq x12, x0, skip
sub x4, x5, x6

✘

• More predictors based on branch 
directions

− Profiling is the standard technique for 
predicting the probability of branching

− Dynamic predictors rely on the history to 
predict the future branch direction

✓



Dynamic Branch Prediction(§C2.7)[动态]

• Performance depends on the accuracy of prediction and 
the cost of miss-prediction[性能影响]

• The simplest branch prediction scheme: Branch 
Prediction Buffer[分支预测缓存]:

− 1-bit table (cache) indexed by some bits of the address of the 
branch instructions (can be accessed in decode stage) ->
hashing[指令地址的低位作为索引]

− Record whether or not the branch was taken last time – may 
have collision[冲突]

− Will cause two miss-predictions in a loop (at start and end of 
loop)
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Predict taken
1

Not taken

Taken

Predict untaken
0

Taken Not taken



Two-bit Branch Predictors
• Change your prediction only if you miss-predict twice[稳定性]

− A branch that strongly favors take or not taken (many branches do), 
will be miss-predicted less often than with a 1-bit predictor

• In general, n-bit predictors are called Local Predictors[局部预测
器]

− Use a saturated counter (++ on correct prediction, -- on wrong 
prediction) 

− n-bit prediction is not much better than 2-bit prediction (n > 2). 
− A BHT with 4K entries is as good as an infinite size BHT[无限缓冲区]
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Predict taken
10

Predict taken
11

Not taken
Taken

Predict not taken
00

Predict not taken
01

Taken

Not taken

Taken

Taken

Not taken



Correlating Branch Predictors[关联预测]
• Hypothesis[假设]: recent branches are correlated (behavior of 

recently executed branches affects prediction of current branch)
• Example 1:

If B1 is not taken (aa==2) and B2 is not taken (bb==2), then B3 will be 
taken (aa==bb) 
If B1 and B2 are taken (aa!=2, bb!=2), then B3 will probably not be 
taken
• Example 2: 
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if (aa==2) 
aa=0; 

if (bb==2)
bb=0; 

if (aa!=bb) {

addi x3,x1, -2 
bnez x3, L1 …         //B1 (aa != 2)
add    x1, x0, x0       //aa=0

L1: addi x3, x2, -2 
bnez x3, L2             //B2 (bb != 2) 
add    x2, x0, x0       //bb=0

L2: sub    x3, x1, x2       //x3=aa-bb
beqz x3, L3             //B3 (aa == bb)

if (d == 0)  d = 1 ; 
if (d == 1)  .....



Correlating Branch Predictors (cont.)
• Keep history of the m most recently 

executed branches in an m-bit shift 
register[移位寄存器]

− Record the prediction for each branch 
inst, and each of the 2m combinations

• In general, (m,n) predictor means 
record last m branches to select 
between 2m history tables each with n-
bit predictor

− Simple access scheme (double indexing). 
− A (0,n) predictor is a local n-bit predictor. 

• Size of table is N*n*2m

− N is the number of table entries
− There is a tradeoff between N

(determines collision), n (accuracy of local 
prediction) and m (determines history)
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Branch address (4 bits)

2-bits per branch 
local predictors

2-bit global 
branch history
(01 = not taken then taken)

Prediction



Tournament predictor[竞赛预测器]
• Combines a global predictor and a local predictor with a 

strategy for selecting the appropriate predictor (multi-level
predictors)

• The Alpha 21264 selects between 
− A (12,2) global predictor with 4K entries 
− A local predictor which selects a prediction based on the outcome of 

the last 10 executions of any given branch.
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Use predictor 2Use predictor 1

1/0, 0/0/, 1/1

Use predictor 2Use predictor 1

0/1

1/0

1/0

0/0, 1/1

0/1, 0/0/, 1/1

0/1 0/1 1/0

0/0, 1/1

p1/p2 == predictor 1  is correct/ predictor 2  is correct



Performance[性能]

18

• Miss prediction rate for three different predictors



Branch Target Buffers(§3.9)[目标缓冲区]

• To increase instruction fetch bandwidth
− Store the address of the branch’s target, in addition to the prediction

• Can determine the target address while fetching the branch 
instruction 

− How do you even know that the instruction is a branch? 
− Can’t afford to use wrong branch address due to collision -- why?
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Branch Prediction & Pipelining
• Assuming that branch condition and target are resolved in ID

stage

• A similar chart may be drawn if branch condition/target are 
resolved in EX
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Evaluation Example
• Assume 

− access branch target buffer in IF stage 
− branch condition determined in ID 
− branch address determined in EX stage

• What is the branch penalty if:
− penalty for correct prediction = 0 cycle 
− penalty for wrong prediction = 1 (or 2) cycles for non-taken (or taken) 

branch (assuming that target is not stored in BTB if “predict not 
taken”) 

− penalty if cannot predict and the branch is taken = 2 cycles 
− branch taken frequency = 60% 
− BTB hit rate = 80% (assume not taken in case of inability to predict) 
− BTB prediction accuracy = 90% 
− The correct instruction is fetched 0.8*0.9+0.2*0.6 = 84% of the time

• May store the target instruction and not only the address -
useful when access of table needs more than one cycle.
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Dynamically Scheduled Pipelines (§3.4)
• Key idea: allow instructions behind stall to proceed

− Enables out-of-order (OoO) execution
− Can lead to out-of-order completion

• Using Scoreboards[记分板] (§ C.7): 
− Dates to the first supercomputer, the CDC 6600 in 1963 
− Split the ID stage into 

p Issue - decode and check for structural hazards, 
p Read operands - wait until no data hazards, then read operands. 

− Instructions wait in a queue and may move to the EX stage 
(dispatched) out of order.
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fdiv F0,    F2,    F4
fadd F10,  F0,  F8
fsub F12,  F8,    F14

RAW -> Stall

No dependency



A Scoreboard Architecture

• The scoreboard is responsible for instruction issue and 
execution, including hazard detection. It is also controlling the 
writing of the results

• The “scoreboard” consists of 3 tables to keep track of 
execution progress and the associated intelligence to 
determine when to dispatch instructions

• One entry (buffer) in the “wait queue” is associated with each 
functional unit

23



Scoreboard Information (3 tables)
• Instruction status[指令状态]

− issued, read operands and started execution (dispatched), completed 
execution or wrote result, 

• Functional unit status (assuming non-pipelined units) [功能单
元状态]

− busy/not busy 
− operation (if unit can perform more than one operation) 
− destination register - Fi
− source registers (containing source operands) - Fj and Fk
− the unit producing the source operands (if stall to avoid RAW hazards) 

- Qj and Qk
− flags to indicate that source operands are ready - Rj and Rk

• Register result status[寄存器结果状态] 
− Indicates the functional unit that contains an instruction which will 

write into each register (if any)
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Four Stages of Scoreboard Control
• Issue only if no structural, WAR or WAW hazards

− Issue (and reserve the functional unit) if the functional unit is free 
and 

p No issued or dispatched instruction (in state “issued” or “dispatched”) will 
write to the destination register (to avoid WAW) 

p No issued instruction (in state “issued”) will read from the destination 
register (to avoid WAR) 

− otherwise, stall, and block subsequent instructions 
− the fetch unit stalls when the queue between the fetch and the issue 

stages is full (may be only one buffer). 
• Read operands only if no RAW hazard

− If a RAW hazard is detected, wait until the operands are ready, 
− When the operands are ready, read the registers and move to the 

execution stage, 
− Note that instructions may proceed to the EX stage out-of-order. 

• Execution
− When execution terminates, notify the scoreboard. 

• Write result to register file
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Scoreboard Example
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Structure hazard, WAR

RAW
RAW

RAW



Scoreboard Example (cont.)
• when “fld F2, 45(R3)” is writing
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Scoreboard Example (cont.)
• 3 cycles after “fsub.d” finished writing
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fadd.d   F6, F8, F2



Costs and Benefits
• Limitations of the scoreboard approach[局限]

− No forwarding structural hazards are cleared before instruction 
“issue” 

− WAW and WAR hazards are cleared before instruction “issue” 
− Did not discuss control hazards 
− Execution units are not pipelined 

• Possible enhancement[提升]
− If we can have “k” write-backs to registers per cycle and “k” 

parallel buses between registers and pipeline units, them 
p k functional units may be released per cycle 
p k instructions may be dispatched per cycles. 
p k instructions may be issued per cycle. 

• Need to extend the scoreboard to the case where the 
execution units are pipelined?
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Tomasulo’s Algorithm 
• A computer arch. Hardware algo. For dynamic scheduling 

of instructions, allowing OoO execution. Including:
− Common data bus
− Instruction order
− Register renaming
− Exceptions
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Tomasulo’s Algorithm (cont.)
• Step 1:

− Issue: Instructions are issued for execution if all operands and 
reservation stations are ready or else they are stalled. Register 
are renamed in this step, eliminating WAR and WAW hazards.
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Tomasulo’s Algorithm (cont.)
• Step 2:

− Execute: The instruction operations are carried out. Instructions 
are delayed here until all of their operands are available, 
eliminating RAW hazards.
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Tomasulo’s Algorithm (cont.)
• Step 3:

− Write Result: ALU operations results are written back to 
registers and store operations are written back to memory

− If the instruction was an ALU operation
− If the result is available, write it on the CDB and from 

there into the registers and any reservation stations 
waiting for this result

− Else write the data to memory during this step
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Tomasulo’s Algorithm (cont.)
• Example:

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x16 != x2
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Tomasulo’s Algorithm (cont.)
• Example:
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Hardware-Based Speculation[推断]

• Basic Concept
− Overcome control dependence by hardware speculating on 

outcome of branches and executing program as if guesses were 
correct

− If prediction is wrong, it need a hardware to handle it
− Extension over branch prediction with dynamic scheduling

− Speculation fetch, issue, and execute instructions as if 
branch predictions were always correct

− Dynamic scheduling only fetches and issues such 
instructions 

− A data flow execution model: Operations execute as soon as 
their operands are available
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Hardware-Based Speculation (cont.)
• 3 components

− Dynamic branch prediction
− Speculation
− Dynamic scheduling

• 3 rules
− Extending Tomasulo’s algorithm
− OoO. execution but in-order commit
− The register file is not updated until instruction commits

37



Hardware-Based Speculation (cont.)
• Key idea

− Allow instructions to execute OoO.
− Force instructions to commit in order
− Prevent any irrevocable action (such as updating state or taking 

an exception) until an instruction commits

• Hence:
− Must separate execution from allowing instruction to finish or 

“commit”
− Instructions may finish execution considerably before they 

are ready to commit
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Reorder Buffer[重排序缓存]

• Function
− Holds the result of instruction between completion and commit

• Four fields
− Instruction type: branch / store / register
− Destination field: register number
− Value field: output value
− Ready field: completed execution

• Modify reservation stations
− Operand source is now reorder buffer instead of functional unit
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Reorder Buffer Procedure[过程]

• Issue
− Allocate reservation station(R.S.) and Reorder Buffer(R.O.B), 

read available operands

• Execute
− Begin execution when operand values are available

• Write Result
− Write result and R.O.B. tag on C.D.B.

• Commit
− When R.O.B. reaches head of R.O.B., update register 
− When a mispredicted branch reaches head of R.O.B., discard all 

entries
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Reorder Buffer
• Register values and memory values are not written until 

an instruction commits
• On misprediction:

− Speculated entries in 
R.O.B. are cleared

• Exceptions:
− Not recognized until 

it is ready to commit
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Reorder Buffer (cont.)
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Reorder Buffer (cont.)
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Reorder Buffer (cont.)
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Reorder Buffer (cont.)
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Multiple Issue Processor[多发射]

• To achieve CPI < 1, need to complete multiple instructions 
per clock

• Solutions:
− Statically scheduled superscalar processors
− VLIW (very long instruction word) processors
− Dynamically scheduled superscalar processors
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VLIW Processor[超长指令字]

• Package multiple operations into one instruction
• Example VLIW processor:

− One integer instruction (or branch)
− Two independent floating-point operations
− Two independent memory references

• Muse be enough parallelism in code to fill the available 
slots
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VLIW Processor (cont.)

• Disadvantages:
− Statically finding parallelism
− Code size
− No hazard detection hardware
− Binary code compatibility
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