
Advanced Computer
Architecture

高级计算机体系结构

第4讲：Memory (1)
张献伟

xianweiz.github.io
DCS5367, 10/19/2021

https://xianweiz.github.io/

Review(1): Loop Unrolling & Branch
• Loop unrolling[循环展开]

− Re-order instructions to transform
− Loop unrolling to expose scheduling opportunities
− Gains are limited by several factors

• Branch prediction[分支预测]
− Predict how branches will behave to reduce stalls
− Basic static predictor
− Correlating predictors (a.k.a., two-level predictors)

p (m, n): last m branches, n-bit predictor for a single branch
− Tournament predictors

p Adaptively combining local and global predictors

2

Review(2): Dynamic Scheduling
• Static scheduling: in-order instruction issue and execution

− If an inst is stalled in pipeline, no later insts can proceed
− Loop unrolling: reduce stalls by separating dependent insts

p Static pipeline scheduling by compiler

• Dynamic scheduling: in-order issue, OoO execution
− Reorders the instruction execution to reduce the stalls while

maintaining data dependence
− OoO execution may introduce WAR and WAW hazards

p Both can be avoided by register renaming
− ID stage is split into two

p Issue: decode insts, check for structural hazards
p Read operands: wait until no data hazards, then read operands

− Scoreboard: a technique for allowing insts to execute OoO
when there are sufficient resources and no data dependences

3

Review(3): Tomasulo
• To support dynamic scheduling

− Dynamically determining when an inst is ready to execute
− Avoid unnecessary hazards

p RAW hazards: avoided by executing an inst only when its operands are
available

p WAR and WAW hazards: eliminated by register renaming
− Register renaming is provided by reservation stations

• To support speculation
− Speculate the branch outcome and execute as if guesses are

correct
− Allow insts execute OoO but to force them to commit in order
− Reorder buffer: hold the results of insts that have finished

execution but have not committed
p Pass results among insts that may be speculated

4

Review(4): Multiple Issue
• Single issue: ideal CPI of one

− Issue only one inst every clock cycle
− Techniques to eliminate data, control stalls

• Multiple issue: ideal CPI less than one
− Issue multiple insts in a clock cycle
− Statically scheduled superscalar processors

p Issue varying number of insts per clock, execute in-order
− VLIW (very long inst word) processors

p Issue a fixed number of insts formatted as one large inst
p Inherently statically scheduled by the compiler

− Dynamically scheduled superscalar processors
p Issue varying number of insts per clock, execute OoO

5

Memory Access[存储访问]

6

Program counter

Fetch

Decode

Execute

Memory

Writeback

Next instruction

Memory

• Programmer’s view: read/write (i.e., load/store)
− Instruction[指令]
− Data[数据]

Memory[存储]

• Ideal memory[理想情况]
− Zero access time (latency)[零时延]
− Infinite capacity[无限容量]
− Zero cost[零成本]
− Infinite bandwidth (to support parallel accesses)[无限带宽]

• Problem: the requirements are conflicting[问题：需求互斥]
− Bigger is slower[大容量à长时延]

p Longer time to determine the location
− Faster is more expensive[快访问à高成本]

p More advanced technology
− Higher bandwidth is more expensive[高带宽à高成本]

p More access ports, higher frequency, …

7

Memory in Modern System

8

Memory Hierarchy[存储层级]

9

• Goal: provide a memory system with a cost per bit that is
almost as low as the cheapest level of memory and a
speed almost as fast as the fastest level

Memory Hierarchy (cont.)

10

Memory Wall[存储墙]

• On modern machines, most programs that access a lot of
data are memory bound

− Latency of DRAM access is roughly 100-1000 cycles
− Involves both the limited capacity and the bandwidth of

memory transfer

11

Deeper Hierarchy[更深层级]

• 1980: no cache in micro-processor
• 1989: Intel 486 processor with 8KB on-chip L1 cache
• 1995: Intel Pentium Proc with 256KB on-chip L2 cache
• 2003: Intel Itanium 2 with 6MB on-chip L3 cache
• 2010: 3-level cache on chip, 4th-level cache off chip

12

Memory Locality[局部性]

• A “typical” program has a lot of locality in memory
references

− Typical programs are composed of “loops”

• Temporal[时间]: a program tends to reference the same
memory location many times and all within a small
window of time

• Spatial[空间]: a program tends to reference a cluster of
memory locations at a time

− Most notable examples:
p Instruction memory references (sequential execution)
p Array/data structure references (array traversal)

13

Caching: Exploit Locality[利用局部性]

• Temporal[时间]: recently accessed data will be again
accessed in the near future

− Idea: store recently accessed data in automatically managed
fast memory (called cache)

− Anticipation: the data will be accessed again soon

• Spatial[空间]: nearby data in memory will be accessed in
the near future (e.g., sequential instruction access, array
traversal)

− Idea: store addresses adjacent to the recently accessed one in
automatically managed fast memory

p logically divide memory into equal size blocks
p Fetch to cache the accessed block in its entirety

− Anticipation: nearby data will be accessed soon

14

Management[管理]

• Q1: Where can a block be placed in the upper level?
− (Block placement)

• Q2: How is a block found if it is in the upper level?
− (Block identification)

• Q3: Which block should be replaced on a miss?
− (Block replacement)

• Q4: What happens on a write?
− (Write strategy)

15

Management Policies[策略]

• Manual[手动]: programmer manages data movement
across levels

• -- too painful for programmers on substantial programs
− “core” vs “drum” memory in the 50’s
− still done in some embedded processors (on-chip scratch pad

SRAM in lieu of a cache)

• Automatic[自动]: hardware manages data movement
across levels, transparently to the programmer

• ++ programmer’s life is easier
− the average programmer doesn’t need to know about it

p You don’t need to know how big the cache is and how it works to write
a “correct” program! (What if you want a “fast” program?)

16

Cache Basics[缓存基础]

• Block (line): unit of storage in the cache[缓存单位]
− Memory is logically divided into cache blocks that map to

locations in the cache
• When data referenced[使用]

− HIT: if in cache, use cached data instead of accessing memory
− MISS: if not in cache, bring block into cache

p Maybe have to kick something else out to do it

• Some important cache design decisions
− Placement[放置]: where and how to place/find a block in cache?
− Replacement[替换]: what data to remove to make room in

cache?
− Granularity of management[粒度]: large, small, uniform blocks?
− Write policy[写策略]: what do we do about writes?
− Instructions/data[指令/数据]: do we treat them separately?

17

Cache Basics (cont.)
• Memory is logically divided into fixed-size blocks
• Each block maps to a location in the cache, determined

by the index bits in the address
− Used to index into the tag and data stores

• Cache access steps
− 1) index into the tag and data stores with index bits in address
− 2) check valid bit in tag store
− 3) compare tag bits in address with the stored tag in tag store

• If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

18

Cache Basics (cont.)
• Assume byte-addressable memory

− Capacity: 256 bytes à 8-bit address
− Block: 8 bytes à 3-bit offset
− #blocks: 32 (256/8)

• Assume cache
− Capacity: 64 bytes à 3-bit index

p Holding 8 blocks (64/8)

• What is a tag store?
− Tag
− Metadata

p Valid bit
p Replacement policy bits
p Dirty bit
p ECC

19

Tag Index Offset

TagV

=?

Data

MUX

HIT/MISS DATA

MUX: multiplexer (数据选择器)

Direct Mapped[直接映射]

• For each item (block) of data in memory, there is exactly
one location in the cache where it might be

• Two blocks in memory that map to the same index in the
cache cannot be present in the cache at the same time

− Addresses A/B have the same index bits but different tag bits
− A, B, A, B, A, B, A, B, … à all misses

20

=?

Tag store

V tag

Address

tag index offset
3 bits3 bits2b Data store

MUX offset

Hit? Data

Set-Associative[组相连]

• For the direct mapped
− Addresses 0 and 8 always conflict in direct mapped cache
− Instead of having one column of 8 blocks, have 2 columns of 4

• Key idea: associative memory within the set
− + Accommodates conflicts better (fewer conflict misses)
− -- More complex, slower access, larger tag store

21

Tag store Data store

V tag

=?

V tag

=?

Logic

MUX

MUX
offset

SET
（2-way）

Hit?

Higher Associativity[高相连度]

• 2-way à 4-way
− + Likelihood of conflict misses even lower
− -- More tag comparators and wider data mux
− -- larger tags

22

Tag store

=? =? =? =?

Hit?

Logic

Data store

MUX

MUX offset

Fully-Associative[全相联]

• A block can map anywhere in the cache
− Most efficient use of space
− Least efficient to check

23

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Issues of Set-Associative[一些问题]

• Degree of associativity[相连度]: how many blocks can map
to the same index (or set)?

• Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

• Diminishing returns from higher associativity

• Block replacement[块替换]
− Not an issue for Direct-Mapped
− Set Associative or Fully Associative

p Random, LRU (Least Recently Used), FIFO

24

associativity

hit rate

Handling Writes[写]

• When do we write the modified data in a cache to next
level?

− Write back: when the block is evicted
− Write through: at the time the write happens

• Write-back[写回]
− + Can consolidate multiple writes to the same block before

eviction
p Potentially saves bandwidth between cache levels + saves energy

− -- Need a bit in the tag store indicating the block is
“dirty/modified”

• Write-through[写通]
− + Simpler
− + All levels are up to date. Consistency: simpler cache

coherence because no need to check lower-level caches
− -- More bandwidth intensive; no coalescing of writes

25

Handling Writes (cont.)
• Do we allocate a cache block on a write miss?

− Allocate on write miss: Yes
− No-allocate on write miss: No

• Allocate on write miss[写分配]
− + Can consolidate writes instead of writing each of them

individually to next level
− + Simpler because write misses can be treated the same way as

read misses
− -- Requires (?) transfer of the whole cache block

• No-allocate[写不分配]
− + Conserves cache space if locality of writes is low (potentially

better cache hit rate)

26

Instruction vs. Data Caches
• Separate or Unified?

• Unified[一体]
− + Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., split I and D caches)
− -- Instructions and data can thrash each other (i.e., no

guaranteed space for either)
− -- I and D are accessed in different places in the pipeline. Where

do we place the unified cache for fast access?

• First level caches are almost always split
− Mainly for the last reason above

• Second and higher levels are almost always unified

27

Evaluation Metrics[评价指标]

• Cache hit ratio= (# hits) / (# hits + # misses) = (# hits) / (#
accesses)

• Average memory access time (AMAT) = (hit-rate * hit-
latency) + (miss-rate * miss-latency)

• Cache hit rate: number of misses per kilo instructions

28

Example: Assume that
Processor speed = 1 GHz (1 n.sec. clock cycle)
Cache access time = 1 clock cycle
Miss penalty = 100 n.sec (100 clock cycles)
I-cache miss ratio = 1%, and D-cache miss ratio = 3%
74% of memory references are for instructions and 26% for data

Effective cache miss ratio = 0.01 * 0.74 + 0.03 * 0.26 = 0.0152
Av. (effective) memory access time = 1 + 0.0152 * 100 = 2.52 cycles = 2.52 n.sec

Improve Cache Performance[性能提升]

• Reduce the miss ratio
− Larger block size
− Larger caches
− Higher associativity

p But increase hit time and power consumption

• Reduce the miss penalty
− Multi-level caches
− Read priority over write on miss

p Serve reads before writes have completed

• Reduce hit time
− Avoiding address translation

p Just use virtual address

29

Virtual Memory[虚拟内存]

• Idea: give the programmer the illusion of a large address
space while having a small physical memory

− So that the programmer does not worry about managing
physical memory

− Virtual memory enables each process to have its own unique
view of a computer’s memory

• Physical memory is a storage hardware, made up of
physical memory devices, which is organized as an array
of M contiguous byte-sized cells

− Each byte has a unique physical address
• Physical vs. virtual address

− Physical addresses are unique in the system, only used by
kernel

− Virtual memory addresses are unique per-process, used by
userspace programs

30

Address Translation[地址转换]

• Address Translation: the hardware converts virtual
addresses into physical addresses via an OS-managed
lookup table (page table)

• HW and SW cooperatively manage the translation
− OS software
− Address translation hardware in MMU
− Pages table stored in physical memory or disk

• Memory management unit[内存管理单元]
− Includes Page Table Base Register(s), TLBs, page walkers

31

Address Translation (cont.)
• A virtual page is mapped to

− A physical frame, if the page is in physical memory
− A location in disk, otherwise

• If an accessed virtual page is not in memory, but on disk
− Virtual memory system brings the page into a physical frame

and adjusts the mapping à this is called demand paging

32

Page Table and TLB[页表]

• Page table is the table that stores the mapping of virtual
pages to physical frames

• Page table is just a data structure to map VA (or really
VPN) to PA (PFN)

− Each process has its own set of page tables
− Page table size for a process is roughly 4MB for 32-bit address

space with 4-byte page table entry (PTE)
p Can be 400MB for 100 processes

• TLB: part of chip’s MMU to speed address translation
− Cache the popular virtual-to-physical address translations
− Upon each virtual memory reference, the hw first checks the

TLB to see if the desired translation is held there
p If so, the translation is performed without having to consult the page

table (which has all translations)
33

TLB (cont.)
• A typical TLB might have 32, 64, 128 entries, which are

fully associative
• TLB contains v2p translations that are only valid for the

currently running process
− Those translations are not meaningful for other processes
− Flush is needed when switching from one process to another

• Accesses to virtual addresses not listed in TLB (a “TLB
miss”) trigger a page table lookup

− Performed either by hw or the page fault handler

34

TLB hit

Page Fault[页缺失]

• Physical memory is a cache for pages stored on disk
− In fact, it is a fully associative cache in modern systems (a

virtual page can be mapped to any physical frame)
• Page fault: a DRAM cache miss

− Find out where the contents of the page are stored on disk
− Possible that this page isn’t anywhere at all

p The memory reference is buggy and thus the process will be killed

• Suppose page fault happens on page p1, which is on disk
− Find page p2 mapped to some frame f that is not used much
− Copy the contents of frame f out to disk
− Clear page p2’s valid bit (subsequent refs to p2 will cause page

faults)
− Update the MMU’s table so that p1 is mapped to frame f
− Return from the interrupt, allowing the CPU to retry the inst

that caused the interrupt
35

Memory Technology[存储技术]

• Performance of main memory
– Latency: affects Cache Miss Penalty
– Bandwidth: affects I/O & Large Block Miss Penalty

36

DRAM vs. SRAM
• Main Memory uses DRAM: Dynamic Random Access

Memory
− Needs to be refreshed periodically (one row at a time)
− Addresses divided into 2 halves (memory as a 2D matrix):

p RAS or Row Access Strobe
p CAS or Column Access Strobe

• Cache uses SRAM: Static RAM
− No refresh (6 transistors/bit vs. 1)

p Size: DRAM/SRAM 4-8
p Cost/Cycle time: SRAM/DRAM 8-16

37

DRAM
• SDRAM = DRAM with a clocked interface
• DDR SDRAM = double data rate, transfer data at both

clock edges
− DDR2 (1.8 V, 266-400 MHz)
− DDR3 (1.5 V, 800 MHz)
− DDR4 (1-1.2 V, 1600 MHz)

38

DRAM Structure[结构]

• DRAM is provided as DIMMs, which contain a bunch of
chips on each side

• DRAM chip can be thought of as 2D array
• Each intersection in the array is one cell
• The cell itself is composed of 1T and 1C

39

DRAM

2D Array DIMM/Chip DRAM Cell

Transistor

Capacitor
cell

DRAM Structure (cont.)
• A rank consists of multiple (parallel) chips contributing to

the same transaction
• A memory chip is organized internally as a number of

banks (1-8 usually)
− Physical bank: chip level, a portion of memory arrays
− Logical bank: rank level, one physical bank from each chip

• Each memory bank has a “row buffer”, which is non-
volatile (SRAM registers)

40

DRAM Operations[操作]

• To read a byte (a similar process applies for writing):
− The MC sends the row address of the byte
− The entire row is read into the row buffer (the row is opened)
− The MC sends the column address of the byte
− The memory returns the byte to the controller (from the row

buffer)
− The MC sends a Pre-charge signal (close the open row)

41T

Vdd

.5
Vd

d

➀ Precharged

T

➃ Restored

Bi
tli
ne

Ca
pa
cit
orabstract

➂ Sensing/Restoring

T

➄ Precharged

T

Wordline

Bitline

Transistor

Capacitor

SenseAmp

➁ Sharing

T
ΔV

Timing Constraints[时序参数]

• Key timings
− tRCD: the minimum number of clock cycles required to open a

row and access a column
− tCAS: number of cycles between sending a column address to

the memory and the beginning of the data in response
− tRAS: the minimum number of clock cycles required between a

row active command and issuing the precharge command
− tRP: number of clock cycles taken between the issuing of the

precharge command and the active command
− tWR: write recovery time

42

Page Mode[页模式]

• A “DRAM row” is also called a “DRAM page”
− Usually larger than the OS page, e.g., 8KB vs. 4KB

• Row buffers act as a cache within DRAM
• Open page

− Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

− Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

• Closed page
− Empty row buffer access: ~40 ns (must first read arrays, then move

data from row buffer to pins)
− Steps

p Activate command opens row (placed into row buffer)
p Read/write command reads/writes column in the row buffer
p Precharge command closes the row and prepares the bank for next access

43

