Bt HHLIE R &

Dt Elg | 3¢ 368 B3t ST s

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

" Advanced Computer
Architecture

b
&

A

At Memory (1)
GG

xianweiz.github.io
DCS5367, 10/19/2021

https://xianweiz.github.io/

Review(1): Loop Unrolling & Branch

3

* Loop unrolling[#&¥F &]
— Re-order instructions to transform
— Loop unrolling to expose scheduling opportunities
— Gains are limited by several factors

* Branch prediction[433Z Tl
— Predict how branches will behave to reduce stalls
— Basic static predictor

- Correlating predictors (a.k.a., two-level predictors)
o (m, n): last m branches, n-bit predictor for a single branch

— Tournament predictors
o Adaptively combining local and global predictors

‘\“‘ IYA’%S‘EN&E:% 2 ﬂ 7 ;G &

Review(2): Dynamic Scheduling

 Static scheduling: in-order instruction issue and execution
- If an inst is stalled in pipeline, no later insts can proceed

— Loop unrolling: reduce stalls by separating dependent insts
o Static pipeline scheduling by compiler

* Dynamic scheduling: in-order issue, Oo0 execution

— Reorders the instruction execution to reduce the stalls while
maintaining data dependence
— 000 execution may introduce WAR and WAW hazards
o Both can be avoided by register renaming
— ID stage is split into two
o Issue: decode insts, check for structural hazards
o Read operands: wait until no data hazards, then read operands

— Scoreboard: a technique for allowing insts to execute 000
when there are sufficient resources and no data dependences

: h‘ﬂ

Review(3): Tomasulo

* To support dynamic scheduling
- Dynamically determining when an inst is ready to execute

— Avoid unnecessary hazards

o RAW hazards: avoided by executing an inst only when its operands are
available

o WAR and WAW hazards: eliminated by register renaming
— Register renaming is provided by reservation stations

* To support speculation

— Speculate the branch outcome and execute as if guesses are
correct

— Allow insts execute 000 but to force them to commit in order

— Reorder buffer: hold the results of insts that have finished
execution but have not committed

o Pass results among insts that may be speculated

‘\“‘ IYA’%S‘EN&E:% 4 ﬂ 7 ;G &

Review(4): Multiple Issue

 Single issue: ideal CPIl of one
— Issue only one inst every clock cycle
— Techniques to eliminate data, control stalls

* Multiple issue: ideal CPI less than one
— Issue multiple insts in a clock cycle
— Statically scheduled superscalar processors
o Issue varying number of insts per clock, execute in-order

— VLIW (very long inst word) processors
o Issue a fixed number of insts formatted as one large inst
o Inherently statically scheduled by the compiler

— Dynamically scheduled superscalar processors
o Issue varying number of insts per clock, execute OoO

h‘ﬂ

Memory Access[##fit i 1]

* Programmer’s view: read/write (i.e., load/store)
— Instruction[f§4]

— Data[#i#a]

Program counter

Next instruction
Fetch |e—
!

Decode
!

Execute

Memory

y >
Memory [€—

!
Writeback

(& e (4G
‘\“‘ sritm:!s'wﬁtﬁ 6 ” ‘lﬂ “

Memory i)

e |deal memory[HAE 5]
— Zero access time (latency)[ZF] iE]
— Infinite capacity[LR F&E]
— Zero cost[E A
— Infinite bandwidth (to support parallel accesses)[TchR 77 %]

* Problem: the requirements are conflicting[/7] #%: 73R H J¥]
— Bigger is slower[K& &> K 4iE] G b 2.
o Longer time to determine the location - \?/\e? =
— Faster is more expensive[RiJ7 7] = & il As] " O
o More advanced technology)
— Higher bandwidth is more expensive[& i 7 > 84
o More access ports, higher frequency, ...

,‘ r
() F b K L B
&5 y
avus/ SUN YAT-SEN UNIVERSITY ‘ 4 ‘

Memory in Modern System

g

Memory Hierarchy[# %24

* Goal: provide a memory system with a cost per bit that is
almost as low as the cheapest level of memory and a
speed almost as fast as the fastest level

Smallest Size- Fastext- Costliest

Cache (SRAM)

Primary Memory (DRAM)

Secondary Memory

peed

Largest Size- Slowest- Cheapest

’ Dl

emory Hierarchy (cont.

Register
reference
Size: 1000 bytes 64 KB 256 KB 1-2GB 4-64GB
Speed: 300ps ins 5-10ns 50-100ns 25-50us
(A) Memory hierarchy for a personal mobile device
L2 L3
C C § Memory
CPU a a bus M st
Rm‘@rs = 2 -
h h
2 2 Flash
Register Level 1 Level 2 Level 3 Memory m
reference Cache Cache Cache reference
reference reference reference
Laptop Size: 1000 bytes 64 KB 256 KB 4-8MB 4-16GB 256GB-1TB
Speed: 300 ps ins 3-10ns 10-20ns 50-100 ns 50-100 uS
Desktop Size: 2000 bytes 64 KB 256 KB 8-32 MB 8-64 GB 256 GB-2TB
Speed: 300ps ins 3-10ns 10-20ns 50-100 ns 50-100 uS
(B) Memory hierarchy for a laptop or a desktop
L2 L3
a a bus /O bus
& o Memory
h h
e e Flash storage
Register Level 1 Level 2 Level 3 Memory »
reference Cache Cache Cache reference Disk Flash
reference reference reference memory — memory
S 4000 64 KB 256 KB 6-64 MB 32-256 GB - A
ze: bytes 1 =
Speed: 200ps ins 3-10ns 10-20ns 50-100 ns oLl
(C) Memory hierarchy for server

(P *
g) o
SUN Yﬂ—sENﬁ&

|

v

i

Memory Wall[1z 5]

* On modern machines, most programs that access a lot of

data are memory bound
— Latency of DRAM access is roughly 100-1000 cycles
- Involves both the limited capacity and the bandwidth of
memory transfer

Processor-DRAM Memory Gap

pProc 1.20/yr.

101)
“Moore’s Law” ‘ﬁ*
40.000 St e s ‘..""./
uProc 1.52/yr.
; 1.000 becrrsrsersrnenvons (2X'n1.5yf) -
Z DRAM
Q-: 100 Bsasssncsssssssvonissacassdiasnsrnansssasssasiisesinunniinaniss i s sssa cousssslihad Pfoces‘sof_Memofy. 7°b“yr-
Performance Gap: (2X/10 yrs)
s0 Lo e s o S S e (grows 50% /year) bl
g P S ¢
>
>l o PEDSDES -, o oo *=9
1 ..:‘ngﬁ A A —ie S
1980 198 1890 1995 2000 2005 010
Yea
11 I .@
Pr -

Deeper Hierarchy[5i& 242

* 1980: no cache in micro-processor

* 1989: Intel 486 processor with 8KB on-chip L1 cache

* 1995: Intel Pentium Proc with 256KB on-chip L2 cache
e 2003: Intel Itanium 2 with 6MB on-chip L3 cache

* 2010: 3-level cache on chip, 4th-level cache off chip

LO:
Regs CPU registers hold words retrieved

Smaller, 1 h from the L1 cache.
faster, 4 cache
and (SRAM) L1 cache holds cache lines retrieved
costlier \3 cache from the L2 cache.
ipsavre] Lz'/ (SRAM)
storage L2 cache holds cache lines
devices \ retrieved from L3 cache.

L3: L3 cache

(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper Main memory holds disk blocks
(per byte) retrieved from local disks.
storage |s. Local secondary storage \
devices (local disks) \
Local disks hold files
v retrieved from disks

OOOOOO te servers.
L6: Remote secondary storage

/ (e.g., Web servers) \ R G G
\ | ¥
Bryant andd Q'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition \\ H ' ‘ =

Memory Locality[&t

* A “typical” program has a lot of locality in memory
references

— Typical programs are composed of “loops”

* Temporal[if[d]]: a program tends to reference the same
memory location many times and all within a small
window of time

e Spatial[==[8]]: a program tends to reference a cluster of
memory locations at a time

- Most notable examples:

o Instruction memory references (sequential execution)
o Array/data structure references (array traversal)

,‘ b
(&) T b K % '\
gy ‘ ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Caching: Exploit Locality[#] /i & &Bi:]

* Temporal[if[d]]: recently accessed data will be again
accessed in the near future

- |ldea: store recently accessed data in automatically managed
fast memory (called cache)

— Anticipation: the data will be accessed again soon

 Spatial[=*[f]]: nearby data in memory will be accessed in
the near future (e.g., sequential instruction access, array
traversal)

— |dea: store addresses adjacent to the recently accessed one in
automatically managed fast memory
o logically divide memory into equal size blocks
o Fetch to cache the accessed block in its entirety

— Anticipation: nearby data will be accessed soon

/ ‘ 3
(&) T b K % '\
gy ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Management[&#]

* Q1: Where can a block be placed in the upper level?
- (Block placement)

* Q2: How is a block found if it is in the upper level?
— (Block identification)

* Q3: Which block should be replaced on a miss?

- (Block replacement)

* Q4: What happens on a write?
- (Write Strategy) Smallest Size- Fastext- Costliest

Cache (SRAM)

/Primary Memory (DRAM\
/ Secondary Memory \

,‘ \) [
H»Y ng ARY
‘\ s‘ Speed ’ [
&y SUN YAT-SEN UNIVERSITY ’ ‘

Largest Size- Slowest- Cheapest

Management Policies[5kng]

 Manual[F3/]]: programmer manages data movement
across levels

e —- too painful for programmers on substantial programs
— “core” vs “drum” memory in the 50’s
- still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)
e Automatic[H 3l]: hardware manages data movement
across levels, transparently to the programmer

* ++ programmer’s life is easier

- the average programmer doesn’t need to know about it

o You don’t need to know how big the cache is and how it works to write
a “correct” program! (What if you want a “fast” program?)

,‘ N
[< 7\
(&) F b X NG
&9 ‘ L
iy \‘ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Cache Basics[&Z 7 &Lt

* Block (line): unit of storage in the cache[ZZ 17 #.4v]

- Memory is logically divided into cache blocks that map to
locations in the cache

* When data referenced[ff /]

— HIT: if in cache, use cached data instead of accessing memory

- MISS: if not in cache, bring block into cache
o Maybe have to kick something else out to do it

* Some important cache design decisions
- Placement[jit &]: where and how to place/find a block in cache?

- Replacement[#& #t]: what data to remove to make room in
cache?

— Granularity of management[fiJZ]: large, small, uniform blocks?
— Write policy[E % #]: what do we do about writes?
— Instructions/data[$5 4 /%#5]: do we treat them separately?

,‘ b
(&) ¥ X % ¢
\ <), : -
S/ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Cache Basics (cont.)

* Memory is logically divided into fixed-size blocks

* Each block maps to a location in the cache, determined
by the index bits in the address

— Used to index into the tag and data stores 129 index byte in block
2b | 3 bits| 3 bits

8-bit address
* Cache access steps

- 1) index into the tag and data stores with index bits in address
- 2) check valid bit in tag store
- 3) compare tag bits in address with the stored tag in tag store

* If a block is in the cache (cache hit), the stored tag should
be valid and match the tag of the block

ﬂr‘&

Cache Basics (cont.)

* Assume byte-addressable memory tag index byte in block
— Capacity: 256 bytes = 8-bit address 2b | 3 bits| 3 bits
— Block: 8 bytes - 3-bit offset
— #blocks: 32 (256/8) Tag Index | Offset

 Assume cache
— Capacity: 64 bytes —> 3-bit index
o Holding 8 blocks (64/8)

 What is a tag store?

- Tag
— Metadata V| Tag Data
o Valid bit Nt
o Replacement policy bits " =7 \ MUX /+—
o Dirty bit |
o ECC HIT/MISS DATA

@) tuxs 19 &
¢l £l HRY
\“‘ SUN YAT-saNﬁERsnY ‘ y ‘ =

Direct Mapped |/ #:mt44]

* For each item (block) of data in memory, there is exactly
one location in the cache where it might be

* Two blocks in memory that map to the same index in the
cache cannot be present in the cache at the same time
— Addresses A/B have the same index bits but different tag bits
- A, B,A B, A, B, A, B, ... 2 all misses

tag index offset

2b | 3 bits| 3 bits Tag store Data store
Address

V\ iaq
=1 \ MUX /40ffset

Hit? Data ,,';[E

Set-Associative[4lFHiZ]

* For the direct mapped
— Addresses 0 and 8 always conflict in direct mapped cache
— Instead of having one column of 8 blocks, have 2 columns of 4

* Key idea: associative memory within the set
- + Accommodates conflicts better (fewer conflict misses)
- -- More complex, slower access, larger tag store

Tag store Data store

SET |) (

(2-way)

V tag V tag

\ \

/ offset

L(lgic \ MUX

Q Hit?

&

Higher Associativity[@iHiZ)

e 2-way =2 4-way
— + Likelihood of conflict misses even lower
— -- More tag comparators and wider data mux

— -- larger tags
Tag store Data store
=7 =" =7 =7 \ MUX /
\// ffset
Logic N Mux £&F
b !
Hit?

A
(< 7\ J‘ K ¥ Y
\& S/ SUN YAT-SEN UNIVERSITY) ’ ‘

Fully-Associative[4Bk

* A block can map anywhere in the cache
— Most efficient use of space
- Least efficient to check

Tag store | | I I I | I I |
=" =7 =7 =7 =7 = =7 ="
y
Logic
! Hit?
Data store| | | | | | | | |
o MUX

\ MSX Z byte in block
v
ﬂ!gﬂi

Issues of Set-Associative[— &k |q) &)

* Degree of associativity[#BiEE]: how many blocks can map
to the same index (or set)?

* Higher associativity
++ Higher hit rate
-- Slower cache access time (hit latency and data access latency)
-- More expensive hardware (more comparators)

* Diminishing returns from higher associativity

hit rate

* Block replacement[# #] f

- Not an issue for Direct-Mapped

— Set Associative or Fully Associative
o Random, LRU (Least Recently Used), FIFO associativity

,‘ b
(&) ¥ X % ¢
\ <), : -
S/ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Handling Writes[5]

* When do we write the modified data in a cache to next
level?
— Write back: when the block is evicted
— Write through: at the time the write happens

* Write-back[5 [F]]

- + Can consolidate multiple writes to the same block before
eviction

o Potentially saves bandwidth between cache levels + saves energy
— -- Need a bit in the tag store indicating the block is

“dirty/modified”
* Write-through[5 18]
-+ Simpler

- + All levels are up to date. Consistency: simpler cache
coherence because no need to check lower-level caches

— -- More bandwidth intensive; no coalescing of writes

Handling Writes (cont.)

e Do we allocate a cache block on a write miss?
— Allocate on write miss: Yes
— No-allocate on write miss: No

* Allocate on write miss[5 77 FiC]

— + Can consolidate writes instead of writing each of them
individually to next level

— + Simpler because write misses can be treated the same way as
read misses

- -- Requires (?) transfer of the whole cache block

* No-allocate[5 A4 Fic]

- + Conserves cache space if locality of writes is low (potentially
better cache hit rate)

,‘ b
(&) ¥ X % ¢
\ <), : -
S/ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Instruction vs. Data Caches

P 11 < Level1 }«¢
Separate or Unified? cpu & [D Cachef ol
. -+ ain
Registers) Tevel1 |, Cache Memory
I Cache [¢
16 KB lor2
o o Fach MB
* Unified[—1&]

- + Dynamic sharing of cache space: no overprovisioning that
might happen with static partitioning (i.e., split | and D caches)

— -- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

- --land D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

* First level caches are almost always split
- Mainly for the last reason above

* Second and higher levels are almost always unified

»lﬁ‘i

Evaluation Metrics[iE#5Hx]

* Cache hit ratio= (# hits) / (# hits + # misses) = (# hits) / (#
accesses)

* Average memory access time (AMAT) = (hit-rate * hit-
latency) + (miss-rate * miss-latency)

e Cache hit rate: number of misses per kilo instructions

Example: Assume that

Processor speed = 1 GHz (1 n.sec. clock cycle)

Cache access time = 1 clock cycle

Miss penalty = 100 n.sec (100 clock cycles)

|-cache miss ratio = 1%, and D-cache miss ratio = 3%

74% of memory references are for instructions and 26% for data

Effective cache miss ratio =0.01 * 0.74 + 0.03 * 0.26 = 0.0152
Av. (effective) memory access time =1+ 0.0152 * 100 = 2.52 cycles = 2.52 n.sec

(B) T)G
\%,), [
\lavus/ SUN YAT-SEN UNIVERSITY ‘ N

Improve Cache Performance[tt g7t

* Reduce the miss ratio
— Larger block size
— Larger caches
— Higher associativity
o But increase hit time and power consumption
* Reduce the miss penalty
— Multi-level caches

— Read priority over write on miss
o Serve reads before writes have completed

e Reduce hit time

— Avoiding address translation
o Just use virtual address

,‘ b
(= z) J' K |
U&P)) y
avys/ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

Virtual Memory[E4. N 77]

* |dea: give the programmer the illusion of a large address
space while having a small physical memory

- So that the programmer does not worry about managing
physical memory

- Virtual memory enables each process to have its own unique
view of a computer’s memory

* Physical memory is a storage hardware, made up of
physical memory devices, which is organized as an array
of M contiguous byte-sized cells

— Each byte has a unique physical address

* Physical vs. virtual address

— Physical addresses are unique in the system, only used by
kernel

- Virtual memory addresses are unique per-process, used by
userspace programs

/ ‘ 3
(&) T b K % '\
gy ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Address Translation[&4 #]

* Address Translation: the hardware converts virtual
addresses into physical addresses via an OS-managed
lookup table (page table)

* HW and SW cooperatively manage the translation
- OS software
— Address translation hardware in MMU
— Pages table stored in physical memory or disk

* Memory management unit[N 8 # 5]
- Includes Page Table Base Register(s), TLBs, page walkers

Vival Address Real Address

MMO

vt

CPU

Page
Table

»lﬁ‘i

Address Translation (cont.)

* A virtual page is mapped to
— A physical frame, if the page is in physical memory
— A location in disk, otherwise

* If an accessed virtual page is not in memory, but on disk

— Virtual memory system brings the page into a physical frame
and adjusts the mapping =2 this is called demand paging

Virtual address

Page table n-1 p p-1 0
base register e Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Valid Physical page number (PPN)
' S Page
The VPN acts table
as index into
the page table
If valid = 0
then page
not in memory m-1 p p-1 0
(page fault) Physical page number (PPN) | Physical page offset (PPO)

R
Physical address U !'EL

Page Table and TLB[mi#:

* Page table is the table that stores the mapping of virtual
pages to physical frames

* Page table is just a data structure to map VA (or really
VPN) to PA (PFN)

— Each process has its own set of page tables

— Page table size for a process is roughly 4MB for 32-bit address
space with 4-byte page table entry (PTE)

o Can be 400MB for 100 processes

e TLB: part of chip’s MMU to speed address translation
— Cache the popular virtual-to-physical address translations
— Upon each virtual memory reference, the hw first checks the

TLB to see if the desired translation is held there

o If so, the translation is performed without having to consult the page
table (which has all translations)

/ ‘ 3
(&) T b K '\
\ovys/ SUN YAT-SEN UNIVERSITY ‘ ’ ‘

TLB (cont.)

* A typical TLB might have 32, 64, 128 entries, which are
fully associative

* TLB contains v2p translations that are only valid for the
currently running process

— Those translations are not meaningful for other processes
— Flush is needed when switching from one process to another

e Accesses to virtual addresses not listed in TLB (a “TLB
miss”) trigger a page table lookup

- Performed either by hw or the page fault handler

CPU Chip ’T‘ TLB h|t
e“ PTE
VPN VO
&
cPU LS VY 3 Gt
Memory

/X * Data ’
&9 b X 'E‘ IG
\“ SUN YAT-SEN UNIVERSITY e ﬂ ’ ‘ :

Page Fault[mifisk]

* Physical memory is a cache for pages stored on disk

- In fact, it is a fully associative cache in modern systems (a
virtual page can be mapped to any physical frame)

* Page fault: a DRAM cache miss
- Find out where the contents of the page are stored on disk

— Possible that this page isn’t anywhere at all
o The memory reference is buggy and thus the process will be killed

e Suppose page fault happens on page p1, which is on disk
- Find page p2 mapped to some frame f that is not used much
— Copy the contents of frame f out to disk

— Clear page p2’s valid bit (subsequent refs to p2 will cause page
faults)

- Update the MMU'’s table so that p1 is mapped to frame f

— Return from the interrupt, allowing the CPU to retry the inst
that caused the interrupt

/ ‘ 3
(&) T b K % '\
gy ¥
\ovys/ SUN YAT-SEN UNIVERSITY ‘ N

Memory Technology##fi&HAR]

* Performance of main memory
— Latency: affects Cache Miss Penalty
— Bandwidth: affects I/O & Large Block Miss Penalty

ATIMELINE OF MEMORY

CLASS INTRODUCTIONS (‘_O \\
% -’ 1989

AND Flash
3 1984 M emory
NOR Flash

1971 Memory

EPROM

1966

DRAM

1961

e 105 =+ ITSBEENDECADESSINCE
MAINSTREAM ME

b

DRAM vs. SRAM

* Main Memory uses DRAM: Dynamic Random Access
Memory
- Needs to be refreshed periodically (one row at a time)

- Addresses divided into 2 halves (memory as a 2D matrix):
o RAS or Row Access Strobe

World Line (WL)

o CAS or Column Access Strobe _T_
Bit Line+ T 1
(BL)
el 4
 Cache uses SRAM: Static RAM =
— No refresh (6 transistors/bit vs. 1) | W
a Size: DRAM/SRAM 4-8 o0
o Cost/Cycle time: SRAM/DRAM 8-16 vl = MR e
'|_|' TLC
o) Q
= HF
BL M, Mg BL
=

‘\“‘ IYA’%S‘EN&E:% 37 ﬂ 7 ;G &

DRAM

e SDRAM = DRAM with a clocked interface

« DDR SDRAM = double data rate, transfer data at both
clock edges

- DDR2 (1.8 V, 266-400 MHz)
- DDR3 (1.5 V, 800 MHz)
- DDR4 (1-1.2 V, 1600 MHz)

U B N

Clock Cycle

oorsoran [[O

7R
(&) F w % 38
%

SUN YAT-SEN UNIVERSITY

Hriﬂz

DRAM Structure[4:#

* DRAM is provided as DIMMs, which contain a bunch of
chips on each side

* DRAM chip can be thought of as 2D array
* Each intersection in the array is one cell
* The cell itself is composed of 1T and 1C

I ;ransistor
2D Array DIMM/Chip DRAM Cell

— row @ e o
[wordline cell

row-decode

itline

< sense-amplifier

row-buffer i [} .—/ U . ‘;E
AL I

row-addr

AR
() F b X B 39
iy U SUN YAT-SEN UNIVERSITY

DRAM Structure (cont.)

* A rank consists of multiple (parallel) chips contributing to

the same transaction

* A memory chip is organized internally as a number of

banks (1-8 usually)

— Physical bank: chip level, a portion of memory arrays
- Logical bank: rank level, one physical bank from each chip

 Each memory bank has a “row buffer”, which is non-

volatile (SRAM registers)

--

DIMM

:'. ‘; V)
Unﬂ L

DRAM Operations#eff]

* To read a byte (a similar process applies for writing):
— The MC sends the row address of the byte
- The entire row is read into the row buffer (the row is opened)
— The MC sends the column address of the byte
- The memory returns the byte to the controller (from the row

buffer)
- The MC sends a Pre-charge signal (close the open row)
Wordline
ransistor
Bitline * .g
o
O
O
SenseAmp
@ Precharged @ Sharing ® Sensing/Restoring @ Restored ® Precharged
TVdd | vl

AV

I P 5 N . caed __ L ____ S IS O R N N vl |

%I‘
@ruxs p |l || [|all 5 | i

Timing Constraints(#f &2 %i]

* Key timings
— tRCD: the minimum number of clock cycles required to open a
row and access a column

- tCAS: number of cycles between sending a column address to
the memory and the beginning of the data in response

— tRAS: the minimum number of clock cycles required between a
row active command and issuing the precharge command

— tRP: number of clock cycles taken between the issuing of the
precharge command and the active command

- tWR: write recovery time

RAM TIMING ReadACT) _t . EE,AD)_—_-
1 6 1 8 1 8 38 Paramrer%legs | (actlﬁacgon)
-l -l i tRAs “““ | — ~tpp — 9

CL T T T (activation + restoration) (precharge)

A Write WRITE)

Timin = — : b o
Parameterg < R >|-burst write K- “tyg 2% trp _>|

Page Mode[Ti##]

* A “DRAM row” is also called a “DRAM page”
— Usually larger than the OS page, e.g., 8KB vs. 4KB

e Row buffers act as a cache within DRAM

* Open page
— Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

— Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

* Closed page

- Empty row buffer access: ~40 ns (must first read arrays, then move
data from row buffer to pins)
— Steps
o Activate command opens row (placed into row buffer)
o Read/write command reads/writes column in the row buffer

D.g Precharge command closes the row and prepares the bank for next access.[i
Sy Wi’

