
Advanced Computer
Architecture

高级计算机体系结构

第5讲：Memory (2)
张献伟

xianweiz.github.io
DCS5367, 10/26/2021

https://xianweiz.github.io/

作业 – HW1
• https://xianweiz.github.io/teach/dcs5637/hws/hw1.pdf
•截止时间：10.31, 23:59
•提交方式：超算习堂

−注册（ https://easyhpc.net/ ）
−加入课程（https://easyhpc.net/course/133）
−作业列表：HW1

2

https://xianweiz.github.io/teach/dcs5637/hws/hw1.pdf
https://easyhpc.net/
https://easyhpc.net/course/133

Review Questions
• What is ‘tag’ in cache access?

• Cache associativity?

• Disadvantages of higher associativity?

• Write back and write through?

• Steps of address translation?

• Why we say DRAM is ‘dynamic’?

3

Cache is organized as sets, each of which contains multi blocks.

Larger tags, and higher overhead on tag comparator and data mux.

Write back first writes into cache, and then got updated into
Memory when being evicted; write through directly updates mem.

MMU à page table lookup à page fault à retry

Part of address to be used to decide the access is hit/miss.

Data is leaking, and thus dynamic refreshes are needed.

Page Mode[页模式]

• A “DRAM row” is also called a “DRAM page”
− Usually larger than the OS page, e.g., 8KB vs. 4KB

• Row buffers act as a cache within DRAM
• Open page

− Row buffer hit: ~20 ns access time (must only move data from row
buffer to pins)

− Row buffer conflict: ~60 ns (must first precharge the bitlines, then
read new row, then move data to pins)

• Closed page
− Empty row buffer access: ~40 ns (must first read arrays, then move

data from row buffer to pins)
− Steps

p Activate command opens row (placed into row buffer)
p Read/write command reads/writes column in the row buffer
p Precharge command closes the row and prepares the bank for next access

4

DRAM Bandwidth[带宽]

• Reading from a cell in the core array is a very slow process
− DDR: Core speed = ½ interface speed
− DDR2/GDDR3: Core speed = ¼ interface speed
− DDR3/GDDR4: Core speed = ⅛ interface speed
− … likely to be worse in the future

• Calculation: transfer_rate * interface_width
− Example: 266 MT/s * 64b = 2128 MB/s

5

Memory Power[功耗]

• Dynamic + static[动态和静态]
− read/write + standby

• Reduce power[降低功耗]
− Drop operating voltage
− Power-down mode: disable the memory, except internal

automatic refresh

6

DRAM Variants[变种]

• DDR
− DDR3: 1.5V, 800MHz, 64b à 1.6G*64b = 12.8GB/s

• GDDR: graphics memory for GPUs
− GDDR5: based on DDR3, 8Gb/s, 32b à 8G*32b = 32GB/s

• LPDDR: low power DRAM, a.k.a., mobile memory
− Lower voltage, narrower channel, optimized refresh

7

DDR5 & GDDR6
• DDR

− DDR4: 1-1.2V, 1333MHz, 64b à 21.3GB/s x 4 = 85.2GB/s
− DDR5: 1.1V, 6.4Gbps, 64b à 51.2GB/s x 4 = 204.8GB/s

• GDDR
− GDDR5: 8Gb/s(~7), 256b, 224GB/s, 12GB, GTX 980
− GDDR5X: 12Gb/s(~10), 256b, 320GB/s, 8GB, GTX 1080
− GDDR6: 16Gb/s(~14), 256b, 448GB/s, 10GB, RTX 2080
− GDDR6X: 21Gb/s (~19), 320b, 760GB/s, 10GB, RTX 3080

8

https://www.techpowerup.com/gpu-specs/geforce-gtx-980.c2621
https://www.techpowerup.com/gpu-specs/geforce-gtx-1080.c2839
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080.c3224
https://www.techpowerup.com/gpu-specs/geforce-rtx-3080.c3621

Stacked DRAMs[堆叠]

• Stacked DRAMs in same package as processor
− High Bandwidth Memory (HBM)

• HBM consumes less power and still maintains significantly
higher bandwidth in a small form factor

− To keep the TDP target low, HBM’s clock speed is limited to
1GBPs but, it makes up for it with its 4096 bits of the memory
bus

9

HBM[高带宽内存]

• A normal stack consist of four 4 DRAM dies on a base die
and has two 128-bit channels per DRAM die

− Making 8 channels in total which results in a 1024-bit interface
− 4 HBM stacks gives a width of 4 * 1024 = 4096b, 1Gb/s
− Bandwidth: 4096b * 1Gb/s = 512GB/s

• Nvidia Tesla P100: HBM2, 4096b, 16GB, 732.2GB/s
• Nvidia Tesla A100: HBM2e, 5120b, 40GB, 1555GB/s

10

https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/a100-pcie.c3623

eDRAM[嵌入式]

• eDRAM: embedded DRAM
− DRAM integrated on the same die with ASIC/logic

• No pin limitations
− Can access using a wide on-chip buses

• System power savings
− Avoids off-chip I/O transfers

11
https://wikimili.com/en/EDRAM

https://wikimili.com/en/EDRAM

DRAM Scaling[缩放]

12

Technology Scaling

Perf/BW Cost Voltage
20

0 40
0

80
0M

Hz

3.
0V

1.
8V

1.
2V$8
0,
00

0

$1
,0
00

$1
0

Scaling Issues[问题]

• DRAM cells are more leaky[数据流失]
− More frequent refreshes

• Slower access[访问时延]
− Longer sensing and restoring time

• Decreased reliability[可靠性]
− Cross-talking noise, enlarged process variations

13

Longer Sensing Prolonged RestoreMore Leaky Severer Noise

Less charge
higher leakage current

Larger resistance
Weaker signal

Larger resistance
Lower voltage

Nearer cells
Process variations

DRAM Researches[前沿研究]

• Sharing/sensing timing reduction[读取时延]
− Optimize DRAM internal structures [CHARM’ISCA13, TL-

DRAM’HPCA13, etc]
− Utilize existing timing margins [NUAT’HPCA14, AL-DRAM’HPCA15, etc]

• DRAM restore studies[恢复时延]
− Identify the restore scaling issue [Co-arch’MEM14, tWR’Patent15, etc]
− Reduce restore timings [AL-DRAM’HPCA15, MCR’ISCA15, RT’HPCA16]

• Memory-based approximate computing[近似计算]
− Skip DRAM refresh [Flikker’ASPLOS11, Alloc’CASES15, etc]
− Restore [DrMP’PACT17]

14

DRAM Researches (cont’d)
• Nowadays DRAMs are worst-case determined
• Examples:

− Refresh: only very few rows need to be refreshed at the worst-
case rate

− Timings: overall timing constraints are determined by the worst
one

• Idea: use common-case instead

15

chip0 chip1

bank0

bank1

bank0

bank1

22
23
18
19

bank0

20
24
16
17

bank1

16
18
20
23

bank0

19
17
24
22

bank1

rank0

24

bank0

24

bank1

Refresh Issues[刷新问题]

• With higher DRAM capacity, more time will be spent on
refresh operations, greatly blocking normal reads/writes
• With further scaled DRAMs, more cells need to be

refreshed at likely higher rates than today
• Overheads on both performance and energy

16

Emerging Memory[新型存储]

17

NVM[非易失性存储]

• Numerous emerging memory candidates
− Many fall between NAND and DRAM

• Pros and cons
− Non-volatility with fraction of DRAM cost/bit
− Ideal for large memory systems
− Slower access and limited lifetime

18

Latency

DRAM NAND3D Xpoint

Endurance

Volatility

Relative Cost

New Memory

Low High

Future Memory System[未来存储系统]

• Demands[需求]
− Low latency
− Large size
− High bandwidth
− Low power/energy

• Hybrid memory[混合]
− DRAM + emerging

• Abstracted interface[抽象]
− Hide device characteristics

• Changing processor-
memory relationship[存算]

− Processor-centric to
memory-centric

19

CPU

PCH SATA
SSD

NAND
Flash

NVMe
SSD

NAND
Flash

DRAM

NVDIMM
NAND
FlashDRAM

3D XPoint™

DDR
DDR

DDR/PCIe

PCIe

SATA

SATA

Lower
R/W

Latency

Higher
Bandwidth

Higher
Endurance

Lower
cost

per bit Disk

NDP/PIM[近内存/存内计算]

• Near data processing
− Minimize data movement by computing at the most

appropriate location in the hierarchy
− In NDP, computation can be performed right at the data’s home,

either in caches, main memory, or persistent storage

• Processing-in-memory
− Do computation inside the memory

20

https://cseweb.ucsd.edu//~swanson/papers/IEEEMicro2014WONDP.pdf

https://cseweb.ucsd.edu/~swanson/papers/IEEEMicro2014WONDP.pdf

Memory Dependability[可靠性]

• Memory is susceptible to cosmic rays
• Soft errors: dynamic/transient errors

− Detected and fixed by error correcting codes (ECC)
• Hard errors: permanent errors

− Use sparse rows to replace defective rows
• Chip-level errors

− Chipkill: a RAID-like error recovery technique
• Stuck-at errors

− May use data-dependent sparing
• Endurance problems
• Cross-talk (bit-line & word-line)
• Read/write disturbance

21
Number of memory errors per hour for multi-bit corruptions

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

https://upcommons.upc.edu/bitstream/handle/2117/96529/Unprotected%20Computing.pdf

Storage Class Memory (SCM)
• An era of very big, PB-level memory pools
• The big memory pooling is made possible by the compute

express link (CXL)
• CXL is a standard for linking memory bus devices

together: CPUs, GPUs, and memory (and a few other
more exotic things like TPUs and DPUs).

22
https://www.computeexpresslink.org/

https://www.computeexpresslink.org/

To Further Optimize Cache[优化缓存]

• Average memory access time (AMAT) = (hit-rate * hit-
latency) + (miss-rate * miss-latency)

• Basic requirements
− Hit latency
− Miss rate
− Miss penalty

• Two more requirements
− Cache bandwidth
− Power consumption

23

Advanced Cache Optimizations[优化]

• Reducing the hit time[缩短命中时延]
− Small and simple first-level caches
− Way prediction

• Increasing cache bandwidth[提高缓存带宽]
− Pipelined caches
− Multibanked caches
− Non-blocking caches

• Reducing miss penalty[降低不命中开销]
− Critical word first
− Merging write buffers

• Reducing miss rate[降低不命中率]
− Compiler optimizations

24

parallelism

#1: Small & Simple 1st-level Cache[小]

• To reduce hit time and power
• The L1 cache size has recently increased either slightly or

not at all
− Limited size: pressure of both a fast clock cycle and power

limitations encourages small sizes
− Lower level of associativity: reduce both hit time and power

25

#2: Way Prediction[预测]

• To reduce hit time
− Add extra bits in the cache to predict the way of the next cache

access
p Block predictor bits

− Multiplexor is set early to select the desired block
p And in that clock cycle, only a single tag comparison is performed in

parallel with reading the cache data
− A miss results in checking the other blocks for matches in the

next clock cycle
• Miss-prediction gives longer hit time

− Prediction accuracy
p > 90% for two-way
p > 80% for four-way
p I-cache has better accuracy than D-cache

− First used on MIPS R10000 in mid-90s,
now used on ARM Cortex-A8

26

#3: Pipelined[流水线]

• To increase bandwidth
− Primarily target at L1, where access bandwidth constrains

instruction throughput
− Multibanks are also used in L2/L3, but mainly for power

• Pipelining L1
− Stages

p Address calculation
p disambiguation (decoder)
p cache access (parallel tag and data)
p result drive (aligner)

− Allows a higher clock cycle, at the cost of increased latency
− Examples

p Pentium: 1 cycle, Pentium Pro – III: 2, Pentium 4 – Core i7: 4 cycles

27

#3: Multibanked[多单元]

• Organize cache as independent banks to support
simultaneous access

− ARM Cortex-A8 supports 1-4 banks for L2
− Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address
− Banking works best when the accesses naturally spread across

banks

• Multiple banks also are a way to reduce power
consumption in both caches and DRAM

28

#4: Nonblocking Caches[非阻塞]

• To increase cache bandwidth
• Allow hits before previous misses complete

− “Hit under miss”
− “Hit under multiple miss”

• Nontrivial to implement the nonblocking
− Arbitrating contention between hits and misses; tracking outstanding misses
− Miss Status Handling Registers (MSHRs)

29

Blocking

Hit under miss

#5: Critical Word First & Early Restart
• To reduce miss penalty
• Processor normally needs just one word of the block at a

time
− Don’t wait for the full block to be loaded before sending the

requested word and restarting the processor
• Critical word first[关键字优先]

− Request missed word from memory first
− Send it to the processor as soon as it arrives

• Early restart[提早重启]
− Request words in normal order
− Send missed work to the processor as soon as it arrives

• Effectiveness depends on block size and likelihood of
another access to the portion of the block that has not
yet been fetched

30

#6: Merging Write Buffers[写缓冲合并]

• To reduce miss penalty
• When storing to a block that is already pending in the

write buffer, update write buffer
• Advantages

− Multiword writes are usually faster than writes one word a time
− Reduces stalls due to full write buffer

• Do not apply to I/O addresses[I/O设备]

31

No write buffering

Write buffering

#7: Compiler Optimizations[编译]

• To reduce miss rate, without any hardware changes
• Loop interchange

− Swap nested loops to access memory in sequential order
− Improving spatial locality

p Maximizes use of data in a cache block before they are discarded

32

/* Before */
for (j = 0; j < 100; j = j + 1)

for (i = 0; i < 5000; i = i + 1)
x[i][j] = 2 * x[i][j];

/* After */
for (i = 0; j < 5000; i = i + 1)

for (j = 0; j < 100; j = j + 1)
x[i][j] = 2 * x[i][j];

#7: Compiler Optimizations (cont’d)
• Blocking to reduce cache misses

− Instead of accessing entire rows or columns, subdivide matrices
into blocks

− Exploits a combination of spatial and temporal locality, and can
even help register allocation

33

#8: Hardware Prefetching[硬件预取]

• To reduce miss penalty or miss rate
• Prefetch items before the processor requests them

− Instruction: fetches two blocks on miss, the requested and the
next consecutive

− Data: prefetch predicted blocks

34

#8: Hardware Prefetching (cont’d)
• What to prefetch? (prefetch useful data)

− Next sequential
− Stride
− General pattern

• Where to place?
− Directly into caches
− External buffers

• When to prefetch?
− Prefetched data should be timely provided

• Prefetching relies on extra memory bandwidth
− Should not interfere much with demand accesses
− Otherwise it hurts performance

35

#9: Compiler-controlled Prefetching
• To reduce miss penalty or miss rate
• Compiler inserts prefetch instructions to request data

before the processor needs it
• Two flavors

− Register prefetch: loads the value into a register
− Cache prefetch: loads data into the cache

• Typically nonfaulting prefetches
− Simply turns into no-ops if they would normally result in an

exception

• Compilers must take care to gain performance
− Issuing prefetch instructions incurs an instruction overhead

36

#10: Use HBM[高带宽内存]

• Use HBM to build massive L4 caches, size of 128MB - 1GB
• Tags of HBM cache

− 64B block: 1GB L4 requires 94MB of tags
p Issue: cannot place in on-chip caches

− 4KB block: 1GB L4 requires <1MB tag
p Issues: inefficient use of huge blocks, and high transfer overhead

• One approach (L-H, MICRO’2011):
− Each SDRAM row is a block index
− Each row contains set of tags and 29 data segments
− 29-set associative

37

2KB row buffer = 32 cache lines
Data lines (29-ways)Tags

Miss
Map

Summary

38

