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作业 – HW2
• https://xianweiz.github.io/teach/dcs5637/f2021.html
•截止时间：11.21, 23:59
•提交方式：超算习堂

−注册（ https://easyhpc.net/ ）
−加入课程（https://easyhpc.net/course/133）
−作业列表：HW2

2

https://xianweiz.github.io/teach/dcs5637/f2021.html
https://easyhpc.net/
https://easyhpc.net/course/133


Quiz Questions
• Q1: list 3+ design goals in computer architecture?

• Q2: typical pipeline stages of an instruction?

• Q3: list at least three techniques to improve ILP?

• Q4: usage of register renaming?

• Q5: briefly explain ’memory wall’

• Q6: sort GDDR6/DDR4/HBM2 in bandwidth (lower first)
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Instruction fetch, inst decode, execute, mem access, write back

Pipelining, scheduling, unrolling, prediction, multi issue, …

Functional, high-perf, reliable, low-cost, low-power, …

Remove name dependences to improve ILP

Memory is far slower than processors

DDR4 (64x2.6Gb/s) < GDDR6 (256x14Gb/s) < HBM2 (4096x1Gb/s)



Serial Computing[串行计算]

• Traditionally, software has been written for serial 
computation

− To be run on a single computer having a single CPU
− A problem is broken into a discrete series of instructions
− Instructions are executed one after another
− Only one instruction may execute at any moment
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Parallel Computing[并行计算]

• Simultaneously use multiple compute resources to solve a 
computational problem

− Typically in high-performance computing (HPC)

• HPC focuses on performance
− To solve biggest possible problems in the least possible time
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Types of Parallel Computing[并行类型]

• Instruction level parallelism[指令级
并行]

− Classic RISC pipeline (fetch, …, write 
back)

• Task parallelism[任务级并行]
− Different operations are performed 

concurrently
− Task parallelism is achieved when the 

processors execute on the same or 
different data

• Data parallelism[数据级并行]
− Distribution of data across different 

parallel computing nodes
− Data parallelism is achieved when 

each processor performs the same 
task on different pieces of the data
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Taxonomy[分类]

• Flynn‘s Taxonomy (1966) is widely used to classify parallel 
computers

− Distinguishes multi-processor computer architectures according 
to how they can be classified along the two independent 
dimensions of Instruction Stream and Data Stream

− Each of these dimensions can have only one of two possible 
states: Single or Multiple

• 4 possible classifications according to Flynn
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Taxonomy (cont.)
• SISD: single instruction, single data

− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high 

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW
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SIMD: vs. superscalar and VLIW[对比]

• SIMD performs the same operation on multiple data 
elements with one single instruction

− Data-level parallelism

• Superscalar dynamically issues multi insts per clock[超标量]
− Instruction level parallelism (ILP)

• VLIW receives long instruction words, each comprising a 
field (or opcode) for each execution unit[超长指令字]

− Instruction level parallelism (ILP)
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SIMD: Vector Processors[向量处理器]

• Vector processor (or array processor)[处理器]
− CPU that implements an instruction set containing instructions 

that operate on one-dimensional arrays (vectors)

• People use vector processing in many areas[应用]
− Scientific computing
− Multimedia processing (compression, graphics, image 

processing, …)

• Instruction sets[指令集]
− MMX
− SSE
− AVX
− NEON
− …
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SIMD: MMX
• MMX is officially a meaningless initialism trademarked by 

Intel; unofficially,
− MultiMedia eXtension
− Multiple Math eXtension
− Matrix Math eXtension

• Introduced on the “Pentium with MMX Technology” in 
1998
• SIMD computation processes multiple data in parallel 

with a single instruction
− MMX gives 2 x 32-bit computations at once
− MMX defined 8 “new” 64-bit integer registers (mm0 ~ mm7)
− 3DNow! was the AMD extension of MMX
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SIMD: SSE
• Streaming SIMD Extensions

− SSE defines 8 new 128-bit registers (xmm0 ~ xmm7) for FP32 
computations

p Since each register is 128-bit long, we can store total 4 FP32 numbers
− 4 simultaneous 32-bit computations
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SIMD: AVX
• Advanced Vector Extensions (AVX) 

− A new-256 bit instruction set extension to SSE
p 16-registers available in x86-64
p Registers renamed from XMMi to YMMi

− Yet a proposed extension is AVX-512
p A 512-bit extension to the 256-bit XMM
p Supported in from Intel's Xeon Phi x200 (Knights Landing) and Skylake-

SP, and onwards
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SIMD: NEON
• ARM Advanced SIMD Extensions

− Introduced by ARM in 2004 to accelerate media and signal 
processing

p NEON can for example execute MP3 decoding on CPUs running at 10 
MHz

− 128-bit SIMD Extension for the ARMv7 & ARMv8
p Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit or 64-bit
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Data Parallelism: SIMD
• Single Instruction Multiple Data

− Split identical, independent work over multiple execution units 
(lanes)

− More efficient: eliminate redundant fetch/decode
− One Thread + Data Parallel Ops à Single PC, single register file
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Data Parallelism: SIMT
• Single Instruction Multiple Thread

− Split identical, independent work over multiple threads 
− Multiple Threads + Scalar Ops à One PC, multiple register files
− ≈ SIMD + multithreading
− Each thread has its own registers
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Execution Model[执行模型]
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MIMD

Multiple 
independent threads

SIMD

One thread with wide 
execution datapath

SIMT

Multiple lockstep
threads

Multicore CPUs x86 SSE/AVX GPUs

• SI(MD/MT)
− Broadcasting the same instruction to multiple execution units
− Replicate the execution units, but they all share the same 

fetch/decode hardware

SIMD and SIMT are used interchangeably

https://courses.cs.washington.edu/courses/cse471/13sp/lectures/GPUsStudents.pdf
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SIMD: GPU vs. CPU/Traditional
• Traditional SIMD contains a single thread

− Programming model is SIMD (no threads)
− SW needs to know vector length
− ISA contains vector/SIMD instructions

• GPU SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all 
threads)

− Each thread can be treated individually (i.e., placed in a 
different warp) à programming model not SIMD

p SW does not need to know vector length
p Enables memory and branch latency tolerance

− ISA is scalar à vector instructions formed dynamically

• Essentially, it is SPMD programming model implemented 
on SIMD hardware  
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Example: add two vectors
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C:
for(i=0;i<n;++i) a[i]=b[i]+c[i];

Matlab:
a=b+c;

SIMD:
void add(uint32_t *a, uint32_t *b, uint32_t *c, int n) {

for(int i=0; i<n; i+=4) {
//compute c[i], c[i+1], c[i+2], c[i+3]
uint32x4_t a4 = vld1q_u32(a+i);
uint32x4_t b4 = vld1q_u32(b+i);
uint32x4_t c4 = vaddq_u32(a4,b4);
vst1q_u32(c+i,c4);

}
}

SIMT:
__global__ void add(float *a, float *b, float *c) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
a[i]=b[i]+c[i]; //no loop!

}



SMT[多线程]

• SMT: simultaneous multithreading
− Instructions from multiple threads issued on the same cycle

p Use register renaming and dynamic scheduling facility of multi-issue 
architecture

− Needs more hardware support
p Register files, PC’s for each thread
p Support to sort out which threads to get results from which instructions
p Thread scheduling, context switching

− Maximize utilization of execution units
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SMT vs. SIMT[比较]

• SMT: maximize the chances of an instruction to be issued 
without having to switch to another thread

− superscalar execution
− out-of-order execution
− register renaming
− branch prediction
− speculative execution
− cache hierarchy
− speculative prefetching

• SIMT: keep massive threads to achieve high throughput
− Hardware becomes simpler and cheaper
− No OoO, no prefetching, …
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CPU vs. GPU[比较]

• CPU
− Low compute density
− Complex control logic
− Fewer cores optimized 

for serial operations
p Fewer execution units 

(ALUs)
p Higher clock speeds

− Low latency tolerance

23

• GPU
− High compute density
− Simple control logic
− 1000s cores optimized 

for parallel operations
p Many parallel execution 

units (ALUs)
p Lower clock speeds

− High latency tolerance



GPU Overview
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GPU Overview(cont.)
• A GPU contains several largely independent processors 

called "Streaming Multiprocessors" (SMs)
− Each SM hosts multiple "cores", and each "core" runs a thread 
− For instance, Fermi(2010) has up to 16 SMs w/ 32 cores per SM

p So up to 512 threads can run in parallel

• Some SIMT threads are grouped to execute in lockstep
− One warp contains 32 threads

• Multiple ’groups’ can be executed simultaneously
− For Fermi, up to 48 warps per SM
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A100: 128 SMs w/ 64 cores per SM 



GPU Evolution[演进]

• Arcade boards and display adapters (1951 - 1995)
− ATI: founded in 1985
− Nvidia: founded in 1993

• 3D revolution (1995 – 2006)
− Term “graphics processing unit”: 1999

p Nvidia GeForce 256
− Rivalry between ATI and Nvidia

• General purpose GPU (2006 - present)
− AI , data analytics, scientific computing, graphics rendering, etc
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GPGPU History[简史]
Year AMD Nvidia Note

2006 AMD acquired ATI Tesla (CUDA Launch) Unified shader model

2007 TeraScale Unified shader uarch

2009 TeraScale 2

2010 TeraScale 3 Fermi / GTX580 First compute GPU

2011 GCN 1.0 / gfx6 VLIW à SIMD

2012 Kepler / GTX680 CUDA cores: 512 à 1536

2013 GCN 2.0 / gfx7

2014 GCN 3.0 / gfx8 Maxwell / GTX980 Energy efficiency

2016 GCN 4.0 / gfx8 Pascal / GTX1080

2017 GCN 5.0 / gfx9 Volta / GV100 First chip with Tensor cores

2018 GCN 5.1 / gfx9 Turing / RTX2080

2019 RDNA 1.0 / gfx10

2020 RDNA 2.0 / gfx10
CDNA 1.0 / gfx9

Ampere / RTX3090 First chip with Matrix cores
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TFLOPS[衡量算力]

• A100 Tensor Core GPU
− 108 SMs

p GA100 Full GPU with 128 SMs 
− Base clock: 1065 MHz
− Boost clock: 1410 MHz
− Performance

p FP64: 9.7 TFLOPS
p FP32: 19.5 TFLOPS

• Calculate TFLOPS
− FP64: 1410 MHz x (32 x 2) 

ops/clock x 108 SMs
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GPUs in Supercomputer[超算中的GPU]

• Exascale: 50 GFLOPS/Watt (goal) à 51.7 GFLOPS/Watt
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Frontier: 1.5 EFLOPS, How???[E级超算]

• Per node[单节点]
− Custom EPYC HPC-optimized CPU

p ”zen 3” milan w/ 64-core
− Four Instinct GPUs

p CDNA MI200 w/ 256 CUs
• Full-rate FP64 (128 ops/clock/CU)

• 9000+ nodes[整体系统]
− CPU: 9000 x 4 TFLOPS/CPU = 36 PFLOPS
− GPU: 9000 x 4 x 42.2 TFLOPS/GPU = 1519 PFLOPS

p Per GPU: 128 ops/clock x 1.5G x 220 = 42.2 TFLOPS
− GPU provides 97.7% computation power

p 1519/(1519+36)
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OLCF spock training: AMD hardware and software, 05/2021,
https://www.olcf.ornl.gov/wp-content/uploads/2021/04/Spock-MI100-Update-5.20.21.pdf

https://www.hpcwire.com/2021/03/15/amd-launches-epyc-milan-with-19-skus-for-hpc-enterprise-and-hyperscale/

A100: 9.75 TFLOPS
MI100: 11.54 TFLOPS
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天河超算
• 2009，天河-1

− CPU + ATI GPU
p 2 * Xeon E5540/E5450, 1 ATI Radeon HD 4870 X2 (TeraScale)

−实测/峰值563.1T/1206.2T FLOPS
− 2009.11 TOP500第五

• 2010，天河-1A
− CPU + Nvidia GPU

p 2 * Intel Xeon X5670, 1 Nvidia Tesla M2050 (Fermi)
p 2048 Galaxy "FT-1000" 1 GHz 8-core processors

−实测/峰值2.566P/4.7P FLOPS
− 2010.11 TOP500第一
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Tianhe-1, https://www.top500.org/system/176546/
Tianhe-1A, https://top500.org/system/176929/
Tianhe-1A, http://blog.zorinaq.com/introducing-tianhe-1a-4702-tflops-of-gpu-power-made-in-china-and/

240 GFLOPS

515 GFLOPS
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GPU Programming Model[编程模型]

• GPU is viewed as a compute device that
− Is a coprocessor to CPU (host)
− Has its own main memory called device memory
− Runs many threads in parallel

• Data-parallel parts of an application are executed on the 
device as kernels, which run in parallel on many threads
• CPU thread vs. GPU thread

− GPU threads are very lightweight
− A few vs. thousands for full efficiency
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Thread Organization[线程组织]

• A kernel is executed as a grid of 
thread blocks
• A thread block is a batch of 

threads that can cooperate with 
each other by

− Synchronizing their execution
− Efficiently sharing data through 

low-latency shared memory

• The grid and its associated 
blocks are just organizational 
constructs

− The threads are the things that do 
the work
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GPU Programming Choices[编程选择]

• CUDA – Compute Unified Device Architecture
− Developed by Nvidia – proprietary
− First serious GPGPU language/environment

• OpenCL – Open Computing Language
− From makers of OpenGL
− Wide industry support: AMD, Apple, Qualcomm,                    

Nvidia (begrudgingly), etc

• HIP - Heterogeneous-compute Interface for Portability
− Owned by AMD
− A C++ runtime API and kernel language that allows developers 

to create portable applications that can run on AMD’s 
accelerators as well as CUDA devices
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HIP
• Is open-source
• Provides an API for an application to leverage GPU 

acceleration for both AMD and Nvidia devices
• Syntactically similar to CUDA. Most CUDA API calls can be 

converted in place: cuda --hipify--> hip
• Supports a strong subset of CUDA runtime functionality
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HIP vs. CUDA
• Kernel declare

− Syntactically the same

• APIs

• Kernel launch
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cudaMalloc(&d_x, N*sizeof(double)); 

cudaMemcpy(d_x, x, N*sizeof(double),
cudaMemcpyHostToDevice); 

cudaDeviceSynchronize(); 

hipMalloc(&d_x, N*sizeof(double)); 

hipMemcpy(d_x, x, N*sizeof(double),
hipMemcpyHostToDevice); 

hipDeviceSynchronize(); 

some_kernel<<<gridsize, blocksize,
shared_mem_size, stream>>>
(arg0, arg1, ...); 

hipLaunchKernelGGL(some_kernel,
gridsize, blocksize,
shared_mem_size, stream,
arg0, arg1, ...); 



Kernel Dimensions[维度]

• Built-in variables
− blockDim.x: the size of the block (#threads in the block)
− gridDim.x: the size of the grid (#blocks)
− blockIdx.x: the index of the block within the grid
− threadIdx.x: the index of the thread within the block

• Example: N threads in total, 256 threads per block
− blockDimx.x = 256
− #blocks = N / 256 à gridDim.x
− blockIdx.x = [0, 1, …, N/256-1]
− threadIdx.x = [0, 1, …, 255]
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Example: Kernel Declare[声明]

• A kernel is declared with the __global__ attribute
− Kernels should be declared void
− All pointers passed to kernels must point to device memory

• All threads execute the kernel’s body “simultaneously”
− Each thread uses its unique thread and block IDs to compute a 

global ID
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Example: Kernel Launch[启动]

• Kernels are launched from host

• Analogous to CUDA kernel launch syntax:
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Example: Memory Allocation[内存分配]

• The host instructs the device to allocate memory and 
records a pointer to device memory
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Example: Memory Copy[数据传输]

• The host queues memory transfers
− hipMemcpyHostToDevice
− hipMemcpyDeviceToHost
− hipMemcpyDeviceToDevice
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Example: Putting Together
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Device Management[管理]

• Host can query number of devices visible to system:

• Host tells the runtime to issue instructions to a particular
device:

• Host can query what device is currently selected:

• The host can also query a device’s properties:
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int numDevices = 0;
hipGetDeviceCount(&numDevices);

int deviceID = 0;
hipSetDevice(deviceID);

hipGetDevice(&deviceID);

hipDeviceProp_t props;
hipGetDeviceProperties(&props, deviceID);

hipDeviceProp_t is a struct that contains useful fields like the device’s name, total 
VRAM, clock speed, and GCN architecture. 


