NNNNN

Dt Elg | 3¢ 368 B3t ST s

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

" Advanced Computer
Architecture

Bt HHLIE R &

3!

i

§§7L s

DLP and GPU (2)
AINING

l—a
|—a

5

xianweiz.github.io

DCS5367, 11/16/2021

https://xianweiz.github.io/

Review Questions

* SIMD?

Single instruction, multiple data

e SIMD vs. SIMT?
Threads to execute scalar operations. CPU: SIMD, GPU: SIMT

* GPU is of high latency tolerance?
Massive threads to schedule and work on

* Explain SM or CU.

The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

* Relationship of kernel and grid?
Threads to execute the kernel are organized as a grid

* CUDA: myKernel<<<blocks, threads, 0, 0>>>(...)?
Grid dimensions, i.e., how many blocks to run the kernel grid

Example: Putting Together

#include “hip/hip_runtime.h”
int main() {

int N = 1000;

size t Nbytes = N*sizeof(double);

double *h_a
double *d_a

NULL;

(double*) malloc(Nbytes); //host memory

HIP_CHECK(hiEMallocS&d a, Nbytes));

__global__ void myKernel(int N, double *d_a) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
if (i<N) {

d_a[i] *= 2.90;

HIP_CHECK(hipMemcpy(d_a, h_a, Nbytes, hipMemcpyHostToDevice)); //copy data to device

hipLaunchKernelGGL(myKernel, dim3((N+256-1)/256,1,1), dim3(256,1,1), @, ©, N, d_a); //Launch kernel

HIP_CHECK(hipGetLastError());

HIP_CHECK(hipMemcpy(h_a, d_a, Nbytes, hipMemcpyDeviceToHost))

free(h_a);
HIP_CHECK(hipFree(d_a));

() *
(2) o ﬂ?
SUN YAT-SENﬁIERSITY

//free host memory

//free device memory

#define HIP_CHECK(command) {
hipError_t status = command;

if (status!=hipSuccess) {

<< hipGetErrorString(status)
<< std::endl;

std::abort(); } }

\
\
\
std::cerr << “Error: HIP reports ” \
\
\

Device Management

* Host can query number of devices visible to system:

int numDevices = 0;
hipGetDeviceCount(&numDevices);

* Host tells the runtime to issue instructions to a particular

device:
int devicelD = 0;

hipSetDevice(devicelD);
* Host can query what device is currently selected:

hipGetDevice(&devicelD);

* The host can also query a device’s properties:

hipDeviceProp t props;
hipGetDeviceProperties(&props, devicelD);

hipDeviceProp t is a struct that contains useful fields like the device’s name, total
VRAM, clock speed, and GCN architecture.

ﬂrlﬁi

Map Kernel to Hardware[g

* Blocks are dynamically scheduled onto compute units
(CUs)
— All threads in a block execute on the same CU
— Threads in block share LDS memory and L1 cache

e Blocks are further divided into wavefronts
— A group of 32 or 64 threads
— Wavefronts execute on SIMD units

CUDA thread CUDA core

CUDA streaming
CUDA thread block Multiprocessor(SM)

= [

CUDA-capable GPU

h‘ﬂ

CPU-GPU

* CPU communicates kernels to GPUs via PCle
- Kernel code object is filled into a dispatch packet

- Next, the packet is placed into a queue, which is allocated by
runtime and associated with a GPU

- The GPU is then signaled to process packets from the queue
- When kernel is finished, CPU is notified with an interrupt

VR
TIP: gl . GPU
Q »
Task b
Q
— CPU *
Command &
o | c
== | GPUDriver |+—PCle | £
o
Packet 2
—_— g
- o
=
Kernel £
e
(@]
(@]
N

o h‘ﬂ

GPU Structure[P2 #)

* Command processor (CP)
— Forefront hardware component of a GPU to receive kernels

* Shader processor inputs (SPI)
— Receives WGs from the CP

e Compute unit (CU)
- Fundamental compute component

() GPU
E > Command Processor)
= CU0 CUO
2 cu1l cul
CPU z . SPI SPI .
2 : (SEO) (SE1) :
9 C : :
% .
E cuU0 cuo
2 9o SPI SPI cul
£ : (SE3) (SE2) :
= . .
S CU15 CU15
_/

/ h‘ﬂ

Compute Unit

e Scheduler[iE 28]

- Manage the wavefronts execution among the SIMDs

* Compute[itH]
— SIMD: for vector processing (a.k.a., vector units, VALUS)[7] &=
yn
o Is of 16 lanes in GCN, thus simultaneously executing a single operation
among 16 threads

o Has its own PC and instruction buffer (IB) for 10 WFs

— Scalar unit[#r = #.Jt]
o Shared by all threads in each WF, accessed on a per-WF level
o Used for control flow, pointer arithmetic, loading a common value, etc.

T Scheduler 1)
T
(s | | | |],

¢ Dhige

Compute Unit (cont.)

* GPRs[i H] % 17 4]
— VGPR: vector general purpose register file

o 4x 64KB (256KB total)

o A maximum of 256 total registers per SIMD lane — each register is 64x 4-
byte entries

— SGPR: scalar general purpose register file
o 12.5KB per CU

* L1 cache: 16KB[—ZZZ1F]

* LDS: local data share (or, shared memory)[i FIL =147 #]
— Enables data share between threads of a block

T Scheduler 1)
T
(s | | | |],

’ B

Compute Unit (cont.)

e At each clock, waves on 1 SIMD unit are considered for
execution (Round Robin scheduling among SIMDs)

* Each wave is assigned to one SIMD16, up to 10 waves per
SIMD16 (math: 4 x 10 x 64 = 2560 threads)

* Each SIMD16 issues 1 instruction every 4 cycles

* Vector instructions throughput is 1 every 4 cycles

1 every cycle in AMD next
salu @ sivpic @ sivbpic 1 sivDi6 l SIMD16 : L
generation and Nvidia

Cycle 0 1 2 3 4 5 6 7

TuX 2 10 ﬂiﬁﬁii

Instruction Execut

ION[#54 AT

* Instruction buffer (IB): eac

n cycle, the 10 wvs of the

selected SIMD compete for instruction fetch (oldest wins)

* Instruction arbiter (IA): arbitrates multi wvs which want
to execute the same type of instructions

* Instruction executor (IE): multiple execution units

running in parallel; only on

e instruction of each type can

be issued at a time per SIMD

| PC | wv1 inst buffer

nst Fetch Arbiter (10 wvs
| |

[

$Qo (Cuo)
/ Instruction Buffer \ / Instruction Arbiter \ /Iﬁstruction Executo
| SIMD-3
| SIMD-2 ()
| SIMD-1 —— SALU (V] saw
n
—— sMEM

SIMD-0 D
| pc | wvo inst buffer H-HHLITT]
[
|

| PC | wv9 inst buffer I _:ﬂ}_

—— VALU

g
ELH © SIMDO-3
<<

—— VMEM

—— Ids/gds

LDS & GDS LDS/GDS

Sort Insts by Type (10 wv.

—— export SPI/SX

—— misc

CC
\
-

I-$ (shared by 4 CUs)

1 h‘ﬂ

Nvidia SM
e e Ao

Thread CUDA core Streaming processor / SIMD lane
Warp/wavefront SM sub-partition SIMD unit

Block/workgroup SM Compute unit

All threads GPU device GPU device

MIO Datapath MIO Scheduler
(648/clk) (1 warp Inst / 2 clk)

-

L2$
L1 Cache LDS
Scalar Unit SIMDO SIVID1 SIvID2 SIMD3

\l SGPR | [| | VGPR

Scheduler

Terminology[AiE]

Thread Block (TB) /
Cooperative Thread Array
(CTA)

Warp

Thread
GPU Processing Cluster (GPC)

Texture Processing Cluster
(TPC)

Stream Multiprocessor (SM)
/ Multiprocessor

Sub-core/partition

Stream Processor (SP) /
CUDA Core / FPxx Core

(P
Ytuxs
! 'UN YAT-SEN UNIVERSITY

Workgroup (WG)

Wavefront
(wave/WF/WV)

Worlk-item(WI1)/thread
Shader Engine (SE)

Shader Array (SH)

Compute Unit (CU)

SIMD

Stream Processor /
SIMD Lane / VALU Lane

13

Basic workload unit assigned to an SM or CU.
Each kernel is split into multiple CTAs, and the
#CTAs is controlled by the application. Typically,
hw limits 1024 threads per block.

A group of threads (e.g., 32 for NV, 64 for AMD)
executing in lockstep (i.e., run the same inst,
follow the same control-flow path).

#WFs/WG is chosen by developers.

A basic element to be processed.

A collection of CUs organized into one or two
SHs.

A group made up of several SMs or CUs.

Fundamental unit of computation, replicated
multiple times on a GPU.

A group of cores to execute one warp/wave.

A parallel execution lane comprising an SM or
CU.

Software Stack[%]

 Radeon Open Compute platform (ROCm)
— AMD’s open-source software stack

* Multiple layers
— Language runtime: language-specific runtime
— ROCr: user-level language-agnostic runtime
— ROCt: user-space driver talking to the lower-level ROCK

— ROCk: kernel driver to initialize and register with CP the queues
allocated by runtimes

Compiler Frontend
Device LLVM HostLLVM |
Compiler Compiler :
¢ ¢ —P) Language Runtime API

GCN Target CPU Target ' user | ROCr: System Runtime API
space !
i ROCt: Thunk, User-space Driver i
CPU COde ::____::__:____::__::::::__::__::::::__::__:::_‘
ikernel ROCk: Kernel Fusion Driver |
GPU Code R T d

AMDGPU Kernel Driver]G
P -

ROCm

2020: AMD ROCm 4.0

Complete Exascale Solution for ML/HPC

s
— = N
o
— -1 -1-T-
- =N 3 N
vt s ==
S O
e

https://rocmdocs.amd.com/en/latest/

@ tuxs 15 Dyl

https://rocmdocs.amd.com/en/latest/

CUDA

* During regular execution, a CUDA application process will
be launched by the user

* The application communicates directly with the CUDA

user-mode driver, and potentially with the CUDA runtime
library

Host
Application

User \ |
. CUDA Libraries ii
|
i

4 |

CUDA Runtime

CUDA Driver

aum s s s o

-

16 ‘;E .
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html 24 L

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Detailed Kernel Launch[{E% & zh48)

* SO: application creates user-mode queues (i.e., streams)
— The queue is associated with a specific GPU

* S1: application places kernel dispatch packets into the queue
— Done with user-level memory writes in ROCm (no kernel drivers)
— Dependencies should be specified

e S2: rings the doorbell to notify the CP of the GPU device

e S3: CP reads the packet, understands the kernel parameters
e S4: CP sends WGs to SPIs, which then launches WFs to CUs

e S5: when final WF is finished, CP sends a completion signal
specified in the kernel dispatch packet

* S6: next, receives an interrupt to pass the completion
signal to runtime, which further completes the kernel in
_application code

»lﬁ‘i

Concurrency[3: k]

. %PU is mainly known for its data-level parallelism[%#& 2%
F17]
— Thousands of cores, with thousands of outstanding threads

- Simultaneously computing the same function on lots of data
elements

e Still need task-level parallelism[{F4% %% 3471
— GPU is underutilized by a single application process
- Doing two or more completely different tasks in parallel
- Similar to the task parallelism that is found in multithreaded

CPU applications = e
* Techniques sl
— Multi-process service (MPS) e
— Streams L

2 ; ,
" Block (1, 1)

18
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

GPU Context| EFx]

* A GPU program starts by creating a context
— Either explicitly using the driver APl or implicitly using the
runtime API, for a specific GPU

* The context encapsulates all the hardware resources
necessary for the program to be able to manage memory
and launch work on that GPU

e Each process has a unique context[M:—]
— Only a single context can be active on a device at a time

— Multiple processes (e.g. MPI) on a single GPU could not operate
concurrently

NG
https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service Overview.pdf ﬂﬂﬁ“

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

MPS[£ #E 72 Ak 5%]

* MPS: multiple-process service, a software layer that sits
between the driver and your application
— Routes all CUDA calls through a single context
- Multiple processes can execute concurrently

* Allows multiple processes to share a single GPU context,
to utilize Hyper-Q capabilities
- Hardware feature to construct multiple connections to GPU
- Hyper-Q allows kernels to be processed concurrently on the

same GPU ? P q ?
,,_1,, ,,|..., I
JDA MULTI-PROCESS SERVICE j (_jcwonmunsocessseawceconmat])
e

(cu CPU Processes
CPU Processes (N GPU Execut ion
=2 + ~—, GPU Execution l ’ ‘ l ‘ |
| ‘ ‘ ‘ l ‘ \" VOLTA MULTI-PROCESS SERVICE |
==l == e === =1} L |] == =
--I:._- li 3
T Y1]) o] (] : =
o] e] P il A R 4 MAEE
) T — | /3 - L
| e [— p—1 p— =S | w—i1 = ==
ke Pascal GP100) --
=t

Volta GV100
(. .

20 I .@
https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Privanka-Sah.pdf AV E

https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

Hyper-Q[i&ERA %)

* GPU's with Hyper-Q have a concurrent scheduler to
schedule work from work queues belonging to a single
CUDA context

* Work launched to the compute engine from work queues
belonging to the same CUDA context can execute
concurrently on the GPU

NVIDIA HYPER-Q

FERMI KEPLER
1 MPI* TASK AT A TIME 32 SIMULTANEOUS MP1 TASKS

M
i/
H
T 1LIEL T

] — 3

Code Example

cudaMalloc (&dev1, size) ;
double* host1 = (double*) malloc (&host1, size) ;

cudaMemcpy (dev1, host1, size, H2D

Completely synchronous

cudaMemcpy (host4, dev4, size, D2H)

cudaMalloc (&dev1, size) ;
(&host1, size) ;

cudaMemcpy” (dev1, host1, size, H2D,

kernel2 <<< grid, block, 0,

kernel3 <<< grid, block, 0, e Potentially overlapped
cudaMemcpy (host4, dev4, size, D2H, :

some_CPU_method ();

NG
https://developer.download.nvidia.cn/CUDA/training /StreamsAndConcurrencyWebinar.pdf »r '(G =

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Stream il

* All work on the GPU is launched either explicitly into a
CUDA stream, or implicitly using a default stream

* A stream is a software abstraction that represents a
sequence of commands to be executed in order
- May be a mix of kernels, copies, and other commands

e CUDA streams are aliased onto one or more ‘work
queues’ on the GPU by the driver

- Work queues are hardware resources that represent an in-order
sequence of the subset of commands in a stream

Stream 2

XY 2 ~ X--Y--Z
MPS Client/
Process 2 Stream 1

X, = Y' oy Z, xl_Y)_Zn

Stream 2 Multiple Hardware Work Queues/Channel -ia .
PIWN”

Synchronous/Asynchronous|@: /5 4]

* All GPU API calls are either synchronous or asynchronous
w.r.t the host
- Synchronous: enqueue work and wait for completion
— Asynchronous: enqueue work and return immediately

— a.k.a., blocking vs. non-blocking[[}H Z& /4E[H 2]

* The kernel launch function, , IS non-
blocking for the host

— After sending instructions/data, the host continues immediately
while the device executes the kernel

- If you know the kernel will take some time, this is a good area
to do some work on the host

cudaMemcpy (dev1, host1, size, H2D) ;
LGOI kernel2 <<<grid, block >>> (..., dev2, ...);

overlap kemel3 <<< grid, block >>> (..., dev3, ...);

cudaMemcpy (host4, dev4, size, D2H) ; D ,G
WAL g

Synchronous/Asynchronous(cont.)

* However, is blocking

— The data pointed to in the arguments can be accessed/modified
after the function returns

* The non-blocking version is

— Like , this function takes an argument of
type hipStream _t
— It is not safe to access/modify the arguments of
without some sort of synchronization.

cudaMemcpy/ (dev1, host1, size, H2D,)

: kernel2 <<< grid, block, 0, >>> (....dev2, ...):
Potentially | I N) >>> (..., dev3, ...):
overlap cudaMemcpyAsync (host4, dev4, size, D2H, k-

some_CPU_method ();

»lﬁ‘i

Streams[£ i)

* A stream is a queue of device work
— Host places work in the queue and continues on immediately
— Device schedules work from streams when resources are free

e Operations are placed within a stream
- e.g. Kernel launches, memory copies

e Default stream
- Unless otherwise specified all calls are placed into a default
stream (“Stream 0” or “NULL stream”)

o Stream O has special sync rules: synchronous with all streams
o Operations in stream 0 cannot overlap other streams

hipLaunchKernelGGL (myKernell, dim3(1), dim3(256), 0,| 9, |256, d_al);
hipLaunchKernelGGL (myKernel2, dim3(1), dim3(256), 0,| 0, |256, d _a2);
hipLaunchKernelGGL (myKernel3, dim3(1), dim3(256), 0,] 9, |[256, d_a3);
hipLaunchKernelGGL (myKernel4, dim3(1), dim3(256), 0,| 9,]256, d_a4);

NULL Stream myKernell myKernel2 myKernel3 myKernel4

&R
) 206 1@@-
N l’yﬁmﬁgpsj/on—demand.gputechconf.com/gtc/2014/presenta’éons/54158—cuda—streams—best—practices—common—pitfalls.pder! “

https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

Streams (cont.)

* Operations within the same stream are ordered (FIFO)
and cannot overlap

* Operations in different streams are unordered and can
overlap

NULL Stream myKernell myKernel2 myKernel3 myKernel4

hipLaunchKernelGGL (myKernell, dim3(1), dim3(256), ©,] streaml,| 256, d_al);
hipLaunchKernelGGL(myKernel2, dim3(1), dim3(256), O, stream2,| 256, d_a2);
hipLaunchKernelGGL(myKernel3, dim3(1), dim3(256), ©,] stream3,| 256, d_a3);
hipLaunchKernelGGL(myKerneld4, dim3(1), dim3(256), 0, stream4d,| 256, d _a4);
NULL Stream

Stream1 myKernell

Stream?2 myKernel2

Stream3 myKernel3

Stream4 myKernel4

()
(&) F b X % 27
N ! SUN YAT-SEN UNIVERSITY

Synchronization[[F

e How do we coordinate execution on device streams with
host execution?

- Need some synchronization points.
;o
— Heavy-duty sync point

— Blocks host until all work in all device streams has reported
complete

;/

— Blocks host until all work in stream has reported complete

* Can a stream synchronize with another stream?
— For that we need ‘Events’

28 .[i
v https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD GPU HIP training 20190906.pdf PIWNE

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events[E44]

* Provide a mechanism to signal when operations have
occurred in a stream
— Useful for profiling and synchronization
— Events have a boolean state: Occurred (default), Not Occurred

° A object is created on a device via:

* We queue an event into a stream:
— The event records what work is currently enqueued in the
stream

— When the stream’s execution reaches the event, the event is
considered ‘complete’

* At the end of the app, event objects should be destroyed:

' 0
NG
vty https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD GPU HIP training 20190906.pdf PIWN©

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events (cont.)

’
— Block host until event reports complete

— Only a synchronization point with respect to the stream where
event was enqueued

’
— Returns the time in ms between when two events, startEvent
and endEvent, completed
— Can be very useful for timing kernels/memcpys
’
- Non-blocking for host

— Instructs all future work submitted to stream to wait until event
reports complete

- Primary way we enforce an ‘ordering’ between tasks in separate
streams

‘.[3
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD GPU HIP training 20190906.pdf PIWNE

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Example

- Enqueue an event into stream, whose state is set to occurred
when reaching the front of the stream

— The stream cannot proceed until the event occurs

cudaEvent _t event;
cudaEventCreate (&event); /] create event

cudaMemcpyAsync (d_in, in, size, H2D, stream1); // 1) H2D copy of new input
cudaEventRecord (event, stream1); // record event

cudaMemcpyAsync (out, d_out, size, D2H, stream?2); // 2) D2H copy of previous result

cudaStreamWaitEvent (stream2, event); // wait for event in stream1
kernel <<<, , , stream2 >>> (d_in, d_out); // 3) must wait for 1 and 2

asynchronousCPUmethod (...) I/l Async GPU method

NG
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf Wy '(G E

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Task Graph[{£4E)

e CPU launches each kernel to GPU

— When kernel runtime is short, execution time is dominated by

CPU launch cost

CPU cost

— A sequence of operations, connected by dependencies

Launch A || Launch B || Launch C || Launch D || Launch E

Launch
Latency

\
O
\ 4
O
\ J
m

B

4
>
\

time

. (O

time saved

! Graph 7 Launch Graph

4
>
w
O
o
m

32
https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013 CUDA Graphs.pdf

CUDA graph launch submits all work at once, reducing

CPU
Time
GPU
Time

:'. ‘; V)
Unﬂ L

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example

 Capture CUDA stream work into a graph[3£ T-iit4

Ll
(T
[=)

// Start by initiating stream capture

cudaStreamBeginCapture(&streaml);

// Build stream work as usual
A<<< ..., streaml >>>();

cudaEventRecord(el, streaml);

B<<< ..., streaml >>>();
cudaStreamWaitEvent(stream2, el);
Cc<< ..., stream2 >>>();

cudakEventRecord(e2, stream2);

cudaStreamWaitEvent(streaml, e2);

D<<< ..., streaml >>>(); stream stream2 graph

// Now convert the stream to a graph

cudaStreamEndCapture(streaml, &graph);

o5 #
(D) X & 33 54l
SUN YAT-SEN UNIVERSITY https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013 CUDA Graphs.pdf U" z

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example (cont.)

* Create graphs directly[B #:# 2]

I

— Map graph-based workflows directly into CUDA

® (©) —r
(o)

Graph from
framework

@ tars

'AT-SEN UNIVERSITY

// Define graph of work + dependencies

cudaGraphCreate(&graph);

cudaGraphAddNode(graph, kernel_a, {}, ...);
cudaGraphAddNode(graph, kernel b, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel c, { kernel_a }, ...);
cudaGraphAddNode(graph, kernel_d, { kernel_b, kernel c },

// Instantiate graph and apply optimizations

cudaGraphInstantiate(&instance, graph);
// Launch executable graph 100 times

for(int i=0; i<100; i++)

cudaGraphLaunch(instance, stream);

34

.e);

GPU Memory Hierarchy[f£#E %)

* CU internal memories: registers, caches, ...
 Shared L2, off-chip HBM/GDDR
* RDNA fundamentally reorganizes the architecture

©
g,o o & BEUN NCUY FEL FEY L EY) el | €U cu CGu cu cu CL [EUs cU L CY o = 0o = T
> &3) = = = £ = £ =
x S B ; B WECH NECH NETH WECH NECH NETH WECH | WECH WSCH WSO BECH ERCH WECH NECH WK c e < L
oc s b o© ~ a ~ 5 [a
; % E g 1$ and KS$ I$ and K$ I$ and K$ I$ and K$ § E '§ E § E‘
o v 5 3 wv = v 5 3 wv
8 "5 (7] v wv
Scalable Data Fabric
HBM2
o
o
™~ @ >
oy ¢ & WGP WGP WGP WGP WGP g 2 5 B
— 4 - ‘ot = =
E S R 10$ | 1andks | 10$| |08 ISandKs | L0$| | 10$| 1Sandks | L0$| |10S| 1Sandks |L0s| |10$| 1Sandks (105 = | & £ £
< (I g2l 2 8
A - © T | 2 S b
O 7} c ©»v w»n
2 ©° -
L2$
Scalable Data Fabric
GDDR6

N SUN AT-SEN ONIVERSITY https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture public.pdf sl

https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

Memory Hierarchy

* Register: per-thread, deallocate when the thread done
e Cache: instruction, data, RO constant, RO texture
* Global memory: per-GPU, shared across kernels

* Shared memory (SMEM): per-block, deallocate when the
block done (and re-allocated to other blocks)

e Constant memory (CMEM): part of device memory, use
dedicated per-SM constant cache; shared across kernels

SM-0 SM-1 SM-N l T Private to Every SM | t

[I S I R I - § [s
| Registers | I Registers | e I Registers | Dl : Private to Every P g Block : |
?)) { | I 64 KiB Regist] [12 kiB LO instruction cache] |

| [|
I_L1J| SMEM | L1 |L1|| SMEM] D SN, S — T —— |
|| |
Yy h r

		128KiB L1 data cache/Shared memory} [2 KiB L1 constant cache]
	T	
	[>64 KiB L1.5 constant cache/128 KiB L1 instruction cache J	
- T f st
| L2 | | |
i ' [6144 KiB L2 data cache/L2 constant cache/L2 instruction cache J { TLB] [
| |
Global Memory (DRAM) | | :] i |
| |
| |
| |

Y it e R e s e . i ety e ket i i e i Y e e s el

V100 Memory Hierarchy[f#fi = %)

* 80 SMs
— Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
— Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
— Per SM: 64K 32-bit Register File, 128KB SMEM+L1

* 6MB L2 cache, 16GB 900GB/s HBM2
—Shared by all SMs
— For comparison: 20MB RF, 10MB SMEM+L1

SM-0 SM-1 SM-N

| Registers | Registers | Registers I

o 00 t 3
I—Lf_H SMEM | ﬁf—ll SMEM | ||_1| SMEM l

| L2 |
]

[Global Memory (DRAM)]

37 h‘ﬂ

SMEM & CMEM

* SMEM benefits compared to DRAM:
— 20-40x lower latency
- ~15x higher bandwidth
— Access granularity: 4B vs. 32B
e Constant memory (CMEM):
— Total constant data size limited to 64KB
— Throughput: 4B/clock per SM

— Can be used directly in arithmetic insts (saving regs)

SM-0 SM-1 SM-N

I Registers | | Registers @ | Registers I
i)))))
L1 | SMEM | L1 H SMEM | L1 | SMEM] 14 TB/S

| L2 | 2.5 TB/s Read, 1.6 TB/s Write

l .
Global Memory (DRAM) | 900 G B/S b5 ‘lﬂ“

Resource Limits[# 5 R i)

* Threads[Z:FE]
- Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)
o Up to 1024 threads/TB

o TBs should be of at least 2 warps rid
(Registe rS[—%_‘:ﬁ%%] I ¢Shared mem%ry | | ¢Sh:ared memc%ry l
— Max: 64K regs/TB, 255 regs/thread | g | T ST i
(| Per SM total 64K regs |Registers| lRegz sssss | [Regiszers] IRegi sssss |
o If exceeding 255 regs, then spilling happens ') — :
¢ Memory[ﬁ/ﬁ/%] Constant memory

- Max 96KB SMEM per SM (default 48KB)

* 100% occupancy[£i##k]
— 2048 threads/SM, 64K regs/SM —> 32 regs/thread (128B)
— 2048 threads/SM, 96KB smem/SM - 32B/thread

‘\“‘ IYA’%S‘EN&E:% 39 ﬂ 7 ;G &

Memory Space Specitiers[##i% = a4 &)

* Variable memory space specifiers denote the memory
location on the device of a variable

e device_:declares a variable that resides on the
device, by default
— Resides in global memory space
— Has the lifetime of the CUDA context in which it is created

— Is accessible from all the threads within the grid and from the
host through the runtime library

e constant__: declares a variable that resides in constant
memory space

— Optionally used together with __device

e shared_:declares a variable that resides in shared
memory space
— Has the lifetime of the block,

*— Is only accessible from all the threads within the block
@Tx2

‘.[3
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#variable-memory-space-specifiers 24

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Memory Space Specifiers (cont.)

* managed__:declares a variable that can be referenced
from both device and host code
— optionally used together with __ device
— Has the lifetime of an application

* An automatic variable declared in device code without
any of the _device , shared and constant
specifiers generally resides in a register

- However in some cases the compiler might choose to place it in
local memory, which can hurt performance

__device__int globalVar; global grid application
__shared__ int sharedVar; shared block block
__constant___ int constantVar; constant grid application
int localVar; register thread thread

’“‘ int localArray[10]; local thread thread ,,,'G

Local Memory['AHh’ 4 77]

* Name refers to memory where registers and other
thread-data is spilled
— Usually when one runs out of SM resources
— “Local” because each thread has its own private area

* Use case 1: register spilling[& 77 2% 15 H]
- Fermi hardware limit is 63 registers per thread (255 now)

— Programmer can specify lower registers/thread limits:
o To increase occupancy (hnumber of concurrently running threads)

o -maxrregcount option to nvcc, _ launch_bounds__ () qualifier in the
code

- LMEM is used if the source code exceeds register limit

e Use case 2: arrays declared inside kernels, if compiler
can’t resolve indexing[#% e& %t N %4

— Registers aren’t indexable, so have to be placed in LMEM

NG
https://developer.download.nvidia.com/CUDA/training/register spilling.pdf #r '(G &

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Local Memory (cont.)

* LMEM is not really a memory
— Bytes are actually stored in global memory

— Differences from global memory:
o Addressing is resolved by the compiler
o Stores are cached in L1

* LMEM could hurt performance in two ways:

— Increased memory traffic
— Increased instruction count

* Spilling/LMEM usage isn’t always bad
- LMEM bytes can get contained within L1
o Avoids memory traffic increase

— Additional instructions don’t matter much if code is not
instruction-throughput limited

43
https://developer.download.nvidia.com/CUDA/training/register spilling.pdf

Huﬂ “

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Shared Memory[“3: =" 7745

* A per-block, software managed cache or scratchpad

— Programmer can modify variable declarations with _ shared
to make this variable resident in shared memory
— Compiler creates a copy of the variable for each block

o Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

o This provides an excellent means by which threads within a block can
communicate and collaborate on computations

e CUDA L1 cache and SMEM are unified

* A mechanism is needed to synchronize between threads

— Thread A writes a value to shared memory and we want thread
B to do something with this value

— We can’t have thread B start its work until we know the write
from thread A is complete

‘I
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf ﬂﬂﬁ‘

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)

* One can specify synchronization points
in the kernel by calling __ syncthreads()

 syncthreads() acts as a barrier at
which all threads in the block must
wait before any is allowed to proceed

— Guarantees that every thread in the block

has completed instructions prior to the
__syncthreads() before the hardware will
execute the next inst on any thread

— When the first thread executes the first
instruction after __syncthreads(), every
other thread in the block has also
finished executing up to the
__syncthreads()

Active

f

Waiting‘t

Time

45
http://www.mat.unimi.it/users/sansotte/cuda/CUDA by Example.pdf

--"4-\.{.------------

--“4'...--

M

h‘ﬂ

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Example

__global__ void reverse(double *d_a) {
__shared__ double s_a[256]; //array of doubles, shared in this block

int tid = threadIdx.x;
s_a[tid] = d_a[tid]; //each thread fills one entry

//all wavefronts must reach this point before any wavefront is allowed to continue.
//something is missing here..
__syncthreads();

d_a[tid] = s_a[255-tid]; //write out array in reverse order

)

int main() {

hipLaunchKernelGGL(reverse, dim3(1), dim3(256), @, ©, d_a); //Launch kernel

p-=4
L=
=T

g\#*f ’b K 46 91 ;
:u’:m.mmﬁ https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD GPU HIP training 20190906.pdf L‘i

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Address Coalescing &3]

* Threads in a block are computed a warp at a time (32
threads)

 Global data is read or written in as few transactions as

possible by combining memory access requests into a
single transaction

— This is referred to the device coalescing mem stores and reads

* Every successive 128 bytes can be accessed by a warp (or
32 single precision words)

* Not in successive 128 bytes; more data to read

128 256 257
Address _ 128 256 Address ___

ThreadID o ' : ' : 31 ThreadID o 31
N&e sov var-sex utveRsiTY https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf w7

https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

Unified Memory[%— W 7#]

° Cl assica | mo d e | [Qg\: ;ﬁ%\j;at ﬂ‘U Traditional Developer View
— Allocate memory on host
— Allocate memory on device u
— Copy data from host to device Operate on !
the GPU data -~—
— Copy data back to host Soen GPUMemory

* Unified memory model[4: —#]
— Allocate memory
— Operate on data on GPU Developer View With

Unified Memory
* Unified Memory is a single memory
address space accessible from any
processor in a system
— cudaMalloc() =2 cudaMallocManaged()
— on-demand page migration Unified Memory

(&ﬁ 48 ;‘ gﬂ .
avvs/ j: Y,gs'mﬁm;% NS ‘p]

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Example

int N = 1<<20;
float *x, *y;

// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N#*sizeof(float));
cudaMallocManaged(&y, N#*sizeof(float));

// initialize x and y arrays on the host
for (int i = 0; i < N: i++) {

x[1] = 1:0%;

vidi] = 2.0f;

// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;

add<<<numBlocks, blockSize>>>(N, x, y);

49 Dhige

Extra ...

50

f'. up v
Unﬂ ‘

Address Translation[H il &4 #]

* GMMU: GPU memory management unit

— Last level TLB (LLT)

* IOMMU: maps device-visible virtual addresses to physical

addresses
- Page walk caches (PWC)

Main memory

716 1ass | LLC TPhysical addressesT
AYS Request . LLT ! 7 ~

.. i - IOMMU][MMU
| Device anresses Virtual a?dresses
GPU i S]

MEMORY

Device | : CPU

s D

https://dl.acm.org/doi/pdf/10.1145/3309710

https://dl.acm.org/doi/pdf/10.1145/3309710

Divergence[4r]

* Within a block of threads, the threads are executes in
groups of 32 called a warp

— All threads in a warp do the same thing at the same time

* What happens if different threads in a warp need to do
different things?

— A logical predicate and two predicated instructions = serialized

* Branch divergence is a major cause for performance degr
adation in GPGPUs

if (threadIdx.x < 16) e

{ N p = (threadldx.x < 16);
v if (p) ... A ...
else if (!p) ... B ...

52

End of branch

b

Divergence (cont.)

* Pre-Volta GPUs use a single PC shared amongst all 32
threads of a warp, combined with an active mask that
specifies which threads of the warp are active at any
given time

— Leaves threads that are not executing a branch inactive

* Since Volta, each thread features its own PC, which allows
threads of the same warp to execute different branches
of a divergent section simultaneously

Pre-Volta
Program

councer () (SR AR R AR R R R RR R RA R AR RAREY

and Stack (S)
32 thread warp

5595359555355595559550555035608

32 thread warp with independent scheduling || ’;Eti
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf 4

https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

Two-phase Execution[p]

* Compilation workflow

— Source code =2 virtual
instruction (PTX or HSAIL)

— Virtual inst = real inst (SASS
or GCN)

o NVCC et
* .cu: CUDA source file, : ‘l“”
containing host code and I N e
device functions [(P Generation]
- .ptx: PTX intermediate K T SO
assembly file . ;""'("”"A“;”‘"": """"""""""
2 I tage :
o . é (Cubin Generation)]
* .cubin: CUDA device code g |
binary file (CUBIN) for a 1 F
single GPU architecture b R Boowe

> IR

Multi-chip Module

* Aggregating multiple GPU modules within a single
package, as opposed to a single monolithic die.

* AMD: Chiplet GPUs

- MI200: 220 compute units, 14K streaming cores
- MI1100: 120 compute units, 7680 streaming cores

* Nvidia: Multi-Chip-Module (MCM) GPUs
- Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
— A100: 128 SMs, 8192 CUDA cores

' . | SYSH/O

CCCC ORAM i
GPU GPU
Stacked Module ' Module
DEAM i’ B ORAM acked Stacked
Monolilthic = oA
L : L I MCM
A S GPU
Stacked acked «
ORAM = R = DRAM H\.\' [’ :
' GPU - GPU
Package Module Module

ﬂrlﬁi

High-speed Links[mi#i%]

* GPUs are of high compute capability, being bottlenecked
on data movement

* High-speed interconnect to achieve significantly higher
data movement
— Nvidia: NVLink
— AMD: Infinity Fabric
- Intel: Compute eXpress Link (CXL)

CPU-GPU Systems Connected NVLink Enables Fast Unified Memory Access
via PCl-e between CPU & GPU Memories

(&) F % % 56

