
Advanced Computer
Architecture

高级计算机体系结构

第7讲：DLP and GPU (2)
张献伟

xianweiz.github.io
DCS5367, 11/16/2021

https://xianweiz.github.io/

Review Questions
• SIMD?

• SIMD vs. SIMT?

• GPU is of high latency tolerance?

• Explain SM or CU.

• Relationship of kernel and grid?

• CUDA: myKernel<<<blocks, threads, 0, 0>>>(…)?

2

Threads to execute scalar operations. CPU: SIMD, GPU: SIMT

Massive threads to schedule and work on

The fundamental compute unit to execute GPU tasks, hosting
multiple simple cores to run the threads

Threads to execute the kernel are organized as a grid

Single instruction, multiple data

Grid dimensions, i.e., how many blocks to run the kernel grid

Example: Putting Together

3

Device Management
• Host can query number of devices visible to system:

• Host tells the runtime to issue instructions to a particular
device:

• Host can query what device is currently selected:

• The host can also query a device’s properties:

4

int numDevices = 0;
hipGetDeviceCount(&numDevices);

int deviceID = 0;
hipSetDevice(deviceID);

hipGetDevice(&deviceID);

hipDeviceProp_t props;
hipGetDeviceProperties(&props, deviceID);

hipDeviceProp_t is a struct that contains useful fields like the device’s name, total
VRAM, clock speed, and GCN architecture.

Map Kernel to Hardware[映射]

• Blocks are dynamically scheduled onto compute units
(CUs)

− All threads in a block execute on the same CU
− Threads in block share LDS memory and L1 cache

• Blocks are further divided into wavefronts
− A group of 32 or 64 threads
− Wavefronts execute on SIMD units

5

SM for Nvidia

warp for Nvidia

SIMD lane
(streaming processor)

Compute unit

GPU

SMEM for Nvidia

a.k.a., workgroup

CPU-GPU
• CPU communicates kernels to GPUs via PCIe

− Kernel code object is filled into a dispatch packet
− Next, the packet is placed into a queue, which is allocated by

runtime and associated with a GPU
− The GPU is then signaled to process packets from the queue
− When kernel is finished, CPU is notified with an interrupt

6

Co
m

m
an

d
Q

ue
ue

s (
in

 u
se

r-v
isi

bl
e

m
em

) GPU

GPU Driver

CPU

PCIe

stream for Nvidia

TIP:
Task
==

Command
==

Packet
==

Kernel

GPU Structure[内部架构]

• Command processor (CP)
− Forefront hardware component of a GPU to receive kernels

• Shader processor inputs (SPI)
− Receives WGs from the CP

• Compute unit (CU)
− Fundamental compute component

7

SPI
(SE0)

CU0

.

.

.

CU1

CU15

CU0

.

.

.

CU1

CU15

SPI
(SE1)

SPI
(SE3)

CU0

.

.

.

CU1

CU15

CU0

.

.

.

CU1

CU15

SPI
(SE2)

Command Processor
Co

m
m

an
d

Q
ue

ue
s (

in
 u

se
r-v

isi
bl

e
m

em
) GPU

GPU Driver

CPU

PCIe

Blocks/CTAs for Nvidia

SM for Nvidia

Compute Unit
• Scheduler[调度器]

− Manage the wavefronts execution among the SIMDs

• Compute[计算]
− SIMD: for vector processing (a.k.a., vector units, VALUs)[向量单
元]

p Is of 16 lanes in GCN, thus simultaneously executing a single operation
among 16 threads

p Has its own PC and instruction buffer (IB) for 10 WFs
− Scalar unit[标量单元]

p Shared by all threads in each WF, accessed on a per-WF level
p Used for control flow, pointer arithmetic, loading a common value, etc.

8

Compute Unit (cont.)
• GPRs[通用寄存器]

− VGPR: vector general purpose register file
p 4x 64KB (256KB total)
p A maximum of 256 total registers per SIMD lane – each register is 64x 4-

byte entries
− SGPR: scalar general purpose register file

p 12.5KB per CU

• L1 cache: 16KB[一级缓存]

• LDS: local data share (or, shared memory)[片上共享存储]
− Enables data share between threads of a block
− LDS

9

Compute Unit (cont.)
• At each clock, waves on 1 SIMD unit are considered for

execution (Round Robin scheduling among SIMDs)
• Each wave is assigned to one SIMD16, up to 10 waves per

SIMD16 (math: 4 x 10 x 64 = 2560 threads)
• Each SIMD16 issues 1 instruction every 4 cycles
• Vector instructions throughput is 1 every 4 cycles

10

1 every cycle in AMD next
generation and Nvidia

Instruction Execution[指令执行]

• Instruction buffer (IB): each cycle, the 10 wvs of the
selected SIMD compete for instruction fetch (oldest wins)
• Instruction arbiter (IA): arbitrates multi wvs which want

to execute the same type of instructions
• Instruction executor (IE): multiple execution units

running in parallel; only one instruction of each type can
be issued at a time per SIMD

11

Instruction Executor

SALU

SMEM

VALU

VMEM

LDS & GDS

Export

Internal

Instruction Arbiter

So
rt

 In
st

s b
y

Ty
pe

 (1
0

w
vs

)

In
st

 I
ss

ue
 A

rb
ite

r

Re
so

ur
ce

 C
he

ck

SALU

sMEM

vALU

vMEM

lds/gds

export

misc

Instruction Buffer
SIMD-3

SIMD-2
SIMD-1

SIMD-0
PC wv0 inst buffer

PC wv1 inst buffer

PC wv9 inst buffer

.

.

.

In
st

 F
et

ch
 A

rb
ite

r (
10

 w
vs

)

I-$ (shared by 4 CUs)

SQ0 (CU0)

SGPRs

K-$

SIMD0-3

TA/TD

SPI/SX

LDS/GDS

Nvidia SM

12

Level Nvidia AMD

Thread CUDA core Streaming processor / SIMD lane

Warp/wavefront SM sub-partition SIMD unit

Block/workgroup SM Compute unit

All threads GPU device GPU device

Terminology[术语]

13

Nvidia AMD Note

Thread Block (TB) /
Cooperative Thread Array
(CTA)

Workgroup (WG) Basic workload unit assigned to an SM or CU.
Each kernel is split into multiple CTAs, and the
#CTAs is controlled by the application. Typically,
hw limits 1024 threads per block.

Warp Wavefront
(wave/WF/WV)

A group of threads (e.g., 32 for NV, 64 for AMD)
executing in lockstep (i.e., run the same inst,
follow the same control-flow path).
#WFs/WG is chosen by developers.

Thread Work-item(WI)/thread A basic element to be processed.

GPU Processing Cluster (GPC) Shader Engine (SE) A collection of CUs organized into one or two
SHs.

Texture Processing Cluster
(TPC)

Shader Array (SH) A group made up of several SMs or CUs.

Stream Multiprocessor (SM)
/ Multiprocessor

Compute Unit (CU) Fundamental unit of computation, replicated
multiple times on a GPU.

Sub-core/partition SIMD A group of cores to execute one warp/wave.

Stream Processor (SP) /
CUDA Core / FPxx Core

Stream Processor /
SIMD Lane / VALU Lane

A parallel execution lane comprising an SM or
CU.

Software Stack[软件栈]

• Radeon Open Compute platform (ROCm)
− AMD’s open-source software stack

• Multiple layers
− Language runtime: language-specific runtime
− ROCr: user-level language-agnostic runtime
− ROCt: user-space driver talking to the lower-level ROCk
− ROCk: kernel driver to initialize and register with CP the queues

allocated by runtimes

14

CPU Code

GPU Code

Language Runtime API

ROCr: System Runtime API

ROCt: Thunk, User-space Driver

ROCk: Kernel Fusion Driver

AMDGPU Kernel Driver

user
space

kernel
space

Compiler Frontend

Device LLVM
Compiler

GCN Target

Host LLVM
Compiler

CPU Target

ROCm

15
https://rocmdocs.amd.com/en/latest/

https://rocmdocs.amd.com/en/latest/

CUDA

16
https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

• During regular execution, a CUDA application process will
be launched by the user
• The application communicates directly with the CUDA

user-mode driver, and potentially with the CUDA runtime
library

https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html

Detailed Kernel Launch[任务启动细节]

• S0: application creates user-mode queues (i.e., streams)
− The queue is associated with a specific GPU

• S1: application places kernel dispatch packets into the queue
− Done with user-level memory writes in ROCm (no kernel drivers)
− Dependencies should be specified

• S2: CPU rings the doorbell to notify the CP of the GPU device
• S3: CP reads the packet, understands the kernel parameters
• S4: CP sends WGs to SPIs, which then launches WFs to CUs
• S5: when final WF is finished, CP sends a completion signal

specified in the kernel dispatch packet
• S6: next, CPU receives an interrupt to pass the completion

signal to runtime, which further completes the kernel in
application code

17

Concurrency[并发]

• GPU is mainly known for its data-level parallelism[数据级
并行]

− Thousands of cores, with thousands of outstanding threads
− Simultaneously computing the same function on lots of data

elements
• Still need task-level parallelism[任务级并行]

− GPU is underutilized by a single application process
− Doing two or more completely different tasks in parallel
− Similar to the task parallelism that is found in multithreaded

CPU applications
• Techniques

− Multi-process service (MPS)
− Streams

18
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

GPU Context[上下文]

• A GPU program starts by creating a context
− Either explicitly using the driver API or implicitly using the

runtime API, for a specific GPU

• The context encapsulates all the hardware resources
necessary for the program to be able to manage memory
and launch work on that GPU

• Each process has a unique context[唯一]
− Only a single context can be active on a device at a time
− Multiple processes (e.g. MPI) on a single GPU could not operate

concurrently

19
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

MPS[多进程服务]

• MPS: multiple-process service, a software layer that sits
between the driver and your application

− Routes all CUDA calls through a single context
− Multiple processes can execute concurrently

• Allows multiple processes to share a single GPU context,
to utilize Hyper-Q capabilities

− Hardware feature to construct multiple connections to GPU
− Hyper-Q allows kernels to be processed concurrently on the

same GPU

20
https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

Hyper-Q[超队列]

• GPU's with Hyper-Q have a concurrent scheduler to
schedule work from work queues belonging to a single
CUDA context
• Work launched to the compute engine from work queues

belonging to the same CUDA context can execute
concurrently on the GPU

21

Code Example

22

Completely synchronous

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Potentially overlapped

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Stream[流]

• All work on the GPU is launched either explicitly into a
CUDA stream, or implicitly using a default stream
• A stream is a software abstraction that represents a

sequence of commands to be executed in order
− May be a mix of kernels, copies, and other commands

• CUDA streams are aliased onto one or more ‘work
queues’ on the GPU by the driver

− Work queues are hardware resources that represent an in-order
sequence of the subset of commands in a stream

23

Synchronous/Asynchronous[同步/异步]

• All GPU API calls are either synchronous or asynchronous
w.r.t the host

− Synchronous: enqueue work and wait for completion
− Asynchronous: enqueue work and return immediately
− a.k.a., blocking vs. non-blocking[阻塞/非阻塞]

• The kernel launch function, hipLaunchKernelGGL, is non-
blocking for the host

− After sending instructions/data, the host continues immediately
while the device executes the kernel

− If you know the kernel will take some time, this is a good area
to do some work on the host

24

Potentially
overlap

Synchronous/Asynchronous(cont.)
• However, hipMemcpy is blocking

− The data pointed to in the arguments can be accessed/modified
after the function returns

• The non-blocking version is hipMemcpyAsync
− hipMemcpyAsync(d_a, h_a, Nbytes, hipMemcpyHostToDevice,

stream);
− Like hipLaunchKernelGGL, this function takes an argument of

type hipStream_t
− It is not safe to access/modify the arguments of

hipMemcpyAsync without some sort of synchronization.

25

Potentially
overlap

Streams[多流]

• A stream is a queue of device work
− Host places work in the queue and continues on immediately
− Device schedules work from streams when resources are free

• Operations are placed within a stream
− e.g. Kernel launches, memory copies

• Default stream
− Unless otherwise specified all calls are placed into a default

stream (“Stream 0” or “NULL stream”)
p Stream 0 has special sync rules: synchronous with all streams
p Operations in stream 0 cannot overlap other streams

26
https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

https://on-demand.gputechconf.com/gtc/2014/presentations/S4158-cuda-streams-best-practices-common-pitfalls.pdf

Streams (cont.)
• Operations within the same stream are ordered (FIFO)

and cannot overlap
• Operations in different streams are unordered and can

overlap

27

Synchronization[同步]

• How do we coordinate execution on device streams with
host execution?

− Need some synchronization points.

• hipDeviceSynchronize(); / cudaDeviceSynchronize()
− Heavy-duty sync point
− Blocks host until all work in all device streams has reported

complete

• hipStreamSynchronize(stream); / cudaStreamSynchronize
(stream)

− Blocks host until all work in stream has reported complete

• Can a stream synchronize with another stream?
− For that we need ‘Events’

28
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events[事件]

• Provide a mechanism to signal when operations have
occurred in a stream

− Useful for profiling and synchronization
− Events have a boolean state: Occurred (default), Not Occurred

• A hipEvent_t object is created on a device via:
− hipEvent_t event;
− hipEventCreate(&event);

• We queue an event into a stream:
− hipEventRecord(event, stream);
− The event records what work is currently enqueued in the

stream
− When the stream’s execution reaches the event, the event is

considered ‘complete’
• At the end of the app, event objects should be destroyed:

− hipEventDestroy(event);
29

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Events (cont.)
• hipEventSynchronize(event);

− Block host until event reports complete
− Only a synchronization point with respect to the stream where

event was enqueued
• hipEventElapsedTime(&time, startEvent, endEvent);

− Returns the time in ms between when two events, startEvent
and endEvent, completed

− Can be very useful for timing kernels/memcpys
• hipStreamWaitEvent(stream, event);

− Non-blocking for host
− Instructs all future work submitted to stream to wait until event

reports complete
− Primary way we enforce an ‘ordering’ between tasks in separate

streams

30
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Example
• cudaEventRecord(&event, stream)

− Enqueue an event into stream, whose state is set to occurred
when reaching the front of the stream

• cudaStreamWaitEvent(stream, event)
− The stream cannot proceed until the event occurs

31
https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

https://developer.download.nvidia.cn/CUDA/training/StreamsAndConcurrencyWebinar.pdf

Task Graph[任务图]

• CPU launches each kernel to GPU
− When kernel runtime is short, execution time is dominated by

CPU launch cost

• CUDA graph launch submits all work at once, reducing
CPU cost

− A sequence of operations, connected by dependencies

32
https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example
• Capture CUDA stream work into a graph[基于流构建]

33
https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2021/10/013_CUDA_Graphs.pdf

Example (cont.)
• Create graphs directly[直接构建]

− Map graph-based workflows directly into CUDA

34

GPU Memory Hierarchy[存储层级]

35
https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

• CU internal memories: registers, caches, …
• Shared L2, off-chip HBM/GDDR
• RDNA fundamentally reorganizes the architecture

https://gpuopen.com/wp-content/uploads/2019/08/RDNA_Architecture_public.pdf

Memory Hierarchy
• Register: per-thread, deallocate when the thread done
• Cache: instruction, data, RO constant, RO texture
• Global memory: per-GPU, shared across kernels
• Shared memory (SMEM): per-block, deallocate when the

block done (and re-allocated to other blocks)
• Constant memory (CMEM): part of device memory, use

dedicated per-SM constant cache; shared across kernels

36

LDS for AMD GPU

V100 Memory Hierarchy[存储层级]

• 80 SMs
− Cores per SM: 64 INT32, 64 FP32, 32 FP64, 8 Tensor
− Peak TFLOPS: 15.7 FP32, 7.8 FP64, 125 Tensor
− Per SM: 64K 32-bit Register File, 128KB SMEM+L1

• 6MB L2 cache, 16GB 900GB/s HBM2
− Shared by all SMs
− For comparison: 20MB RF, 10MB SMEM+L1

37

SMEM & CMEM
• SMEM benefits compared to DRAM:

− 20-40x lower latency
− ~15x higher bandwidth
− Access granularity: 4B vs. 32B

• Constant memory (CMEM):
− Total constant data size limited to 64KB
− Throughput: 4B/clock per SM
− Can be used directly in arithmetic insts (saving regs)

38

14 TB/s

2.5 TB/s Read, 1.6 TB/s Write

900 GB/s

Resource Limits[资源限制]

• Threads[线程]
− Max per SM: 32 TBs, 64 Warps (i.e., 2048 threads)

p Up to 1024 threads/TB
p TBs should be of at least 2 warps

• Registers[寄存器]
− Max: 64K regs/TB, 255 regs/thread

p Per SM: total 64K regs
p If exceeding 255 regs, then spilling happens

• Memory[存储]
− Max 96KB SMEM per SM (default 48KB)

• 100% occupancy[若满载]
− 2048 threads/SM, 64K regs/SM à 32 regs/thread (128B)
− 2048 threads/SM, 96KB smem/SM à 32B/thread

39

Memory Space Specifiers[存储空间指定]
• Variable memory space specifiers denote the memory

location on the device of a variable
• __device__: declares a variable that resides on the

device, by default
− Resides in global memory space
− Has the lifetime of the CUDA context in which it is created
− Is accessible from all the threads within the grid and from the

host through the runtime library
• __constant__: declares a variable that resides in constant

memory space
− Optionally used together with __device__

• __shared__: declares a variable that resides in shared
memory space

− Has the lifetime of the block,
− Is only accessible from all the threads within the block

40
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#variable-memory-space-specifiers

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Memory Space Specifiers (cont.)
• __managed__: declares a variable that can be referenced

from both device and host code
− optionally used together with __device__
− Has the lifetime of an application

• An automatic variable declared in device code without
any of the __device__, __shared__ and __constant__
specifiers generally resides in a register

− However in some cases the compiler might choose to place it in
local memory, which can hurt performance

41

Variable declaration Memory Scope Lifetime

__device__ int globalVar; global grid application

__shared__ int sharedVar; shared block block

__constant__ int constantVar; constant grid application

int localVar; register thread thread

int localArray[10]; local thread thread

Local Memory[’本地’内存]

• Name refers to memory where registers and other
thread-data is spilled

− Usually when one runs out of SM resources
− “Local” because each thread has its own private area

• Use case 1: register spilling[寄存器溢出]
− Fermi hardware limit is 63 registers per thread (255 now)
− Programmer can specify lower registers/thread limits:

p To increase occupancy (number of concurrently running threads)
p -maxrregcount option to nvcc, __launch_bounds__() qualifier in the

code
− LMEM is used if the source code exceeds register limit

• Use case 2: arrays declared inside kernels, if compiler
can’t resolve indexing[核函数内数组]

− Registers aren’t indexable, so have to be placed in LMEM

42
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Local Memory (cont.)
• LMEM is not really a memory

− Bytes are actually stored in global memory
− Differences from global memory:

p Addressing is resolved by the compiler
p Stores are cached in L1

• LMEM could hurt performance in two ways:
− Increased memory traffic
− Increased instruction count

• Spilling/LMEM usage isn’t always bad
− LMEM bytes can get contained within L1

p Avoids memory traffic increase
− Additional instructions don’t matter much if code is not

instruction-throughput limited

43
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf

Shared Memory[“共享”存储]

• A per-block, software managed cache or scratchpad
− Programmer can modify variable declarations with __shared__

to make this variable resident in shared memory
− Compiler creates a copy of the variable for each block

p Every thread in that block shares the memory, but threads cannot see
or modify the copy of this variable that is seen within other blocks

p This provides an excellent means by which threads within a block can
communicate and collaborate on computations

• CUDA L1 cache and SMEM are unified
− cudaDeviceSetCacheConfig(enum cudaFuncCache)

• A mechanism is needed to synchronize between threads
− Thread A writes a value to shared memory and we want thread

B to do something with this value
− We can’t have thread B start its work until we know the write

from thread A is complete

44
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Shared Memory (cont.)
• One can specify synchronization points

in the kernel by calling __syncthreads()
• __syncthreads() acts as a barrier at

which all threads in the block must
wait before any is allowed to proceed

− Guarantees that every thread in the block
has completed instructions prior to the
__syncthreads() before the hardware will
execute the next inst on any thread

− When the first thread executes the first
instruction after __syncthreads(), every
other thread in the block has also
finished executing up to the
__syncthreads()

45
http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Time

http://www.mat.unimi.it/users/sansotte/cuda/CUDA_by_Example.pdf

Example

46
https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

https://www.olcf.ornl.gov/wp-content/uploads/2019/09/AMD_GPU_HIP_training_20190906.pdf

Address Coalescing[地址合并]

• Threads in a block are computed a warp at a time (32
threads)
• Global data is read or written in as few transactions as

possible by combining memory access requests into a
single transaction

− This is referred to the device coalescing mem stores and reads

• Every successive 128 bytes can be accessed by a warp (or
32 single precision words)
• Not in successive 128 bytes; more data to read

47
https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

https://www.ce.jhu.edu/dalrymple/classes/602/Class13.pdf

Unified Memory[统一内存]

• Classical model[经典模型]
− Allocate memory on host
− Allocate memory on device
− Copy data from host to device Operate on

the GPU data
− Copy data back to host

• Unified memory model[统一模型]
− Allocate memory
− Operate on data on GPU

• Unified Memory is a single memory
address space accessible from any
processor in a system

− cudaMalloc() à cudaMallocManaged()
− on-demand page migration

48
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

Example

49

50

Extra …

Address Translation[地址转换]

• GMMU: GPU memory management unit
− Last level TLB (LLT)

• IOMMU: maps device-visible virtual addresses to physical
addresses

− Page walk caches (PWC)

51
https://dl.acm.org/doi/pdf/10.1145/3309710

https://dl.acm.org/doi/pdf/10.1145/3309710

Divergence[分支]

• Within a block of threads, the threads are executes in
groups of 32 called a warp

− All threads in a warp do the same thing at the same time

• What happens if different threads in a warp need to do
different things?

− A logical predicate and two predicated instructions à serialized

• Branch divergence is a major cause for performance degr
adation in GPGPUs

52

p = (threadIdx.x < 16);
if (p) … A …
if (!p) … B …

Divergence (cont.)
• Pre-Volta GPUs use a single PC shared amongst all 32

threads of a warp, combined with an active mask that
specifies which threads of the warp are active at any
given time

− Leaves threads that are not executing a branch inactive

• Since Volta, each thread features its own PC, which allows
threads of the same warp to execute different branches
of a divergent section simultaneously

53
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

Two-phase Execution[两段式]

• Compilation workflow
− Source code à virtual

instruction (PTX or HSAIL)
− Virtual inst à real inst (SASS

or GCN)

• .cu: CUDA source file,
containing host code and
device functions
• .ptx: PTX intermediate

assembly file
• .cubin: CUDA device code

binary file (CUBIN) for a
single GPU architecture

54

main() {
…
for(i=0;i<N;++i) {
}
…

}

IL
(HSAIL,

PTX)
ISACompiler Finalizer

Multi-chip Module
• Aggregating multiple GPU modules within a single

package, as opposed to a single monolithic die.
• AMD: Chiplet GPUs

− MI200: 220 compute units, 14K streaming cores
− MI100: 120 compute units, 7680 streaming cores

• Nvidia: Multi-Chip-Module (MCM) GPUs
− Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
− A100: 128 SMs, 8192 CUDA cores

55

High-speed Links[高速连接]

• GPUs are of high compute capability, being bottlenecked
on data movement
• High-speed interconnect to achieve significantly higher

data movement
− Nvidia: NVLink
− AMD: Infinity Fabric
− Intel: Compute eXpress Link (CXL)

56

