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Overview

* What is profile tool ?
* Why we need profile tool ?

* How to use nvprof ?
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What is profile tool ?

* A profiler can be applied to an individual method or at the
scale of a module or program, to identify performance
bottlenecks by making long-running code obvious.

e A profiler can be used to understand code from a timing point
of view, with the objective of optimizing it to handle various
runtime conditions or various loads.

— Wikipedia [1]
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What is profile tool ?

Classification of profile tool:

 Hardware-based: [Z T 1#i 4]

- rely on hardware performance counters to grant users the access to low-level
activities, such as nvprof[2], rocprof[3] ...

e Software-based: [3&£ T & 4]

- by leveraging binary rewriters or performance monitoring units and debug registers
available only in CPU/GPU architectures, such as Intel Pin[4], debuggers GDBJ[5],
NVBit[6], SASSI[7] ...

e Compiler-based: [2& T Zm 1% a5]
- by adding instrumentation while compiling, such as CUDAAdvisor[8], CUDA Flux[9] ...
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What is profile tool ?

Classification of profile tool:
er‘(\ead More

o Hardware-based: [J T-figif] \owe > transpareng

- rely on hardware performance counters to grant users the access to low-level
activities, such as nvprof[2], rocprof[3] ...

o Software-based: [Z T & fF]

- by leveraging binary rewriters or performance monitoring units and debug registers
available only in CPU architectures, such as Intel Pin[4], debuggers GDB[5], NVBiIt[6],
SASSI[7] ...

« Compiler-based: [3& T Zr 15 23]
- by adding instrumentation while compiling, such as CUDAAdvisor[8], CUDA Flux[9] ...
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Overview

* Why we need profile tool ? &
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Why we need profile tool ?

When | finish my code: &
When | find my code takes a long time to finish: & @

And it consumes very few system resources: &

- top/htop/nvidia-smi ...

PROFILE TOOL!
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Why we need profile tool ?

Program analysis tools are extremely important for understanding program
behavior.

Computer architects need such toqls/’gg evaluate how well programs will
perform on new architectures. [Xf T+ H ALK 2R 4541 = ]

Software writers need tools to analyze their programs and identify critical
sections of code. [XT 4 2mfE N\ 7]

Compiler writers often use such tools to find out how well their instruction
scheduling or branch prediction algorithm is performing...[ X w525 5 1T

]

— ATOM, PLDI, '94
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Why we need profile tool ?

* Fledgling programmer and defective program £
e [dentify limiters and optimization clues <4

e [dentify the most cost-effective optimization 4
* Assess the impact changes %

* Cyclical modification and tuning

 Make full use of machine performance ™
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Overview

* How to use nvprof ? &
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nvprof overview

* The nvprof profiling tool enables you to collect and view profiling
data from the command-line. [3& T iF 2 17]

* Profiling options are provided to nvprof through command-line
options. [1& 1% & ]

* nvprof enables the collection of a timeline of CUDA-related
activities on both CPU and GPU, including kernel execution,
memory transfers, memory set and CUDA API calls and events or

metrics for CUDA kernels. [/ £E CUDAFH < 11 1]

* Profiling results are displayed in the console after the profiling data
is collected, and may also be saved for later viewing by either

nvprof or the Visual Profiler (nvvp). [Zi4h E I H 2]

12 ‘-[i;
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https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Profiling modes

* Four profiling modes [4FE GE 5 #T AR =]

— Summary mode: (default mode)

— GPU-Trace and API-Trace mode: (--print-gpu-trace)
— Event/metric summary mode: (--events/--metrics)

— Event/metrics trace mode: (--aggregate-mode off --events/--metrics)
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(1) Summary mode

e Four profiling modes [4F 14 G | AT #= 1K
— Summary mode: (default mode)

o A single result line for each kernel function and each type of CUDA memory copy/set
performed by the application.

o For each kernel, nvprof outputs the total time of all instances of the kernel or type of
memory copy as well as the average, minimum, and maximum time.

o By default, nvprof also prints a summary of all the CUDA runtime/driver API calls.

— GPU-Trace and API-Trace mode: (--print-gpu-trace)

— Event/metric summary mode: (--events/--metrics)

— Event/metrics trace mode: (--aggregate-mode off --events/--metrics)
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(1) Summary mode

* Four profiling modes [4F£ G2 | HTH< 2]

— Summary mode: (default mode)

$ Invprof matrixMul

[Matrix Multiply Us:

GPU Device O0:

ing CUDA]

- Starting...
==27694== NVPROF is profiling process 27694, command: matrixMul

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...

done

"GeForce GT 640M LE" with compute capability 3.0

Performance= 35.35 GFlop/s, Time= 3.708 msec, Size= 131072000 Ops, WorkgroupSize= 1024
Checking computed result for correctness: OK

Note:

Time (%)
99.94%
0.04%
0.02%

==27964=

Time (%)
49.81%
25.95%
22.23%

1.33%
0.25%
0.11%

For
==27694=
==27694==

peak performance, please refer to the matrixMulCUBLAS example.
Profiling application: matrixMul

[Profiling result:|

Time Calls
1.11524s 301
406.30us 2
248.29us 1]

API calls:

Time Calls
285.17ms 3
148.57ms 11
127.28ms 1]
7.6314ms 301
1.4343ms 3
601.45us i

Avg
3.7051ms
203.15us
248.29us

Avg
95.055ms
148.57ms
127.28ms
25.353us
478.09us
601.45us

Min
3.6928ms
136.13us
248.29us

Min
153 .32us
148.57ms
127 .28ms
23.551us
155.84us
601.45us

Max
3.7174ms
270.18us
248.29%us

Max
284 .86ms
148.57ms
127 .28ms
143.98us
984 .38us
601.45us

Name
void matrixMulCUDA¢int=32>(f
[CUDA memcpy HtoD]
[CUDA memcpy DtoH]

Name

cudaMalloc
cudaEventSynchronize
cudaDeviceReset
cudaLaunch

cudaMemcpy
cudaDeviceSynchronize



(2) GPU/API-Trace mode

* Four profiling modes [4FE GE 5 #T AR =]

— Summary mode: (default mode)

— GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

o GPU-Trace mode provides a timeline of all activities taking place on the GPU in
chronological order.

o Each kernel execution and memory copy/set instance is shown in the output. For each
kernel or memory copy, detailed information such as kernel parameters, shared memory
usage and memory transfer throughput are shown.

— Event/metric summary mode: (--events/--metrics)

— Event/metrics trace mode: (--aggregate-mode off --events/--metrics)
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GPU/API-Trace mode

* Four profiling modes [4F {4 BE & #7745 2]
— GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

$ nvprof |--print-gpu-trace jmatrixMul

==27706== NVPROF is profiling process 27706, command: matrixMul

==27706== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...

GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixaA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done

Performance= 35.36 GFlop/s, Time= 3.707 msec, Size= 131072000 Ops, WorkgroupSize= 1024

Checking computed result for correctness: OK

Note: For peak performance lease refer to the matrixMulCUBLAS example.
==27706==IProfilinq result:l

Start Duration Grid size Block Size
133.81ms 135.78us - -
134.62ms 270.66us - =

134.90ms 3.7037ms (20 10 1) (32 32 1)
float*, float*, int, int) [94]]
138.71ms 3.7011ms (20 10 1) (32 32 1)

float*, float*, int, int) [105]
<...more output...>

1.24341s 3.701lms (20 10 1) (32 32 1)
float*, float*, int, int) [21P1l]
1.24711s 3.7046ms (20 10 1) (32 32 1)

Regs*

29

29

29

29

SSMem*

8.1920KB

8.1920KB

8.1920KB

8.1920KB

float*, float*, int, int) [21987
1.25089s 248.13us - -

DSMem*

0B

0B

0B

0B

threads/block

Size
409.60KB
819.20KB

Throughput
3.0167GB/s
3.0267GB/s

819.20KB

3.3015GB/s

GeForce
GeForce
GeForce

GeForce

GeForce

GeForce

GeForce

Device

GT
GT
GT

GT

GT

GT

GT

640M
640M
640M

640M

640M

640M

640M

Context
1
1
1

1

1

1

1

Stream
2
2
2

2

2

2

2

Name

[CUDA memcpy HtoD]
[CUDA memcpy HtoD]
void matrixMulCUDA

void matrixMulCUDA:

void matrixMulCUDA:

void matrixMulCUDA

kint

Eint

Fint

kint

[CUDA memcpy DtoH]

Regs: Number of registers used per CUDA thread. This number includes registers used internally by the CUDA driver and/or tools and can be more than what the compiler sh

SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.

X B
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(2) GPU/API-Trace mode

* Four profiling modes [4F {4 BE & #7745 2]
— GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

$nvprof| --print-api-trace matrixMul|
==27722== NVPROF is profiling process 27722, command: matrixMul

==27722== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 35.35 GFlop/s, Time= 3.708 msec, Size= 131072000 Ops, Workg
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27722== Profiling result:

Start| Duration [Name

108.38ms| 6.2130us |cuDeviceGetCount

108.42ms 840ns |cuDeviceGet

108.42ms| 22.459us |cuDeviceGetName

108.45ms| 11.782us |cuDeviceTotalMem

108.46ms 945ns |cuDeviceGetAttribute

149.37ms| 23.737us |cudaLaunch (void matrixMulCUDA<int=32>(float*, float

149.39ms| 6.6290us |cudaEventRecord

& [149.40ms| 1.10156s cudaEventSynchronize ;Gu

=/ v &, . .more |output...> N




(3) Event/metric summary mode

* Four profiling modes [4FE GE 5 #T AR =]

— Summary mode: (default mode)

— GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

— Event/metric summary mode: (--events/--metrics)
o To see a list of all available events/metrics on a particular NVIDIA GPU

— Event/metrics trace mode: (--aggregate-mode off --events/--metrics)
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3) Event/metric summary mode

* Four profiling modes [4FE GE 5 #T AR =]

— Event/metric summary mode: (--events/--metrics)

$ nvprof|--events warps_launched,local_load|--metrics ipc matrixMul |
[Matrix Multiply Using CUDA] - Starting...
==6461== NVPROF is profiling process 6461, command: matrixMul

GPU Device 0: "GeForce GTX TITAN" with compute capability 3.5

MatrixA(320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

==6461== Warning: Some kernel(s) will be replayed on device 0 in order to collect all events/metrics.
done

Performance= 6.39 GFlop/s, Time= 20.511 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
==6461== Profiling application: matrixMul
==6461== Profiling result:
==6461== Event result:
Invocations Event Name Min Max Avg
Device "GeForce GTX TITAN (0)"
Kernel: void matrixMulCUDA<int=32>|(float*, float*, float*, int, int)
301 warps_launched 6400 6400 6400
301 local load 0 0 0

==6461== Metric result:

Invocations Metric Name Metric Description Min

Device "GeForce GTX TITAN (0)"
Kernel: void matrixMulCUDA<int=32>([ffloat*, float*, floatf, int, int)

301 ipc Executed IPC 1.282576 1.

@tuxs 2 b
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(4) Event/metric trace mode

* Four profiling modes [4F£ G2 | HTH< 2]

— Summary mode: (default mode)

— GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
— Event/metric summary mode: (--events/--metrics)

— Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

o In event/metric trace mode, event and metric values are shown for each kernel execution.
By default, event and metric values are aggregated across all units in the GPU.

() F X % 21 i
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4) Event/metric trace mode

* Four profiling modes [4FE GE 5 #T AR =]

— Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

$ nvprof |--aggregate-mode off|--events local_load --print-gpu-trace matrixMul
[Matrix Multiply Using CUDA] - Starting...
==6740== NVPROF is profiling process 6740, command: matrixMul

GPU Device 0: "GeForce GTX TITAN" with compute capability 3.5

MatrixA(320,320), MatrixB(640,320)

Computing result using CUDA Kernel...

done

Performance= 16.76 GFlop/s, Time= 7.822 msec, Size= 131072000 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
==6740== Profiling application: matrixMul
==6740== Profiling result:

Device Context Stream Kernel | local load (0) 1local load (1) ...
GeForce GTX TIT 1 7 |[void matrixMulCUDA<i 0 . cee
GeForce GTX TIT 1 7 |void matrixMulCUDA<i 0 (4 oo

<...more output...>

@ 1Furt 22 Dyige
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Profiling controls

* Profiling controls:

— Timeout [iiEH]: -t. A timeout (in seconds) can be provided to nvprof. The
CUDA application being profiled will be killed by nvprof after the timeout.
Profiling result collected before the timeout will be shown.

— Profiling scope [14[#]: --devices <device IDs>, --kernels, --events, --metrics,
--query-events, --query-metrics

~ Multiprocess profiling [2 Z¢#£]: To profile all processes launched by an
application, use the --profile-child-processes option.

@) T mx % 23 o}
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Profiling output

* Output:

— CSV: For each profiling mode, option --csv can be used to generate output in
comma-separated values (CSV) format. The result can be directly imported
to spreadsheet software such as Excel.

— Export/Import: For each profiling mode, option --export-profile can be used
to generate a result file. This file is not human-readable, but can be

imported back to nvprof using the option --import-profile, or into the Visual
Profiler.
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Visual Profiler

= [0] Tesla K40c
=l Context MPS (CUDA)

“ ¥ MemCpy (HtoD) | (e IIIIIIIII | (I IIIlllllll

I MemCpy (DtoH)
[=l Compute

oat const .

5 100.0% Stepl0_c...

Step10 cuda k. ':-\“:‘r'lf’ cuda_kemellint

[# Streams

The frst step in analyzing an indvidual kernel 1s to

datarmina f the performance of the kemnal is

bounded by computation, memory bandwidth, or

instructiorymemery latency The results at night

indicate that the performance of kernel -

"Stepl0_cuda_kemal® is most likely limited by o Stall Reasons
compute, exacubon

dependercy

&y Pedform Compute Analysis ||
The most likely bottleneck to performance for this kemeal s

[compute 50 you should first perform compute analysis to
determine how It is imiting perfarmance

o, Perform Latency Analysis 733013 o

A perform Memory Bandwidth Analysis 202006 co

instruction and memory latency and memary bandwidth are
likely not the primary performance bottlenecks for this

540 G
-
kernel, but you may stll want to perform those analyses

WL 0
| [ coryeranss thend 558, § S |

iy, Rerun Analysis

it you modify the kernel you need to rerun your apphcation
to update this analysis

o o
CRRTELTY
b
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nvprof vs Visual Profiler

NVPROF VISUAL PROFILER
Command-line Data Gathering Graphical display of nvprof data
Simple, high-level text output “Big picture” analysis
Gather hardware metrics Very good visualization of data

movement and kernel interactions
Export data to other tools
Best run locally from your machine

N g, kB 26 DEE&
im-mmvm" https://www.olcf.ornl.gov/wp-content/uploads/2019/08/NVIDIA-Profilers.pdf ;



https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

#include <stdio.h>
#define N 1048576

Exa I I p I e __global__ void add vectors(int *a, int *b, int *c){

int id = blockDim.x * blockIdx.x + threadIdx.x;

(id < N) c[id] = a[id] + b[id];
}

A simple example:

int main() {

size t bytes = N* (int) ;
vector addition int & = (int¥)malloc (bytes)
int *B = (int*)malloc (bytes) ;
int *C = (int*)malloc (bytes) ;

int *d A, *d B, *d C;

cudaMalloc (&d A, bytes);
cudaMalloc (&d B, bytes);
cudaMalloc (&d _C, bytes);

(int i=0

; i<N; i++){
A[i] = 1;
= 2:

cudaMemcpy (d A, A, bytes, cudaMemcpyHostToDevice) ;
cudaMemcpy (d B, B, bytes, cudaMemcpyHostToDevice) ;

int thr per blk = 256;
int blk_in grid = ceil( float(N) / thr_per blk );
add_vectors<<< blk_in grid, thr_per blk >>>(d A, d B, 4 C);

cudaMemcpy (C, d_C, bytes, cudaMemcpyDeviceToHost) ;

free (A) ;
free(B);
free (C) ;
cudaFree(d A);
cudaFree (d_B);
cudaFree(d C);

ﬁ'dijk.é? 0;
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Example: code structure

#include <stdio.h>
#define N 1048576

__global__ void add_vectors(int *a, int *b, int *c)({
int id = blockDim.x * blockIdx.x + threadIdx.x;
if(id < N) c[id] = a[id] + b[id];

Vector addition kernel (GPU)

1% PR £ ]

int main () {
size_t bytes = N* (int) ;

int *A
int *B
int *C

(int*)malloc (bytes) ;
(int*)malloc (bytes) ;
(int*)malloc (bytes) ;

Allocate memory on CPU

3Bt hostii PN 7£]

int *d A, *d B, *d C;

cudaMalloc(&d A, bytes);
cudaMalloc (&d B, bytes);
cudaMalloc(&d C, bytes);

Allocate memory on GPU

7 Bid device ¥ N AF

for(int i=0; i<N; i++){
Ali] 1
B[i] = 2;

}

Initialize arrays on CPU

P A ]

cudaMemcpy (d_A, A, bytes, cudaMemcpyHostToDevice);
cudaMemcpy (d_B, B, bytes, cudaMemcpyHostToDevice);

Copy data from CPU to GPU

BIETEN

int thr_per blk = 256;
int blk_in_grid = ceil( float(N) / thr_per blk );
add_vectors<<< blk in grid, thr_per blk >>>(d A, d B, d C);

Set configuration parameters and
launch kernel

2R T 5]

| cudaMemcpy (C, d C, bytes, cudaMemcpyDeviceToHost) ;

Copy data from GPU to CPU

[ #% U]

free(a) ;
free(B) ;
free(C):
cudaFree (d_3) ;
cudaFree (d_B) ;
cudaFree (d_C) ;

Free memory on CPU and GPU

R 7]

return 0;
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Example: compile and run

A simple example: vector addition

* Compile: S nvce vector _add.cu -o vec_add

* Run nvprof:
S nvprof —s —o vec_add_cuda.nvvp ./vec_add

— -s: Print summary of profiling results
- -0: Export timeline file (to be opened later in NVIDIA Visual Profiler)

@)t mx 2 29 i}
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Example: output

* Output on the terminal

==174655== Profiling result:

Type Time (%) Time Calls Avg Min Max Name

GPU activities: 56.25% 463.36us 2 231.68us 229.66us 233.70us [CUDA memcpy HtoD]

41.59% 342.56us 1 342.56us 342.56us 342.56us [CUDA memcpy DtoH]

2.16% 17.824us 1 17.824us 17.824us 17.824us add vectors (int*, jpnt*, int*)

API calls: 99.35% 719.78ms 3 239.93ms 1.1351ms 717.50ms cudaMalloc

0.23% 1.639%ms 96 17.082us 224ns 670.1%us cuDeviceGetAttribute

0.17% 1.2559ms 3 418.64us 399.77us 454.40us cudaFree

0.16% 1.1646ms 3 388.18us 303.13us 550.07us cudaMemcpy

0.06% 412.85us 1 412.85us 412.85us 412.85us cuDeviceTotalMem

0.03% 182.1l1lus 1 182.11lus 182.1lus 182.1lus cuDeviceGetName

0.00% 32.391lus 1 32.391lus 32.391us 32.391us cudalaunchKernel

0.00% 3.8960us 1 3.8960us 3.8960us 3.8960us cuDeviceGetPCIBusId

0.00% 2.2920us 3 764ns 492ns 1.1040us cuDeviceGetCount

0.00% 1.4090us 2 704ns 423ns 986ns cuDeviceGet
‘ u*ﬁ ‘ Lﬁm -
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Example: output

* Import output file to nvvp

@ File->Import @ Select “Nvprof" then “Next >" Select “Single Process”
then "Next >"
@ NVIDIA Visual Profiler View Window Help @® @ ® o
@0 .~ % New Session %N | Select Nvprof profile files
- J Open... #0 L ‘ Import profile data generated by nvprof. | Import profile data for a
Clone Session
Save Select an import source: © single process
Save As... Multiple processes
Save All
Command-line Profiler
2% Import... 2

Import Profile Data for Single Process

@ Select one nvprof profile file containing timeline data and zero or more

addition nvprof profile files containing event and metric values.
Click "Browse" next to “Timeline data

file” to locate the .nvvp file on your local Timeline Options
system, then click "Finish"

Connection: Local o- Manage connections...

Timeline data file: Browse...

Tux® 31 Dy



Example: output

* |nterface overview

Zoom C}ll the way

§ *vec_add_cuda.h49n16.12095.nwp 22

[

NVIDIA Visual Profiler

Left-click the timeline and drag mouse to measure specific activities
J

|=I Process "run" (174655)
[~ Thread 288656
~ Runtime API

l.oms

805.1 ms J 805.2ms

805.3 ms

805.4 ms

805.5ms

805.6 ms 805.7 ms 805.8 ms 805.9ms

=

- Driver API
- Profiling Overhead

=/ [0] Tesla V100-SXM2-1
[=| Context 1 (CUDA)
OB

- ¥ MemCpy (HtoD)
L 57 MemCpy (DtoH)
=/ Compute

N\

AN

cudaMemcpy

Memcpy HtoD [sync]

cudaMemcpy

806 ms 806.1 ms

cudaMemcpy

Memcpy HtoD [sync]

- ¥ 100.0% add_vect..
=T Streams
- Default

Memcpy DtoH [sync]

Data Transfers

Kernel Execution

GPU
activity

@1t

b KB
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CUDA API activity from CPU process

Memcpy HtoD [sync] ] Memcpy DtoH [sync]
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Output on visual profile

* Interface description

Zoom C}" the way Left-click the timeline

it /]
A A™ |

§ *vec_add_cuda.h49n16.12095.nvvp 53

.9 ms 805 ms 805.1 ms 805.2 ms 805.3 ms
[=I Process "run" (174655)
= Thread 288656
ﬁ - Runtime API
- Driver API|
- Profiling Overhead

a V100-
[= Context 1 (CUDA)

= MemCpy (HtoD) Memcpy HtoD [sync] -
ﬁ - 7 MemCpy (DtoH)
[~] Compute
- 5F 100.0% add_vect..
—| Streams
- Default —

CUDA API activity fromm CPU process
GPU

activity

@ tuxs 33
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Output on visual profile

e Associate with code

NVIDIA Visual Profiler

».add_cuda.h49n16.12096.nvvp 22

.'9 me 805 ms 805.1 ms 805.'2 ms 805.3ms 805.4 ms 805.5 ms 805.'6 ms 805..7 ms 805._8 ms 805..9 ms 806_ ms
‘@88 "run” (174655)
hread 288656
Runtime API cudaMemcpy cudaMemcpy . cudaMemepy |
Driver API
rofiling Overhead

P W W ) 7
:::::o(z:::z 1668 [CU DA ‘Yﬁz{jj]
“F MemCpy (HtoD)

T MemCpy (DtoH)
Compute

Memcpy HtoD [sync) Memcpy HtoD [sync)

Memcpy DtoH [sync]

// Copy data fra
cudaMemcpytl_A,
cudaMemcpy.

aye=% and B to device arrays d_A and d_B
A yt€s, cudaMemcpyHostToDevice);
=¥, B, bytes, cudaMemcpyHostToDevice);

// Set execution configuration parameters

// thr_per_blk: number of CUDA threads p
// blk_in_grid: number of blocks i
int thr_per_blk = 256;

int blk_in_grid = ceil( flo

// Launch kernel
add_vectors<<< blk_in_g *“thr_per_blk >>>(d_A, d_B, d_C);
// Copy data s»®Bm device array d_C to host array C
cudaMemcpyTC, d_C, bytes, cudaMemcpyDeviceToHost);

Type Time (%) Time Calls Avg Min Max Name
GPU activities: 56.25% 463.36us 2 231.68us 229.66us 233.70us [CUDA memcpy HtoD]
41.59% 342.56us 1 342.56us 342.56us 342.56us [CUDA memcpy DtoH]
2.16% 17.824us 1 17.824us 17.824us 17.824us add vectors(int*, int*, int*)




Output on visual profile

» Details information about operations

// Copy data from host arrays A and B to device arrays d_A and d_B
cudaMemcpy(d_A, A, bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, B, bytes, cudaMemcpyHostToDevice);

// Set execution configuration parameters
thr_per_blk: number of CUDA threads per grid block
blk_in_grid: number of blocks in grid

/1l
/]

int thr_
int blk_

// Launch kernel

per_blk = 256;
in_grid =

ceil( float(N)

=per_blk );

§ *vec_add_cuda.ha9n16.12095.nvwp 2

805.54 ms

805.656 ms

806.56 ms

805.57 ms 805.58 ms 805.

= Process “run" (174655)
= Thread 288656

- Runtime AP|
- Driver API

{= Context 1 (CUDA)
I MemCpy (HtoD)
- MemCpy (DtoH)
#+ Compute

= [0] Tesla V100-SXM2-16GB

cudalaunchKernel

v add_vectors(int®, Int*, int*)

S —

add_vectors<<< blk_in_grid, thr_per_blk >>>(d_A, d_B, d_C);

// Copy data from device array d_C to host array C
cudaMemcpy(C, d_C, bytes, cudaMemcpyDeviceToHost);

@t

R

SUN YAT-SEN UNIVERSITY

Details about the kernel execution =

[FELH{E 2]

= Properties 23

add_vectors(int*, int*, int*)

Queued
Submitted

Start

End

Duration

Stream

Grid Size

Block Size
Registers/Thread

Launch Type
¥Occupancy
Theoretical

35

Shared Memory/Block

¥ Shared Memory Configuration
Shared Memory Executed
Shared Memory Bank Size

n/a

n/a

805.571 ms (805,570,598...
805.588 ms (805,588,422...
17.824 us

Default

[4096,1,1]

[256,1,1])

16

0B

Normal

100%

0B
4B

h ==
-
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Move forward (1): Specific metrics

S nvprof —m [metrics list] ./a

Example: S nvprof —m dram_uti

pp_name | 48 €45 € HIFEHR]

lization,|2_utilization,\

double precision fu_utilization, achieved occupancy ./redundant_mm 2048 100

==13250== NVPROF is profiling process 13250, command: ./
==13250== Some kernel(s) will be replayed on device 0 in
==13250== Profiling application: ./redundant_mm 2048 100
(N = 2048) Max Total Time: 10.532436 Max GPU Time: 8.349
Rank 000, HWThread 002, GPU 0, Node h49nlé - Total Time:
==13250== Profiling result:

==13250== Metric result:

Invocations Metric Name
Device "Tesla V100-SXM2-16GB (Q)"

Kernel: volta dgemm 64x64 nn

100 dram utilization
100 12 utilization
100 double precision_fu utilization
100 achieved occupancy

[1% R £4] [T R4 FK]

?mx&

SUN YAT-SEN UNIVERSITY

redundant mm 2048 100

order to collect all events/metrics.

185

10.532436 GPU Time: 8.349185

Metric Description

Device Memory Utilization
L2 Cache Utilization
Double-Precision Function Unit Utilization

Achieved Occupancy

[T brfiiid]

36

Ideally, something will be

“High" or “Max". If

everything is “Low", check
you have enough work and

check occupancy.
Min Max Avg
Low (1) Low (2) Low (1)
Low (2) Low (2) Low (2)
Max (10) Max (10) Max (10)
0.114002 0.120720 0.118229

(5 K/ /NFEE]




Common metrics

» Metrics [$5 5]

inst_executed: # of instructions executed
cf_executed: # of executed control-flow instructions
ipc: instructions executed per cycle

sm_efficiency: % of time at least one warp is active

achieved_occupancy: ratio of avg active warps per active cycle relative to the
max # of warps supported on a SM

I2_utilization: utilization level of L2 relative to peak
dram_utilization: utilization level of DRAM to peak
dram_read_throughput: DRAM read throughput
dram_write_throughput: DRAM write throughput

AV 37 ol n [
(&) ¥
SUN YAT-SEN UNIVE]

e https://docs.nvidia.com/cuda/profiler-users-guide/index.html#tmetrics-reference-7x Wi



https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Common metrics

* Compute metrics [F1TH5HAH R I FE 7]

Warp:

- sm_efficiency

- achieved_occupancy

- eligible_warps_per_cycle

- warp{/_nonpred} execution_efficiency

\

Instruction:

ipc, issued_ipc
issue_slot_utilization
stall_*
branch_efficiency

Function Unit:
- {half/single/double} precision_fu_util
- {ldst/cf/special/tex} fu_utilization

MIO Datapath MIO Scheduler
(648/clk) (1 warp Inst /2 cik)

D tuks 38 by



Common metrics

« Memory metrics (1) [F1 V7 FAH < B F8 HR]
SMEM:

[128 KiB L1 data cache/Shared memory] [2 KiB L1 constant cache]

A T

[ >64 KiB L1.5 constant cache/128 KiB L1 instruction cache |

S e eVl e Ve i) b e Dl Rlen el ey e Sl A A et e b

39

shared_{load/store} transactions
shared_{load/store} throughput
shared_{efficiency/utilization}
shared_{load/store} trans_per _req

L1 cache:

tex_cache_transactions
tex_cache_throughput
tex_cache_hit_rate
tex_utilization

LMEM:

local_{load/store} transactions
local_{load/store} throughput
local_hit_rate
local_memory_overhead
local_{load/store} requests

local_{load/store} trans_per_req ﬂ
Wi’



Common metrics

« Memory metrics (2) [F115f£ A < HIFEF5]

L2 cache:

12_{atomic/read/write} transactions
U S e e S e S e S e i - L2_tex_{read/write}_transactions

T T T T T T T T T T T T T T T T Pivaenbveysm ' 12_{atomic/read/write}_throughput
: - L2_tex_{read_write} throughput

12 _utilization
- L2_tex_hit_rate
12_{global/local} load bytes
12_{global_atomic/local_global} st Bs
DRAM:
- dram_{read/write} transactions
- dram_{read/write} throughput
—————————————————————————— - dram__utilization

- dram_{read/write} bytes

Global:

- {gld/gst} {transactions/throughput}

- {gld/gst} requested_throughput

- {gld/gst} efficiency
40 - {gld/gst} transactions_per_ request “"ﬂ

hY
=
<
&
5]
m
<
@
<
w
<
1

[128 KiB L1 data cache/Shared memory] [2 KiB L1 constant cache]

A T
[ >64 KiB L1.5 constant cache/128 KiB L1 instruction cache |
A

_____________________ e s e 3

|
|
|
! |
|
|
|




More details about metrics

e More details can be found in ...

Metric Name

Description

achieved_occupancy

Ratio of the average active warps per active cycle to the
maximum number of warps supported on a multiprocessor

atomic_transactions

Global memory atomic and reduction transactions

atomic_transactions_per_request

Average number of global memory atomic and reduction
transactions performed for each atomic and reduction
instruction

branch_efficiency

Ratio of branch instruction to sum of branch and divergent
branch instruction

cf_executed

Number of executed control-flow instructions

cf_fu_utilization

The utilization level of the multiprocessor function units that
execute control-flow instructions on a scale of 0 to 10

cf_issued

Number of issued control-flow instructions

double_precision_fu_utilization

The utilization level of the multiprocessor function units that
execute double-precision floating-point instructions on a scale
of 0 to 10

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x
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Move forward (2): Specific kernel(s)

S nvprof —kernels :::1 output_name.nvprof ./app_name

<t (36 72 K5 (O )
(context:stream:kernel:invocation)

Record metrics for only the first invocation of each kernel.

(& "e Al y
@ turs 2 D




Move forward (3): Analyse metrics

S nvprof --analysis-metrics output_name.nvprof ./app_name | [ M5 #5]

Example: nvprof --analysis-metrics single_gpu_data.metrics100.nvprof ./run

43 Hriﬂz




Move forward (3): Analyse metrics

* High-level analysis

© NVIDIA Visual Profiler — O

File View Window Run Help

e WS- RQAQ|E|FR|IEEE|A~

| 8 *single_gpu_data.timeline100.nvprof &2 =
.0 5 0.1s 02s 03s 04s 05s 06s 0.7s 08s 09s 1s

[=] Process “run" (176968)
[=| Thread 294448

- OpenACC -..........
TR

" Driver AP L cuDevieePrimanCoetain Il [ ][] ][] ]lll cuDevicePrimanCoi..]

~ Profiling Overhead “I II | " | ”
[=| [0] Tesla V100-5XM2-16GB
[=] Context 1 (CUDA)

- 7 MemCpy (HtoD) (00 L (L]
L ¥ MemCpy (DtoH) (NNEERIREN)

— - A EWIERIAE
[Tl Analysis £2 | B GPU Details (Summary)- 54 CPU Details | [T#] OpenACC Details | [T4] OpenMP Details | =] Console| e Settings' S. = O || E Properties 23 - =
ElE ¢ g: F Report Results :
1. CUDA Application Analysis Select or highlight a single interval to see properties

The guided analysis system walks you through the
various analysis stages to help you understand the
optimization opportunities in your application.

Once you become familiar with the optimization
process, you can explore the individual analysis
stages in an unguided mode. When optimizing

your application it is important to fully utilize the
compute and data movement capabilities of the

GPU, To do this you should look at your

application’s overall GPU usage as well as the

performance ofindividual kernels,
i Iy, Examine GPU Usage {

o i S Thic

reguires an application timefine. 50 your application will be run
once to collectitif tis not al ready avaiadle

|y, Examine Individual Kernels

Determine which kernels are the most performance critical and
that have the most opportunity for improvement. This analysis
requires utiization data from every kernel so your application wi
be run once to collect that data if it is not already available




Move forward (3): Analyse metrics

* High-level analysis

L SF MemCpy (HtoD)
L SFF MemCpy (DtoH)

Vi

o | EEE Amie s s o sm

- Most .

EEEEESFE T
)| B CPU Details | [T2) OpenACC Details | [T2] OpenMP Details| ] Console | i Settings . = o
Results
A

applications will \

—see these.
The analysis results on the right indicate potential
problems in how your application is taking advantage
of the GPU's available compute and data movement

& Low Memcpy/Kernel Overlap | 0 ns / £.927182 ms = 0% |

The percentage of time when memcpy is being performed in parallel with kernel is low,

& Low Kernel Concurrency [ 0 ns /97,2522 ms = 0% ]

The percentage of time when two kernels are being executed in parallel is low.

capabilities. You should examine the information
provided with each result to determine if you can
make changes to your application to increase GPU
‘M. i i n

uly Examine Individual Kernels

S —————————
additional optimization opportunities.

May indicate
insufficient

& Low Memcpy Throughput [ 6.775 MB/s avg, for memcpys accounting for 3.5% of all memcpy time |

The memory copies are not fully using the available host to device bandwidth.

& Low Memcpy Overlap [ 0 ns/ 3.0515 ms = 0% ]

The percentage of time when two memory copies are being performed in parallel is low.

=711.1%]

80852 ms

The multiprocessors of one or more GPUs are mostly idle.
i Compute Utilization

The device timeline shows an estimate of the amount of the total compute capacity being used by the kernels ex

amount of work.

i NVLink Analysis

The following NVLink topology diagram shows logical NVLink connections between GPUs and CPUs. A logical N v
< >

X B
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Move forward (3): Analyse metrics

* Analyse individual kernels

— : ! EE=EESIEE]
(% Analysis 52 | [ GPU Details (Summary) | B CPU Details | [T#) OpenACC Details | [T#) OpenMP Details| E] Console | i Settings S = | :
ElE ¢ [ Export PDF Report Results

~
1. CUDA Application Analvsi & Low Memcpy/Kernel Overlap [ 0 ns /292128 ms = 0% ] S

The percentage of time when memcpy is being performed in parallel with kernel is low.
2. Check Overall GPU Usage

. T . & Low Kernel Concurrency [ 0 ns / 97.2522 ms = 0% ]
The analysis results on the right indicate potential )
problems in how your application is taking advantage The percentage of time when two kernels are being executed in parallel is low.

of the GPU's available compute and data movement

capabilities. You should examine the information & Low Memcpy Throughput [ 6.775 MB/s avg, for memcpys accounting for 3.5% of all memcpy time ]
provided with each result to determine if you can : ; : x :
make changes to your application to increase GPU The memory copies are not fully using the available host to device bandwidth,
ilration
4 Low Memcpy Overlap [ 0 ns /20515 ms = 0% ]
> sy Examine Individual Kernels The percentage of time when two memory copies are being performed in parallel is low.

e ——— e ————————a S, i SRS T BOAGE . 982 3
additional optimization cpporunities # Low Compute Utilization | 97.2522 ms / 27780852 ms = 11

The multiprocessors of one or more GPUs are mostly idle.
i Compute Utilization

The device timeline shows an estimate of the amount of the total compute capacity being used by the kernels ex
i NVLink Analysis

The following NVLink topology diagram shows logical NVLink connections between GPUs and CPUs. A logical N v
< >
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Move forward (3): Analyse metrics
* Kernel optimization priorities [#% bR EAL AL S 2]

— - . EE & jE i & s |5
% Analysis &2 | B GPU Details (Summary) | Bl CPU Details | [T5] OpenACC Details | [T5] OpenMP Details| &l Console | i Settings Sl ]
EllE ¢ [ Export PDF Report Bl

The following kernels are ordered by optimization importance based on execution time and achieved occupancy.
2. Performance-Gritical Kernels Optimization of higher ranked kernels (those that appear first in the list) is more likely to improve perfformance

compared to lower ranked kernels.
The results on the right show your application’s — P ol

kernels ordered by potential for performance Rank Description
improvement. Starting with the kernels with the npt

" i ou should select an entry from the 100 [ 100 kernel instances ] main_123_gpu
table and then pe is to discover . .
additional optimization opportunities. =—uipl 66 [ 100 kemel instances ] main_134_gpu
37 [ 100 kernel instances ] main_127_gpu__red

Perform Kernel Analysis 5 [ 100 kernel instances ] main_148_gpu
2 [ 100 kernel instances ] main_142_gpu

ekct 3 bernel from the table at riaht from the timelins to era ble

f sl Perform Additional Analysis i

potential performance problems. After running this analysis, select any
of the new resuits at right to highfight the individual kerneis for which
the anaysis appies.

-
A T

@ tuxs 47 W



Move forward (3): Analyse metrics

« Memory bandwidth analysis [N 74 5 43 #HT]

] “VIREAL | |NUwmy

- 5F MemCpy (HtoD)

- ¥ MemCpy (DtoH)
= : ‘ NN

[l Analysis 22 | B GPU Details (Summary) | BBl CPU Details | [Ts] OpenACC Details | [T5] OpenMP Details| & Console | i Settings N =
=l E O iy, Export PDF Report Results

1. CUDA Application Analysi i Kernel Performance Is Bound By Memory Bandwidth

For device "Tesla V100-SXM2-16GB" the kernel's compute utilization is significantly lower than its memory utilization. These

2. Performance-Critical Kernels utilization levels indicate that the performance of the kernel is most likely being limited by the memory system. For this kernel the
limiting factor in the memory system is the bandwidth of the Device memory.

3. Compute, Bandwidth, or Latency Bound

The first step in analyzing an individual kernel is to
determine if the performance of the kernel is bounded by 100
computation, memory bandwidth, or instruction/memory
latency. The results at right indicate that the performance of
kernel "main_123_gpu’ is most likely limited by memory
bandwidth.

i Wy Perform Memory Bandwidth Analysis i

50 you should first perform memory bandwidth anaiysis to determine how itis
miting performance.

I Memory operations

[ Control-flow operations
I Arithmetic operations
Il Memory (Device)

LRilization

iy Perform Compute Analysis

Wiy, Perform Latency Analysis
102
Compute and instruction and memory latency are fikely not the primary
performance bottienacis for this kernel but you may still want to perform those
analyses. v

Compute Memory (Device v

-

o,

=D
e
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Move forward (3): Analyse metrics

h—
=

a=J

« Optimization suggestions [fL{bEiX]

= v

iy, Export PDF Report

1.GJDAWNﬂysis

Results

2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

4. Memory Bandwidth

Memory bandwidth limits the performance of a kernel when

one or more memories in the GPU cannot provide data at the
rate requested by the kernel. The results at right indicate that
the kernel is limited by the bandwidth available to the device

memory.

Rerun Analysis

& Global Memory Alignment and Access Pattern

Memory bandwidth is used most efficiently when each global memory load and store has proper alignment and access pattern. The ar
per assembly instruction.

Optimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignment or
access pattern. For each load or store improve the alignment and access pattern of the memory access.

v Lline/ File poisson2d.c - \gpfs\wolf\gen110\scratch\j2k\nvidia_profilers\jacobi\3_single_gpu_data
126 Global Load L2 Transactions/Access = 9, |deal Transactions/Access = 8 [ 4712194 L2 transactions for 524032 total executi
126 Global Load L2 Transactions/Access = 9, Ideal Transactions/Access = 8 [ 4712194 L2 transactions for 524032 total executi
126 Global Load L2 Transactions/Access = 9, Ideal Transactions/Access = 8 [ 4712194 L2 transactions for 524032 total executi
126 Global Store L2 Transactions/Access = 9, Ideal Transactions/Access = 8 [ 4712194 L2 transactions for 524032 total executi
126 Global Load L2 Transactions/Access = 9, Ideal Transactions/Access = 8 [ 4712184 L2 transactions for 524032 total executi

127 Global Load L2 Transactions/Access = 9, Ideal Transactions/Access = 8 [ 4712194 L2 transactions for 524032 total executi

& GPU Utilization Is Limited By Memory Bandwidth
The following table shows the memory bandwidth used by this kernel for the various types of memory on the device. The table also sh
utilization of each memory type relative to the maximum throughput supported by the memory. The results show that the kernel's perd
is potentially limited by the bandwidth available from one or more of the memories on the device.
Optimization: Try the following optimizations for the memory with high bandwidth utilization.

Shared Memory - If possible use 64-bit accesses to shared memory and 8-byte bank mode to achieved 2x throughput.

L2 Cache - Align and block kernel data to maximize L2 cache efficiency.

Unified Cache - Reallocate texture data to shared or global memory. Resolve alignment and access pattemn issues for global
loads and stores.

Device Memory - Resolve alignment and access pattern issues for global loads and stores.

System Memory (via PCle) - Make sure performance critical data is placed in device or shared memory.

v

X
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Move forward (3): Analyse metrics

 Compute analysis [TT 5 & IE 2 HT]

IR IYEE T IV IR W e ey

i Analysis 22 | [ GPU Details (Summary) | FEli CPU Details | T2 OpenACC Details | [Ta] OpenMP Details| & Console| [ Settings o]

Wiy, Export PDF Report

G=ll =

1. CUDA Application Analysis

Results

e-Critical Kernels

3. Compute, Bandwidth, or

The first step in analyzing an individual kernel is to
determine if the performance of the kernel is bounded by
computation, memory bandwidth, or instruction/memory
latency. The results at right indicate that the performance of
kernel “volta_dgemm_64x64_nn" is most likely limited by
compute.

E iy, Perform Compute Analysis 1

The most licely bottienack to performance for this kernel iz compute 50 you
should first perform compute analysis to determine how it is imiting
performance

iy, Perform Latency Analysis

iy, Perform Memory Bandwidth Analysis
nstruction and memory istency and memory bandwidth are likely not the

primary performance bottienaecks for this kernel but you may still want to
perform those analyses

Rerun Analysis

i Kernel Performance Is Bound By Compute

For device "Tesla V100-SXM2-16GB" the kernel's memory utilization is significantly lower than its compute utilization. These utilization
levels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

WRilization

Function Unit (Double

Se
sil

X B
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Move forward

. Analyse metrics

e Optimization suggestions [{ 4t 82 1%]

class the chart shows the percentage of thread execution cycles that were devoted to executing instructions in that class, The

“ Runtime API
[% Analysis 22 | 8 GPU Details (Summary) B CPU Details | (7] OpenACC Details | [Ta] OpenMP Details| & Console [ Settings A — L
ElE ¢ i, Export PDF Report Results
~N
1. CUDA Application Analysis & GPU Utilization Is Limited By Function Unit Usage
Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit
2. Performance-Critical Kernels is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is potentially
limited by overuse of the following function units: Double.
3. Compute, Bandwidth, or Latency Bound Load/Store - Load and store instructions for shared and constant memory.
4 R Texture - Load and store instructions for local, global, and texture memory.
- Compute Resources Half - Half-precision floating-point arithmetic instructions.
GPU compute resources limit the performance of a kernel when Single - Single-precisigp integer'and flgating-pointf a.rithmeti.c instructions,
those resources are insufficient or poorly utilized. Compute Double - Double-precision floating-point arithmetic instructions.
resources are used most efficiently when instructions do not Special - Special arithmetic instructions such as sin, cos, popc, etc.
overuse a function unit. The results at right indicate that Control-Flow - Direct and indirect branches, Jjumps, and calls.
compute performance may be limited by overuse of a function
unit,
- Instruction Execution
| profile shows the execution count inactive threads, and predicated
threads for each source and assembly fine of the kernel. Using this information you High
can pinpoint portions of your kemel that are making inefficient use of compute
resource due to divergence and predication. g
Rerun Analysis -
: c
= ) L Med
olify the kernel you nes runy pl 5
=
S
Low
LoadiStore Teuture Half Single Double Special Cont
1 Instruction Execution Counts
The following chart shows the mix of instructions executed by the kernel. The instructions are grouped into classes and for each
v

m

Sel
sin
pre

() *
(2 ) o ".%
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Move forward (3): Analyse metrics

e Latency analysis [ZEiR 73 #7]

% Analysis &2 | B8 GPU Details (Summary) | B CPU Details | [T OpenACC Details | [T2] OpenMP Details| & Console | T Settings S5 = im
ElE ¢ uly, Export PDF Report Results
~
1. CUDA Application Analysis i Kernel Performance Is Bound By Instruction And Memory Latency
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla
V100-SXM2-16GB". These utilization levels indicate that the perfformance of the kernel is most likely limited by the latency of
arithmetic or memory operations. Achieved compute throughput and/or memory bandwidth below 60% of peak typically indicates
latency issues.
The first step in analyzing an individual kernel is to
determine if the performance of the kernel is bounded by
computation, memory bandwidth, or instruction/memory 100
latency, The results at right indicate that the performance of
kernel "'main_127_gpu__red" is most likely limited by 30
instructi nd memory latency.
E uly, Perform Latency Analysis ] 7
The most iikely bottieneck to performance for this keme! is mstruction and _8 I Memory operations
memory latency so you should first perform instruction and memory latency ® == B Control-flow operations
analysis to determine how it is imiting performance N . . .
§ I 2rithmetic operations
40% 5
|y Perform Compute Analysis ) B Memory (Device)
iy, Perform Memory Bandwidth Analysis
Compute and memory bandwidth are fiely not the primary performance 102
bottienecis for this kernel but you may still want to perform those analyses ; _—
. Compute Memory [Device)
Rerun Analysis
v

() *
(2 ) o ".?
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Move forward

. Analyse metrics

e Optimization suggestions [{ 4t 82 1%]

[l Analysis &2 | [l GPU Details (Summary) | Bl CPU Details | [T5] OpenACC Details | [Tz OpenMP Details| &l Console [ Settings

Tew

il =l v uly, Export PDF Report Beaults

1. CUDA Application Analysis
2. Performance-Critical Kernels

3. Compute, Bandwidth, or Lat

SMs with those kernels.

Instruction and memory latency limit the performance of a A

% Grid Size Too Small To Hide Compute And Memory Latency

The kernel does not execute enough blocks to hide memory and operation latency. Typically the kernel grid size must be large enough
to fill the GPU with multiple "waves" of blocks. Based on theoretical occupancy, device "Tesla V100-SXM2-16GB" can simultaneously
execute 8 blocks on each of the 80 SMs, so the kernel may need to execute a multiple of 640 blocks to hide the compute and memory
latency. If the kernel is executing concurrently with other kernels then fewer blocks will be required because the kernel is sharing the

Optimization: Increase the number of blocks executed by the kemel.

More...

kernel when the GPU does not have enough work to keep
busy. The results at right indicate that the GPU does not
have enough work because the kernel does not execute
enough blocks,

[ Jdy, Examine Occupancy ]

Occupancy is 2 measure of how many warps the kernel has active on the GPU
raiative to the maximum number of warps supported by the GPU. Theoretica
occupancy provides an upper bound while achieved occupancy indicates the
kermel's actual occupancy. For this kemne! examining occupancy may not be
useful until you modify the kernel to execute more blocks because occupancy
analysis assumes there are enough biocks to fill the GPU

il Show Kernel Profile - PC Sampling

The kernel profile shows the samples of various stall reasons collected at each

pc of the assembly instruction. Using this information you can pinpoint portions

of your kernel that are having high iatency due to stall for a particular reason For

this kernel examining stafis may not be useful until you modify the kerne! to v

-



Vove forwa

rd (3): Analyse metrics

e Occupancy analysis

sl 9 Wy, Export PDF Report

1. CUDA Application Analysis
2. Performance-Critical Kernels

3. Compute, Bandwidth, or Latency Bound

4. Instruction and Memory Latency

d memory latency limit the performance of a o)
kernel when s not have enough work to keep

busy. The performance of aited kernels can often

be improved by increasing occupancy. i
measure of how many warps the kernel has active on
GPU, relative to the maximum number of warps supported by
the GPU. Theoretical occupancy provides an upper bound
while achieved occupancy indicates the kernel's actual
occupancy.

[ iy, Examine Occupancy i

Occupancy is 3 measure of how many warps the kernel has active on the GPU
relative to the maximum number of warps supported by the GPU. Theoretica
occupandy provides an upper bound while achieved occupancy indicates the
kemnel's actual occupancy,

dy Show Kernel Profile - PC Sampling

The carnel profie shows the samples of various sta' reasons collected ateach

- ~f the 3ccamnh incte wtian |icina thiz infarmating un ~3n AIRARIRt ARrtART

v

Becults

[ Analysis £2 | 88 GPU Details (Summary) | B4 CPU Details | T3] OpenACC Details | [T2) OpenMP Details| & Console | i Settings

e

i Occupancy Is Not Limiting Kernel Performance

Renisters/Thread

Variable Achieved Theoretical
Occupancy Per SM

Active Blocks 8
Active Warps 53.8 64
Active Threads 2048
Occupancy 1% 100%
Warps

Threads/Block 256
Warps/Block | 8
Block Limit 8
Registers

16

Device Limit

32

2048

100%

1024

32

32

£5536

The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU.

Grid Size: [ 4096,1,1 ] (4096 blocks)Block Size: [ 256,1

More...

=
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nvprof

» Different choices [~ [A] H 1% ££]

— Short run:
S nvprof output_name.nvprof ./app_name

— Specific metrics:
S nvprof —m [metric list] —csv output_name.csv ./app_name

— Specific kernel(s):
S nvprof —kernels :::1 output_name.nvprof ./app_name

— Analysis metrics:
S nvprof --analysis-metrics output_name.nvprof ./app_name

[ » z * ) 5 5
(2 £)
o SUN YAT-SEN UNIVERSITY
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nvprof

e Butin future ... &

Note that Visual Profiler and nvprof will be deprecated in a future
CUDA release. The NVIDIA Volta platform is the last architecture on
which these tools are fully supported. [ AN 576 4 > ]

It is recommended to use next-generation tools NVIDIA Nsight
Systems for GPU and CPU sampling and tracing and NVIDIA Nsight
Compute for GPU kernel profiling. [{E1# 14 H]

26 w;‘@‘i




Nsight Systems

@) NSIGHT SYSTEMS

Overview

System-wide application algorithm tuning
Multi-process tree support

Locate optimization opportunities

Visualize millions of events on a very fast GUI timeline
Or gaps of unused CPU and GPU time

Balance your workload across multiple CPUs and GPUs
CPU algorithms, utilization, and thread state
GPU streams, kernels, memory transfers, etc

OS: Linux x86_64, Windows, MacOSX (host only)
No plans for Linux Power

57

https://developer.nvidia.com/nsight-systems
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Nsight Systems
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Nsight Compute

¥ GPU Speed Of Light
soL su [X] 8.74 (-80.00%)
SoL TEX [X] 8.74 (-2.82%)

NVIDIA NSIGHT
COMPUTE j—

Memary [%] L ]

Next-Gen Kernel Profiling . :

3 Speed Of 1

Tool b e

( §r§|mﬁ-§]"—1¥;m7-§1§;§mﬁ!,‘m.'BB';"!!,'UGIW

o - —

Key Features: > &f T B —
o e = =

Interactive CUDA API debugging and kernel profiling jmms_secpecy e et e re e e
|launch_occupancy_per_biock _sze 3,638.00 3,63s.00

Fast Data Collection o g . ke
e e b ik

i 74 iIalvo‘\_maed—rﬂuﬂ__pev_I)'L-)ch_ mc [bytes, e.09 e.00

Improved Workflow (Diff’ing Results) re——— ﬁﬁ_mx;,ﬁ,:ﬁ’ _ ae _—
Fully Customizable (Programmable Ul/Rules) e p— e S
| memory _access_size_type [bytes] 2.00; 32.00; 32.00; 32 2.00; 32.00; 32.00; 32

Command Line, Standalone, IDE Integration |  Source LveRegeiers_Sanping Daa (A1) _Sanping Cat (o see)

B!PT SHFL.IDX PT, RZ, RZ, RZ, 2 223 @

MoV R1, c[exe][ex28]; 1 13 24

S2R RE, SR_CTAID.X; 2 143 75

S2R R2, SR_TID.X; 3 e 38

0S: Linux x86_64, Windows, MacOSX (host only) L M s - - -
Linux Power planned for Q2 2019 gro extr; 2 — se
MOV R2, Re; 3 386 29

GPUs: Pascal, Volta, Turing e ) : 3
IMAD.WIDE R4, R2, R4, c[ex@][ex16e]; a4 2 e

LDG.E.SYS R3, [Re]; 3 e @

F K & 59 uii@q
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sight Compute
NSIGHT COMPUTE

Profile Report - Details Page

All Data on
Single Page

-

¥ GPU Speed Of Light
% SOL sM 17.84 | Duration (Nanoseconds) 709,0586.00
§ SOL TEX 17.84 [Elapsed Cycles 1,761,844.00
§ SOL 1Lz 15.08 | 8M Frequency (Hz) 1,242,387,061.11
% SOL FB 87.94 | Memory Frequency (Hz) 2,499,503,565._30
Recommendations
Bottleneck  Simple GPU bottieneck detection. Apply
GPU Utilization

S

@ Current
Focused Sections | | ' ' ' | ' | -
» Compute Workload Analysis
Executed Ipc Elapsed 0.71|% SM Busy 17.84
Executed Ipc Active 0.72|% Issue Slots Busy 11.54
Issued Ipc Active 0.72
» Memory Workload Analysis
Memory Throughput (bytes/s) 70,335,950,898.10 | % Mem Busy 87.54
% L1 Hit Rate 0.00|% Max Bandwidth 87.94
§ 12 Hit Rate 33.34|% Mem Pipes Busy 17.9%0
» Scheduler Statistics
Active Warps Per Scheduler 13.20 | Instructions Per Active Issue Slot 1.04
Eligible Warps Per Scheduler 0.25| & No Eligible
Issued Warps Per Scheduler 0.18|% One or More Elig
S m——— Ordered from Top-Level to
Cyclea Per Issued Instruction 72.86 | Avg. Active Thread
Cycles Per Issue Slot 76.02 | Avg. Not Predicat Low- Level
Cycles Per Executed Instruction 72.87 J“"DlA'

- il




Nsight Compute

Section Header

provides overview &
context for other sections

NSIGHT COMPUTE

Section Example

Cycles Per Issued Instruction 72.86 |Avg. Active Threads Per Warp 32.00
Cycles Per Issue Slot 76.02 [Avg. Not Predicated Off Threads Per Warp 30.67
Cycles Per Executed Instruction 72.87
Warp State In Cydles
CPI Stall Not Selected ]
CPI Stall Instruction Fetch [}
CPI Stall Constant Miss |
CPI Stall Execution Dependency [N
i CPI Stall Memory Throttle |
§  cp1tal Memory Dependenc | i
® CPI Sta Synchronization |
CP1 Stall Pipe Busy |
co1sutoves [ Section Body
Sttt provides additional
0 oo Sl aalll  details (tables & charts)

Section Config

completely data driven
add/modify/change sections

ok &
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Nsight Compute
NSIGHT COMPUTE

Unguided Analysis / Rules System

Analysis Rules

5 17.84 |Duration (Nanoseconds) 708,086.00
recommendations from 17.84 |Z1lapsed Cycles 1,761,844.00
15.08 | SM Frequency (Hz) 1,242,387,061.11
nvvp and more 87.94 |Memory Frequency (Hz) 2,499, 503,565.30
Recommendations
& Botth . [Warning] Memory is more heavily utiized than Compute: Look at “Memory Workioad Analysis™ report section to see where the memory system bottieneck is. Check memory replay (coalescing) metrics to make sure you're
effidently utilizing the bytes transferred. Also consider whether it is possible to do more work per memory access (kernel fusion) or whether there are values you can recompute.

oo,

@ Current

100.0

Rules Config

completely data driven
add/modify/change rules
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NVIDIA Developer Tools Overview

Start here

[TAE$4]

Recheck overall
workload behavior

Recheck overall
workload behavior

Dive into top

CUDA kernels Dive into graphics

frames

LURINER’S

\

Finished if
performance
satisfactory

Qx"*- ‘ J’ x 'g. 63 ml‘:gﬂ
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https://developer.nvidia.com/nsight-systems

Conclusion

e nvprof is a hardware-based profile tool for the analysis
and optimization of programs.

* You can customize the focus of profiling with different
options, such as mode, metrics, kernel and so on.

* Visual profile makes your profiling result more intuitive.

* Nsight systems and Nsight compute will be a more
sensible choice.
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Thanks for your attention !
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