
Advanced Computer
Architecture

高级计算机体系结构

第8讲：DLP and GPU (3)
profiling
翁跃

DCS5367, 11/23/2021

Overview

•What is profile tool ?

2

•Why we need profile tool ?

•How to use nvprof ?

Overview

•What is profile tool ?🧐

3

•Why we need profile tool ?

•How to use nvprof ?

What is profile tool ?

4

• A profiler can be applied to an individual method or at the
scale of a module or program, to identify performance
bottlenecks by making long-running code obvious.

• A profiler can be used to understand code from a Rming point
of view, with the objecRve of opRmizing it to handle various
runRme condiRons or various loads.

— Wikipedia [1]

What is profile tool ?

• Hardware-based: [基于硬件]
− rely on hardware performance counters to grant users the access to low-level

acRviRes, such as nvprof[2], rocprof[3] ...

• SoZware-based: [基于软件]
− by leveraging binary rewriters or performance monitoring units and debug registers

available only in CPU/GPU architectures, such as Intel Pin[4], debuggers GDB[5],
NVBit[6], SASSI[7] …

• Compiler-based: [基于编译器]
− by adding instrumentaRon while compiling, such as CUDAAdvisor[8], CUDA Flux[9] …

5

ClassificaRon of profile tool:

What is profile tool ?

• Hardware-based: [基于硬件]
− rely on hardware performance counters to grant users the access to low-level

activities, such as nvprof[2], rocprof[3] ...

• Software-based: [基于软件]
− by leveraging binary rewriters or performance monitoring units and debug registers

available only in CPU architectures, such as Intel Pin[4], debuggers GDB[5], NVBit[6],
SASSI[7] …

• Compiler-based: [基于编译器]
− by adding instrumentation while compiling, such as CUDAAdvisor[8], CUDA Flux[9] …

6

ClassificaRon of profile tool:
Lower overhead more

transparent

Overview

•What is profile tool ?

7

•Why we need profile tool ?🤨

•How to use nvprof ?

Why we need profile tool ?

8

When I finish my code:😎

When I find my code takes a long time to finish: 😤

And it consumes very few system resources: 😫
- top/htop/nvidia-smi …

PROFILE TOOL!

Why we need profile tool ?
Program analysis tools are extremely important for understanding program
behavior.

Computer architects need such tools to evaluate how well programs will
perform on new architectures. [对计算机体系结构而言]

SoZware writers need tools to analyze their programs and idenRfy criRcal
secRons of code. [对软件编程人员]

Compiler writers oZen use such tools to find out how well their instrucRon
scheduling or branch predicRon algorithm is performing...[对编译器设计
者]

— ATOM, PLDI, '94

9

Why we need profile tool ?

• Fledgling programmer and defective program 🧑💻
• Identify limiters and optimization clues 🔍
• Identify the most cost-effective optimization🔍
• Assess the impact changes🚀
• Cyclical modification and tuning🔃
•Make full use of machine performance💻

10

Overview

•What is profile tool ?

11

•Why we need profile tool ?

•How to use nvprof ?😋

nvprof overview
• The nvprof profiling tool enables you to collect and view profiling

data from the command-line. [基于命令行]
• Profiling options are provided to nvprof through command-line

options. [选项设置]
• nvprof enables the collection of a timeline of CUDA-related

activities on both CPU and GPU, including kernel execution,
memory transfers, memory set and CUDA API calls and events or
metrics for CUDA kernels. [收集CUDA相关的活动]
• Profiling results are displayed in the console after the profiling data

is collected, and may also be saved for later viewing by either
nvprof or the Visual Profiler (nvvp). [数据展现形式]

12
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Profiling modes
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace)

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

13

(1) Summary mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)
p A single result line for each kernel funcRon and each type of CUDA memory copy/set

performed by the applicaRon.
p For each kernel, nvprof outputs the total Rme of all instances of the kernel or type of

memory copy as well as the average, minimum, and maximum Rme.
p By default, nvprof also prints a summary of all the CUDA runRme/driver API calls.

− GPU-Trace and API-Trace mode: (--print-gpu-trace)

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

14

(1) Summary mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)
p A single result line for each kernel function and each type of CUDA memory copy/set

performed by the application.
p For each kernel, nvprof outputs the total time of all instances of the kernel or type of

memory copy as well as the average, minimum, and maximum time.
p By default, nvprof also prints a summary of all the CUDA runtime/driver API calls.

− GPU-Trace and API-Trace mode: (--print-gpu-trace)

− Event/metric summary mode:

− Event/metrics trace mode:

15

(2) GPU/API-Trace mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
p GPU-Trace mode provides a Rmeline of all acRviRes taking place on the GPU in

chronological order.
p Each kernel execuRon and memory copy/set instance is shown in the output. For each

kernel or memory copy, detailed informaRon such as kernel parameters, shared memory
usage and memory transfer throughput are shown.

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

16

(2) GPU/API-Trace mode
• Four profiling modes [4种性能剖析模式]

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
p GPU-Trace mode provides a timeline of all activities taking place on the GPU in

chronological order.
p Each kernel execution and memory copy/set instance is shown in the output. For each

kernel or memory copy, detailed information such as kernel parameters, shared memory
usage and memory transfer throughput are shown.

17

(2) GPU/API-Trace mode
• Four profiling modes [4种性能剖析模式]

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
p GPU-Trace mode provides a timeline of all activities taking place on the GPU in

chronological order.
p Each kernel execution and memory copy/set instance is shown in the output. For each

kernel or memory copy, detailed information such as kernel parameters, shared memory
usage and memory transfer throughput are shown.

18

(3) Event/metric summary mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

− Event/metric summary mode: (--events/--metrics)
p To see a list of all available events/metrics on a parRcular NVIDIA GPU

− Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

19

(3) Event/metric summary mode
• Four profiling modes [4种性能剖析模式]

− Event/metric summary mode: (--events/--metrics)

20

• Four profiling modes [4种性能剖析模式]
− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off --events/--metrics)
p In event/metric trace mode, event and metric values are shown for each kernel execution.

By default, event and metric values are aggregated across all units in the GPU.

21

(4) Event/metric trace mode

(4) Event/metric trace mode
• Four profiling modes [4种性能剖析模式]

− Event/metrics trace mode: (--aggregate-mode off --events/--metrics)

22

Profiling controls
• Profiling controls:

− Timeout [超时]: -t. A timeout (in seconds) can be provided to nvprof. The
CUDA application being profiled will be killed by nvprof after the timeout.
Profiling result collected before the timeout will be shown.

− Profiling scope [范围]: --devices <device IDs>, --kernels, --events, --metrics,
--query-events, --query-metrics

− Multiprocess profiling [多线程]: To profile all processes launched by an
application, use the --profile-child-processes option.

23

Profiling output
• Output:

− CSV: For each profiling mode, opRon --csv can be used to generate output in
comma-separated values (CSV) format. The result can be directly imported
to spreadsheet soZware such as Excel.

− Export/Import: For each profiling mode, opRon --export-profile can be used
to generate a result file. This file is not human-readable, but can be
imported back to nvprof using the opRon --import-profile, or into the Visual
Profiler.

24

Visual Profiler

25

[时间线]

[分析]

[分析]

nvprof vs Visual Profiler

26
hpps://www.olcf.ornl.gov/wp-content/uploads/2019/08/NVIDIA-Profilers.pdf

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf

Example

27

A simple example:
vector addiRon

Example: code structure

28

[核函数]

[分配host端内存]

[分配device端内存]

[数据赋值]

[数据拷贝]

[核函数计算]

[数据拷贝]

[释放内存]

Example: compile and run

29

A simple example: vector addiRon
• Compile: $ nvcc vector_add.cu -o vec_add

• Run nvprof:

− -s: Print summary of profiling results
− -o: Export timeline file (to be opened later in NVIDIA Visual Profiler)

$ nvprof –s –o vec_add_cuda.nvvp ./vec_add

Example: output

30

• Output on the terminal

Example: output

31

• Import output file to nvvp

Example: output

32

• Interface overview

Output on visual profile

33

• Interface descripRon

1⃣

2⃣

3⃣

Output on visual profile

34

• Associate with code

[CUDA 活动]

Output on visual profile

35

• Details informaRon about operaRons

[详细信息]

Move forward (1): Specific metrics

36

[指定特定的指标]$ nvprof –m [metrics list] ./app_name

Example: $ nvprof –m dram_uRlizaRon,l2_uRlizaRon,\
double_precision_fu_uRlizaRon, achieved_occupancy ./redundant_mm 2048 100

[指标名称][核函数] [指标描述] [最大/小/平均值]

Common metrics

37

• Metrics [指标]

hpps://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x

inst_executed: # of instrucRons executed
cf_executed: # of executed control-flow instrucRons
ipc: instrucRons executed per cycle
sm_efficiency: % of Rme at least one warp is acRve

achieved_occupancy: raRo of avg acRve warps per acRve cycle relaRve to the
max # of warps supported on a SM
l2_u?liza?on: uRlizaRon level of L2 relaRve to peak
dram_u?liza?on: uRlizaRon level of DRAM to peak
dram_read_throughput: DRAM read throughput
dram_write_throughput: DRAM write throughput

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Common metrics

38

• Compute metrics [和计算相关的指标]
Warp:
- sm_efficiency
- achieved_occupancy
- eligible_warps_per_cycle
- warp{/_nonpred}_execution_efficiency

Instruction:
- ipc, issued_ipc
- issue_slot_utilization
- stall_*
- branch_efficiency

Function Unit:
- {half/single/double}_precision_fu_util
- {ldst/cf/special/tex}_fu_utilization

Common metrics

39

• Memory metrics (1) [和访存相关的指标]
SMEM:
- shared_{load/store}_transacRons
- shared_{load/store}_throughput
- shared_{efficiency/uRlizaRon}
- shared_{load/store}_trans_per_req
L1 cache:
- tex_cache_transacRons
- tex_cache_throughput
- tex_cache_hit_rate
- tex_uRlizaRon
LMEM:
- local_{load/store}_transacRons
- local_{load/store}_throughput
- local_hit_rate
- local_memory_overhead
- local_{load/store}_requests
- local_{load/store}_trans_per_req

Common metrics

40

• Memory metrics (2) [和访存相关的指标]
L2 cache:
- l2_{atomic/read/write}_transactions

- L2_tex_{read/write}_transactions
- l2_{atomic/read/write}_throughput

- L2_tex_{read_write}_throughput
- l2_utilization

- L2_tex_hit_rate
- l2_{global/local}_load_bytes
- l2_{global_atomic/local_global}_st_Bs
DRAM:
- dram_{read/write}_transactions
- dram_{read/write}_throughput
- dram_utilization
- dram_{read/write}_bytes
Global:
- {gld/gst}_{transactions/throughput}
- {gld/gst}_requested_throughput
- {gld/gst}_efficiency
- {gld/gst}_transactions_per_request

More details about metrics

41

• More details can be found in …

hpps://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

Move forward (2): Specific kernel(s)

42

[指定特定的核函数]

$ nvprof –kernels :::1 output_name.nvprof ./app_name

(context:stream:kernel:invocation)

Record metrics for only the first invocaRon of each kernel.

Move forward (3): Analyse metrics

43

[分析指标]$ nvprof --analysis-metrics output_name.nvprof ./app_name

Example: nvprof --analysis-metrics single_gpu_data.metrics100.nvprof ./run

Move forward (3): Analyse metrics

44

• High-level analysis

Move forward (3): Analyse metrics

45

• High-level analysis

Move forward (3): Analyse metrics

46

• Analyse individual kernels

Move forward (3): Analyse metrics

47

• Kernel opRmizaRon prioriRes [核函数优化优先级]

Move forward (3): Analyse metrics

48

• Memory bandwidth analysis [内存带宽分析]

Move forward (3): Analyse metrics

49

• Optimization suggestions [优化建议]

Move forward (3): Analyse metrics

50

• Compute analysis [计算资源分析]

Move forward (3): Analyse metrics

51

• OpRmizaRon suggesRons [优化建议]

Move forward (3): Analyse metrics

52

• Latency analysis [延迟分析]

Move forward (3): Analyse metrics

53

• OpRmizaRon suggesRons [优化建议]

Move forward (3): Analyse metrics

54

• Occupancy analysis

nvprof

55

• Different choices [不同的选择]
− Short run:

$ nvprof output_name.nvprof ./app_name

− Specific metrics:
$ nvprof –m [metric list] –csv output_name.csv ./app_name

− Specific kernel(s):
$ nvprof –kernels :::1 output_name.nvprof ./app_name

− Analysis metrics:
$ nvprof --analysis-metrics output_name.nvprof ./app_name

nvprof
• But in future … 😳
Note that Visual Profiler and nvprof will be deprecated in a future
CUDA release. The NVIDIA Volta pla}orm is the last architecture on
which these tools are fully supported. [将不再完全支持]

It is recommended to use next-generaRon tools NVIDIA Nsight
Systems for GPU and CPU sampling and tracing and NVIDIA Nsight
Compute for GPU kernel profiling. [推荐使用]

56

Nsight Systems

57
https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-systems

Nsight Systems

58
hpps://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-systems

Nsight Compute

59
hpps://developer.nvidia.com/nsight-compute

https://developer.nvidia.com/nsight-compute

Nsight Compute

60

Nsight Compute

61

Nsight Compute

62

NVIDIA Developer Tools Overview

63
https://developer.nvidia.com/tools-overview

[工作负载]

[函数] [帧和渲染]

https://developer.nvidia.com/nsight-systems

Conclusion
• nvprof is a hardware-based profile tool for the analysis

and opRmizaRon of programs.
• You can customize the focus of profiling with different

opRons, such as mode, metrics, kernel and so on.
• Visual profile makes your profiling result more intuiRve.
• Nsight systems and Nsight compute will be a more

sensible choice.

64

References

65

[1] Wikipedia. Profiling (computer programming)
https://en.wikipedia.org/wiki/Profiling_(computer_programming).
[2] Nvidia. 2020. CUDA Profiler. https://docs.nvidia.com/cuda/profiler-users-guide/index.htm
[3] AMD. 2020. ROCm Profiler. https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-
master/doc/rocprof.md
[4] C.-K. Luk and R. Cohn , et al. 2005. " Pin: Building Customized Program Analysis Tools with Dynamic
Instrumentation. " In Conference on Programming Language Design and Implementation (PLDI). 190–200.
[5] GNU. 2008. Debugging with GDB: The GNU Source-Level Debugger.
http://docs.adacore.com/live/wave/gdb-9/pdf/gdb/gdb.pdf
[6] O. Villa and M. Stephenson, et al. 2019. " NVBit: A Dynamic Binary Instrumentation Framework for
NVIDIA GPUs. " In IEEE/ACM International Symposium on Microarchitecture (MICRO). 372–383.
[7] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans, M. O’Connor, and S. W.
Keckler, " Flexible software pro- filing of gpu architectures, " in ACM SIGARCH Computer Architecture News,
vol. 43, no. 3. ACM, 2015, pp. 185–197.
[8] D. Shen, S. L. Song, A. Li, and X. Liu, " Cudaadvisor: Llvm-based runtime profiling for modern gpus, " in
Proceedings of the 2018 Inter- national Symposium on Code Generation and Optimization, 2018, pp. 214–
227.
[9] L. Braun and H. Froning, " Cuda flux: A lightweight instruction profiler for cuda applications, " in
Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)
Workshop, collocated with International Conference for High Performance Computing, Networking, Storage
and Analysis (SC2019), 2019.

66

Thanks for your apenRon !

