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What is profile tool ?
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• A profiler can be applied to an individual method or at the 
scale of a module or program, to identify performance 
bottlenecks by making long-running code obvious.

• A profiler can be used to understand code from a Rming point 
of view, with the objecRve of opRmizing it to handle various 
runRme condiRons or various loads.

— Wikipedia [1]



What is profile tool ?

• Hardware-based: [基于硬件]
− rely on hardware performance counters to grant users the access to low-level 

acRviRes, such as nvprof[2], rocprof[3] ...

• SoZware-based: [基于软件]
− by leveraging binary rewriters or performance monitoring units and debug registers 

available only in CPU/GPU architectures, such as Intel Pin[4], debuggers GDB[5], 
NVBit[6], SASSI[7] …

• Compiler-based: [基于编译器]
− by adding instrumentaRon while compiling, such as CUDAAdvisor[8], CUDA Flux[9] …
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ClassificaRon of profile tool:



What is profile tool ?

• Hardware-based: [基于硬件]
− rely on hardware performance counters to grant users the access to low-level 

activities, such as nvprof[2], rocprof[3] ...

• Software-based: [基于软件]
− by leveraging binary rewriters or performance monitoring units and debug registers 

available only in CPU architectures, such as Intel Pin[4], debuggers GDB[5], NVBit[6], 
SASSI[7] …

• Compiler-based: [基于编译器]
− by adding instrumentation while compiling, such as CUDAAdvisor[8], CUDA Flux[9] …
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ClassificaRon of profile tool:
Lower overhead more 

transparent
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Why we need profile tool ?
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When I finish my code:😎

When I find my code takes a long time to finish: 😤

And it consumes very few system resources: 😫
- top/htop/nvidia-smi …

PROFILE TOOL!



Why we need profile tool ?
Program analysis tools are extremely important for understanding program 
behavior. 

Computer architects need such tools to evaluate how well programs will 
perform on new architectures. [对计算机体系结构而言]

SoZware writers need tools to analyze their programs and idenRfy criRcal 
secRons of code. [对软件编程人员]

Compiler writers oZen use such tools to find out how well their instrucRon 
scheduling or branch predicRon algorithm is performing...[对编译器设计
者]

— ATOM, PLDI, '94
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Why we need profile tool ?

• Fledgling programmer and defective program 🧑💻
• Identify limiters and optimization clues 🔍
• Identify the most cost-effective optimization🔍
• Assess the impact changes🚀
• Cyclical modification and tuning🔃
•Make full use of machine performance💻
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Overview

•What is profile tool ?
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•Why we need profile tool ?

•How to use nvprof ?😋



nvprof overview
• The nvprof profiling tool enables you to collect and view profiling 

data from the command-line. [基于命令行]
• Profiling options are provided to nvprof through command-line 

options. [选项设置]
• nvprof enables the collection of a timeline of CUDA-related 

activities on both CPU and GPU, including kernel execution, 
memory transfers, memory set and CUDA API calls and events or 
metrics for CUDA kernels. [收集CUDA相关的活动]
• Profiling results are displayed in the console after the profiling data 

is collected, and may also be saved for later viewing by either 
nvprof or the Visual Profiler (nvvp). [数据展现形式]
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https://docs.nvidia.com/cuda/profiler-users-guide/index.html

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf


Profiling modes
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace)

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off  --events/--metrics)
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(1) Summary mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)
p A single result line for each kernel funcRon and each type of CUDA memory copy/set 

performed by the applicaRon. 
p For each kernel, nvprof outputs the total Rme of all instances of the kernel or type of 

memory copy as well as the average, minimum, and maximum Rme. 
p By default, nvprof also prints a summary of all the CUDA runRme/driver API calls. 

− GPU-Trace and API-Trace mode: (--print-gpu-trace)

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off  --events/--metrics)
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(1) Summary mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)
p A single result line for each kernel function and each type of CUDA memory copy/set 

performed by the application. 
p For each kernel, nvprof outputs the total time of all instances of the kernel or type of 

memory copy as well as the average, minimum, and maximum time. 
p By default, nvprof also prints a summary of all the CUDA runtime/driver API calls. 

− GPU-Trace and API-Trace mode: (--print-gpu-trace)

− Event/metric summary mode:

− Event/metrics trace mode:

15



(2) GPU/API-Trace mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
p GPU-Trace mode provides a Rmeline of all acRviRes taking place on the GPU in 

chronological order.
p Each kernel execuRon and memory copy/set instance is shown in the output. For each 

kernel or memory copy, detailed informaRon such as kernel parameters, shared memory 
usage and memory transfer throughput are shown.

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off  --events/--metrics)

16



(2) GPU/API-Trace mode
• Four profiling modes [4种性能剖析模式]

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
p GPU-Trace mode provides a timeline of all activities taking place on the GPU in 

chronological order.
p Each kernel execution and memory copy/set instance is shown in the output. For each 

kernel or memory copy, detailed information such as kernel parameters, shared memory 
usage and memory transfer throughput are shown.
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(2) GPU/API-Trace mode
• Four profiling modes [4种性能剖析模式]

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)
p GPU-Trace mode provides a timeline of all activities taking place on the GPU in 

chronological order.
p Each kernel execution and memory copy/set instance is shown in the output. For each 

kernel or memory copy, detailed information such as kernel parameters, shared memory 
usage and memory transfer throughput are shown.
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(3) Event/metric summary mode
• Four profiling modes [4种性能剖析模式]

− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

− Event/metric summary mode: (--events/--metrics)
p To see a list of all available events/metrics on a parRcular NVIDIA GPU

− Event/metrics trace mode: (--aggregate-mode off  --events/--metrics)
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(3) Event/metric summary mode
• Four profiling modes [4种性能剖析模式]

− Event/metric summary mode: (--events/--metrics)
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• Four profiling modes [4种性能剖析模式]
− Summary mode: (default mode)

− GPU-Trace and API-Trace mode: (--print-gpu-trace/print-api-trace)

− Event/metric summary mode: (--events/--metrics)

− Event/metrics trace mode: (--aggregate-mode off  --events/--metrics)
p In event/metric trace mode, event and metric values are shown for each kernel execution. 

By default, event and metric values are aggregated across all units in the GPU.
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(4) Event/metric trace mode



(4) Event/metric trace mode
• Four profiling modes [4种性能剖析模式]

− Event/metrics trace mode: (--aggregate-mode off  --events/--metrics)
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Profiling controls
• Profiling controls:

− Timeout [超时]: -t. A timeout (in seconds) can be provided to nvprof. The 
CUDA application being profiled will be killed by nvprof after the timeout. 
Profiling result collected before the timeout will be shown.

− Profiling scope [范围]: --devices <device IDs>, --kernels, --events, --metrics, 
--query-events, --query-metrics

− Multiprocess profiling [多线程]: To profile all processes launched by an 
application, use the --profile-child-processes option.
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Profiling output
• Output:

− CSV: For each profiling mode, opRon --csv can be used to generate output in 
comma-separated values (CSV) format. The result can be directly imported 
to spreadsheet soZware such as Excel.

− Export/Import: For each profiling mode, opRon --export-profile can be used 
to generate a result file. This file is not human-readable, but can be 
imported back to nvprof using the opRon --import-profile, or into the Visual 
Profiler.
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Visual Profiler 
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[时间线]

[分析]

[分析]



nvprof vs Visual Profiler
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hpps://www.olcf.ornl.gov/wp-content/uploads/2019/08/NVIDIA-Profilers.pdf

https://www.ima.umn.edu/materials/2010-2011/T11.28-29.10/10287/IMA-PPtTutorial.pdf


Example
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A simple example: 
vector addiRon



Example: code structure
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[核函数]

[分配host端内存]

[分配device端内存]

[数据赋值]

[数据拷贝]

[核函数计算]

[数据拷贝]

[释放内存]



Example: compile and run
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A simple example: vector addiRon
• Compile: $ nvcc vector_add.cu -o vec_add

• Run nvprof:

− -s: Print summary of profiling results
− -o: Export timeline file (to be opened later in NVIDIA Visual Profiler)

$ nvprof –s –o vec_add_cuda.nvvp ./vec_add



Example: output
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• Output on the terminal



Example: output
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• Import output file to nvvp



Example: output
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• Interface overview



Output on visual profile
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• Interface descripRon 

1⃣

2⃣

3⃣



Output on visual profile
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• Associate with code

[CUDA 活动]



Output on visual profile
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• Details informaRon about operaRons

[详细信息]



Move forward (1): Specific metrics
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[指定特定的指标]$ nvprof –m [metrics list] ./app_name

Example: $ nvprof –m dram_uRlizaRon,l2_uRlizaRon,\
double_precision_fu_uRlizaRon, achieved_occupancy ./redundant_mm 2048 100

[指标名称][核函数] [指标描述] [最大/小/平均值]



Common metrics
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• Metrics [指标]

hpps://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x

inst_executed: # of instrucRons executed
cf_executed: # of executed control-flow instrucRons
ipc: instrucRons executed per cycle
sm_efficiency: % of Rme at least one warp is acRve

achieved_occupancy: raRo of avg acRve warps per acRve cycle relaRve to the 
max # of warps supported on a SM
l2_u?liza?on: uRlizaRon level of L2 relaRve to peak
dram_u?liza?on: uRlizaRon level of DRAM to peak
dram_read_throughput: DRAM read throughput
dram_write_throughput: DRAM write throughput

https://docs.nvidia.com/cuda/profiler-users-guide/index.html


Common metrics
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• Compute metrics [和计算相关的指标]
Warp:
- sm_efficiency
- achieved_occupancy
- eligible_warps_per_cycle
- warp{/_nonpred}_execution_efficiency

Instruction:
- ipc, issued_ipc
- issue_slot_utilization
- stall_*
- branch_efficiency

Function Unit:
- {half/single/double}_precision_fu_util
- {ldst/cf/special/tex}_fu_utilization



Common metrics
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• Memory metrics (1) [和访存相关的指标]
SMEM:
- shared_{load/store}_transacRons
- shared_{load/store}_throughput
- shared_{efficiency/uRlizaRon}
- shared_{load/store}_trans_per_req
L1 cache:
- tex_cache_transacRons
- tex_cache_throughput
- tex_cache_hit_rate
- tex_uRlizaRon
LMEM:
- local_{load/store}_transacRons
- local_{load/store}_throughput
- local_hit_rate
- local_memory_overhead
- local_{load/store}_requests
- local_{load/store}_trans_per_req



Common metrics
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• Memory metrics (2) [和访存相关的指标]
L2 cache:
- l2_{atomic/read/write}_transactions

- L2_tex_{read/write}_transactions
- l2_{atomic/read/write}_throughput

- L2_tex_{read_write}_throughput
- l2_utilization

- L2_tex_hit_rate
- l2_{global/local}_load_bytes
- l2_{global_atomic/local_global}_st_Bs
DRAM:
- dram_{read/write}_transactions
- dram_{read/write}_throughput
- dram_utilization
- dram_{read/write}_bytes
Global:
- {gld/gst}_{transactions/throughput}
- {gld/gst}_requested_throughput
- {gld/gst}_efficiency
- {gld/gst}_transactions_per_request



More details about metrics
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• More details can be found in …

hpps://docs.nvidia.com/cuda/profiler-users-guide/index.html#metrics-reference-7x

https://docs.nvidia.com/cuda/profiler-users-guide/index.html


Move forward (2): Specific kernel(s) 
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[指定特定的核函数]

$ nvprof –kernels :::1 output_name.nvprof ./app_name

(context:stream:kernel:invocation)

Record metrics for only the first invocaRon of each kernel.



Move forward (3): Analyse metrics 
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[分析指标]$ nvprof --analysis-metrics output_name.nvprof ./app_name

Example: nvprof --analysis-metrics single_gpu_data.metrics100.nvprof ./run



Move forward (3): Analyse metrics 
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• High-level analysis 



Move forward (3): Analyse metrics 
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• High-level analysis 



Move forward (3): Analyse metrics 
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• Analyse individual kernels 



Move forward (3): Analyse metrics 
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• Kernel opRmizaRon prioriRes [核函数优化优先级] 



Move forward (3): Analyse metrics 
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• Memory bandwidth analysis [内存带宽分析]



Move forward (3): Analyse metrics 
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• Optimization suggestions [优化建议]



Move forward (3): Analyse metrics 
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• Compute analysis [计算资源分析]



Move forward (3): Analyse metrics 

51

• OpRmizaRon suggesRons [优化建议]



Move forward (3): Analyse metrics 
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• Latency analysis [延迟分析]



Move forward (3): Analyse metrics 
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• OpRmizaRon suggesRons [优化建议]



Move forward (3): Analyse metrics 
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• Occupancy analysis



nvprof

55

• Different choices [不同的选择]
− Short run: 

$ nvprof output_name.nvprof ./app_name

− Specific metrics:
$ nvprof –m [metric list] –csv output_name.csv ./app_name

− Specific kernel(s):
$ nvprof –kernels :::1 output_name.nvprof ./app_name

− Analysis metrics:
$ nvprof --analysis-metrics output_name.nvprof ./app_name



nvprof
• But in future … 😳
Note that Visual Profiler and nvprof will be deprecated in a future 
CUDA release. The NVIDIA Volta pla}orm is the last architecture on 
which these tools are fully supported. [将不再完全支持]

It is recommended to use next-generaRon tools NVIDIA Nsight
Systems for GPU and CPU sampling and tracing and NVIDIA Nsight
Compute for GPU kernel profiling. [推荐使用]
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Nsight Systems
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https://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-systems


Nsight Systems
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hpps://developer.nvidia.com/nsight-systems

https://developer.nvidia.com/nsight-systems


Nsight Compute
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hpps://developer.nvidia.com/nsight-compute

https://developer.nvidia.com/nsight-compute


Nsight Compute
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Nsight Compute
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Nsight Compute
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NVIDIA Developer Tools Overview
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https://developer.nvidia.com/tools-overview

[工作负载]

[函数] [帧和渲染]

https://developer.nvidia.com/nsight-systems


Conclusion
• nvprof is a hardware-based profile tool for the analysis 

and opRmizaRon  of programs.
• You can customize the focus of profiling with different 

opRons, such as mode, metrics, kernel and so on.
• Visual profile makes your profiling result more intuiRve.
• Nsight systems and Nsight compute will be a more 

sensible choice.
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Thanks for your apenRon !


