
Advanced Computer 
Architecture

高级计算机体系结构

第9讲：Thread-Level Parallelism (1)
张献伟

xianweiz.github.io
DCS5367, 11/30/2021

https://xianweiz.github.io/


Quiz Questions
• Q1: differences between SIMD and SIMT?

• Q2: explain host and device in GPU programming.

• Q3: why do we need streams in GPU programming?

• Q4: explain grid and block in GPU.

• Q5: keyword ‘__shared__’ declares which memory?

• Q6: when do we use local memory?

2

host = CPU, device = GPU. Host offloads kernels onto devices.

To concurrently run kernels, sharing the GPU.

SIMT ≈ SIMD + multithreading, much easier programming

Grid: all threads to run the kernel; Grid is further divided into blocks.

Shared memory, private to each SM and shared within a block.

Register spilling or array inside a kernel. But ‘local’ is in device mem.



Unified Memory[统一内存]

• Classical model[经典模型]
− Allocate memory on host
− Allocate memory on device
− Copy data from host to device Operate on 

the GPU data
− Copy data back to host

• Unified memory model[统一模型]
− Allocate memory
− Operate on data on GPU

• Unified Memory is a single memory 
address space accessible from any 
processor in a system

− cudaMalloc() à cudaMallocManaged()
− on-demand page migration

3
https://developer.nvidia.com/blog/unified-memory-cuda-beginners/

https://developer.nvidia.com/blog/unified-memory-cuda-beginners/


Example

4



Address Translation[地址转换]

• GMMU: GPU memory management unit
− Last level TLB (LLT)

• IOMMU: maps device-visible virtual addresses to physical 
addresses

− Page walk caches (PWC)

5
https://dl.acm.org/doi/pdf/10.1145/3309710

https://dl.acm.org/doi/pdf/10.1145/3309710


Divergence[分支]

• Within a block of threads, the threads are executes in 
groups of 32 called a warp

− All threads in a warp do the same thing at the same time

• What happens if different threads in a warp need to do 
different things?

− A logical predicate and two predicated instructions à serialized

• Branch divergence is a major cause for performance degr
adation in GPGPUs

6

p = (threadIdx.x < 16);
if (p) … A …
if (!p) … B …



Divergence (cont.)
• Pre-Volta GPUs use a single PC shared amongst all 32 

threads of a warp, combined with an active mask that 
specifies which threads of the warp are active at any 
given time

− Leaves threads that are not executing a branch inactive 

• Since Volta, each thread features its own PC, which allows 
threads of the same warp to execute different branches 
of a divergent section simultaneously 

7
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf

https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf


Two-phase Execution[两段式]

• Compilation workflow
− Source code à virtual 

instruction (PTX or HSAIL)
− Virtual inst à real inst (SASS 

or GCN)

• .cu: CUDA source file, 
containing host code and 
device functions
• .ptx: PTX intermediate 

assembly file
• .cubin: CUDA device code 

binary file (CUBIN) for a 
single GPU architecture

8

main() {
…
for(i=0;i<N;++i) {
}
…

}

IL 
(HSAIL, 

PTX)
ISACompiler Finalizer



Multi-chip Module
• Aggregating multiple GPU modules within a single 

package, as opposed to a single monolithic die.
• AMD: Chiplet GPUs

− MI200: 220 compute units, 14K streaming cores
− MI100: 120 compute units, 7680 streaming cores

• Nvidia: Multi-Chip-Module (MCM) GPUs
− Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
− A100: 128 SMs, 8192 CUDA cores

9



High-speed Links[高速连接]

• GPUs are of high compute capability, being bottlenecked 
on data movement
• High-speed interconnect to achieve significantly higher 

data movement
− Nvidia: NVLink
− AMD: Infinity Fabric
− Intel: Compute eXpress Link (CXL)

10



Summary of DLP/GPU[总结]

• Data level parallelism
− SIMD: operates on multiple data with on single instruction

p AVX-512 on Intel CPU is the typical example
− SIMT: consists of multiple scalar threads executing in a SIMD 

manner
p GPU is the example with threads executing the same instruction

• GPU hardware and thread organization
− Device à SM à SIMD/Partition à Core
− Grid à Block à Warp à Thread

• GPU programming
− Streams to support concurrency
− Memory hierarchy and usage (thread, cache/smem, global)
− Advanced topics: virtualization, profiling/tuning, divergence, etc

11



Flynn’s Taxonomy[分类]

• SISD: single instruction, single data
− A serial (non-parallel) computer

• SIMD: single instruction, multiple data
− Best suited for specialized problems characterized by a high 

degree of regularity, such as graphics/image processing

• MISD: multiple instruction, single data
− Few (if any) actual examples of this class have ever existed

• MIMD: multiple instruction, multiple data
− Examples: supercomputers, multi-core PCs, VLIW

12



MIMD[多指令多数据]

• Machines using MIMD have a number of processors that 
function asynchronously and independently
• Each processor fetches its own instructions and operates 

on its own data
• At any time, different processors may be executing 

different instructions on different pieces of data

13
https://www.slideshare.net/abshinde/multiprocessor-74969041

https://www.slideshare.net/abshinde/multiprocessor-74969041


Multiprocessor[多处理器]

• Multi-processor
− Multiple CPUs tightly coupled to cooperate on a problem
− Each CPU may be a multicore design

• Multicore processor
− Multiprocessor where the CPU cores coexist on a single 

processor chip (i.e., single CPU w/ multi cores)

14



Why Multiprocessor?[使用的几个原因]

• Not that long ago, multiprocessors were expensive, exotic 
machines
• Reason #1: running out of ILP that we can exploit[ILP有限]

− Can’t get much better performance out of a single core that’s 
running a single program at a time

• Reason #2: power/thermal constraints[能耗/散热限制]
− Even if we wanted to just build fancier single cores at higher 

clock speeds, we’d run into power and thermal obstacles

• Reason #3: Moore’s Law[摩尔定律]
− Lots of transistors à what else are we going to do with them?
− Historically: use transistors to make more complicated cores 

with bigger and bigger caches
− But we just saw that this strategy has run into problems

15
http://people.ee.duke.edu/~sorin/ece152/lectures/multicore-1.pdf

http://people.ee.duke.edu/~sorin/ece152/lectures/multicore-1.pdf


How to Keep Multiprocessor Busy?
• Single core processors exploit ILP

− Multiprocessors exploit TLP: thread-level parallelism
• What’s a thread?

− A program can have one or more threads of control
− Each thread has its own PC and own arch registers
− All threads in a given program share resources (e.g., memory)

• OK, so where do we find more than one thread?
− Option #1: Multiprogrammed workloads

p Run multiple single-threaded programs at same time
− Option #2: Explicitly multithreaded programs

p Create a single program that has multiple threads that work together to 
solve a problem

16



Thread-Level Parallelism[线程级并行]

• Thread-Level parallelism[并行]
− Have multiple program counters
− Uses MIMD model
− Targeted for tightly-coupled shared-memory multiprocessors

• Why TLP?[原因]
− Hard to further increase core performance (e.g., clock speed)
− Hard to find and exploit more ILP

• Implementation[实现]
− Multiprocessor[多处理器]

p Multicore processor[多核处理器]
p Multi-processor[多个处理器]

− Multithreaded processor[多线程处理器]

17



Multithreading[多线程]

• Basic idea: processor resources are expensive and should 
not be left idle 
• On uniprocessor, multithreading occurs by time-division 

multiplexing[时分复用]
− Processor switches between different threads 
− Context switching happens frequently enough user perceives 

threads as running at the same time 

• Multithreaded processor: single CPU core that can 
execute multiple threads simultaneously

− Switching
− Simultaneous multithreading (SMT) à “hyperthreading” (Intel)

18
https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture18.pdf

https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture18.pdf


Classifying Multiprocessors[分类]

• Interconnection networks[互联网络]
− Bus
− Network

• Memory topology[内存]
− UMA
− NUMA

• Programming model[编程模型]
− Shared memory[共享内存]: every processor can name every 

address location
− Message passing[消息传递]: each processor can name only it’s 

local memory. Communication is through explicit messages

19
https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf

https://cseweb.ucsd.edu/classes/wi13/cse141-b/slides/10-Multithreading.pdf


SMP[对称型]

• Symmetric (shared-memory) multiprocessors (SMPs)
− A.k.a., centralized shared-memory multiprocessors
− A.k.a., uniform memory access (UMA) multiprocessors
− Small number of cores (typically <= 8)
− Share a single centralized memory that all processors have 

equal access to, hence “symmetric”
p Uniform access latency

20



DSM[分布式共享内存]

• Distributed shared memory (DSM)
− Memory distributed among processors
− Non-uniform memory access/latency (NUMA)

p The access time depends on the location of a data word in memory
− Processors connected via direct (switched) and non-direct 

(multi-hop) interconnection networks

21



Shared Memory[共享内存]

• The term “shared memory” associated with both SMP 
and DSM refers to the fact that the address space is 
shared

− Communication among threads occurs through the shared 
address space

− Thus, a memory reference can be made by any processor to any 
memory location

22



There Exist Caches
• Recall memory hierarchy, with cache being provided to 

shorten access latency
− Each core of multiprocessors has a cache (or multiple caches)

• Caching complicates the data sharing

23



Data Caching[数据缓存]

• Private data: used by a single processor
• Shared data: used by multiple processors

− Essentially providing communication among the 
processors through reads and writes of the 
shared data

• Caching private data
− Migrated to cache, reducing access time
− No other processor uses the data (identical to 

uniprocessor)
• Caching shared data

− Replicated in multiple caches
p Reduced access latency, reduced contention

− Introduces a new problem: cache coherence

24



Cache Coherence[缓存一致性]

• Processors may see different values of the same data
− The view of memory held by two different processors is through 

their individual caches, which, without any additional 
precautions, could end up seeing two different values

• Cache coherence problem[缓存一致性问题]
− Conflicts between global state (main memory) and local state 

(private cache)
− At time 4, what if processor B reads X?

25

A
Cache

B
Cache

WT



A memory system is coherent, if
• A read by processor P to location X that follows a write by 

P to X, with no writes of X by another processor occurring 
between the write and the read by P, always return the 
value written by P

− Preserves program order
• A read by a processor to location X that follows a write by 

another processor to X returns the written value if the 
read and write are sufficiently separated in time and no 
other writes to X occur between the two accesses

− Defines the notion of what it means to have a coherent view of 
memory

• Writes to the same location are serialized; that is, two 
writes to the same location by any two processors are 
seen in the same order by all processors

− Write serialization
26



Consistency also Matters[内存一致性]

• The three properties are sufficient to ensure coherence
• However, when a written value will be seen is also 

important
− A write of X on one processor precedes a read of X on another 

processor by a very small time, it may be impossible to ensure 
that the read returns the value of the data written, since the 
written data may not even have left the processor at that point

• Memory consistency: when a written value must been 
seen by a reader

27

A and B are initially both 0

What this program can output?
o 01: (1)(2)(3)(4) or (3)(4)(1)(2)
o 11: (1)(3)(2)(4) or (1)(3)(4)(2)
o 00?

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

https://www.cs.utexas.edu/~bornholt/post/memory-models.html


Coherence vs. Consistency[对比]

• Coherence[缓存一致性]
− Defines what values can be returned by a read
− All reads by any processor must return the most recently 

written value
− Writes to the same location by any two processors are seen in 

the same order by all processors

• Consistency[内存一致性]
− Determines when a written value will be returned by a read
− Consistency insures that writes to different locations will be 

seen in an order that makes sense, given the source code
− If a processor writes location A followed by location B, any 

processor that sees the new value of B must also see the new 
value of A

28



Enforcing Coherence[保证一致性]

• Coherent caches provide
− Migration: movement of data[搬运]

p A data item can be moved to a local cache and used there in a 
transparent fashion

− Replication: multiple copies of data[备份]
p Make a copy of the data item in the local cache, so that shared data can 

be simultaneously read

• Whose responsibility? Software?
− Can programmer ensure coherence if caches invisible to sw?
− What if the ISA provided a cache flush instruction?

p FLUSH-LOCAL A: flushes/invalidates the cache block containing address 
A from a processor’s local cache

p FLUSH-GLOBAL A: flushes/invalidates the cache block containing 
address A from all other processors’ caches

p FLUSH-CACHE X: flushes/invalidates all blocks in cache X

29



Enforcing Coherence (cont.)
• Software solutions are of high overheads

− And, programming burden

• Multiprocessors adopt a hardware solution to maintain 
coherent caches[硬件方案]

− Supporting the migration and replication is critical to 
performance in accessing shared data

• For the example,
− Invalidate all other copies of X when B writes to it

30

A
Cache

B
Cache

WT



Coherence Protocols[缓存一致性协议]

• Cache coherence protocols: the rules to maintain 
coherence for multiple processors

− Key is to track the state of any sharing of a data block

• Two classes of protocols
− Snooping[窥探]

p Each core tracks sharing status of each block
− Directory based[基于目录]

p Sharing status of each block kept in one location

31



Snooping Coherence Protocols[窥探]

• Write invalidation protocol[写无效]
− Ensure that a processor has exclusive access to a data item 

before it writes that item
− Exclusive access ensure that no other readable or writable 

copies of an item exist when the write occurs
p All other cached copies of the item are invalidated (👉 that’s the name)

• Write update/broadcast protocol[写更新]
− Update all the cached copies of data item when that item is 

written
− Must broadcast all writes to shared cache lines, and thus 

consumes considerably more bandwidth

• Write invalidation protocol is by far the most common
− We’ll focus on it

32



Write Invalidation Protocol[写无效]

• Write invalidate
− On write, invalidate all other copies
− Use bus itself to serialize

• Example
− Invalidation protocol working on a snooping bus for a single 

block (X) with write-back caches

33

Neither cache initially holds X and the value of X in memory is 0

Processor A reads X, migrating from memory to the local cache

Processor B reads X, migrating from memory to the local cache

Processor A writes X, invalidating the copy on B

Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory



Snoopy Implementation[窥探实现]

• Key is to use bus, or another broadcast medium, to 
perform invalidates
• To perform an invalidate

− The processor simply acquires bus access and broadcasts the 
address to be invalidated on the bus[获得总线，广播地址]

− All processors continuously snoop on the bus, watching the 
addresses[窥探总线，收听地址]

− The processors check whether the address on the bus is in their 
cache. If so, the corresponding data in the cache is invalidated[
核对地址，作废数据]

34



Snoopy Implementation (cont.)
• When a write to a block that is shared occurs,[写到共享块]

− The writing processor must acquire bus access to broadcast its 
invalidation

• If two processors attempt to write shared blocks at the 
same time,[两个处理器同时写到共享块]

− Their attempts to broadcast an invalidate operation will be 
serialized when they arbitrate for the bus[串行‘无效’操作]

− The first processor to obtain bus access will cause any other 
copies of the block it is writing to be invalidated[作废数据]

− If the processors were attempting to write the same block, the 
serialization enforced by the bus also serializes their writes[串行
写操作]

35



Snoopy Implementation (cont.)
• Locate a data item when a cache miss occurs,[找到数据]

− For write-through cache, easy to find the recent value[写通]
p All written data are always sent to the memory

− For write-back cache, harder to find the most recent value[写回]
p The newest value can be in a private cache rather than in the shared 

cache or memory

• Happily, write-back caches can use the same snooping 
scheme both for cache misses and for writes[同样窥探]

− Each processor snoops every address placed on the shared bus[
每个处理器窥探每个地址]

− If a processor finds that it has a dirty copy of the requested 
cache block, it provides that block in response to the read 
request and causes the memory (or L3) access to be aborted[某
个处理器拥有脏数据à响应]

36


