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Quiz Questions

e Q1: differences between SIMD and SIMT?

SIMT = SIMD + multithreading, much easier programming

* Q2: explain host and device in GPU programming.
host = CPU, device = GPU. Host offloads kernels onto devices.

* Q3: why do we need streams in GPU programming?
To concurrently run kernels, sharing the GPU.

* Q4: explain grid and block in GPU.
Grid: all threads to run the kernel; Grid is further divided into blocks.

* Q5: keyword °_shared ’ declares which memory?

Shared memory, private to each SM and shared within a block.

* Q6: when do we use local memory?
Register spilling or array inside a kernel. But ‘local’ is in device mem.
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Unified Memory[%— W 7#]

° Cl assica | mo d e | [Qg\: ;ﬁ%\j;at ﬂ‘U Traditional Developer View
— Allocate memory on host
— Allocate memory on device u
— Copy data from host to device Operate on !
the GPU data -~—
— Copy data back to host Soen  GPUMemory

* Unified memory model[4: —# ]
— Allocate memory
— Operate on data on GPU Developer View With

Unified Memory
* Unified Memory is a single memory
address space accessible from any
processor in a system
— cudaMalloc() =2 cudaMallocManaged()
— on-demand page migration Unified Memory
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https://developer.nvidia.com/blog/unified-memory-cuda-beginners/
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Example

int N = 1<<20;
float *x, *y;

// Allocate Unified Memory -- accessible from CPU or GPU
cudaMallocManaged(&x, N#*sizeof(float));
cudaMallocManaged(&y, N#*sizeof(float));

// initialize x and y arrays on the host
for (int i = 0; i < N: i++) {

x[1] = 1:0%;

vidi] = 2.0f;

// Launch kernel on 1M elements on the GPU
int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;

add<<<numBlocks, blockSize>>>(N, x, y);
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Address Translation[H il &4 #]

* GMMU: GPU memory management unit

— Last level TLB (LLT)

* IOMMU: maps device-visible virtual addresses to physical

addresses
- Page walk caches (PWC)

Main memory

716 1ass | LLC TPhysical addressesT
AYS Request ! LLT ! 4 B

.................................................... i - IOMMU ][ MMU
| Device anresses Virtual a?dresses
GPU i S ]

MEMORY

Device | : CPU
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Divergence[4r ]

* Within a block of threads, the threads are executes in
groups of 32 called a warp

— All threads in a warp do the same thing at the same time

* What happens if different threads in a warp need to do
different things?

— A logical predicate and two predicated instructions = serialized

* Branch divergence is a major cause for performance degr
adation in GPGPUs

if ( threadIdx.x < 16 ) e

{ N p = (threadldx.x < 16);
v if (p) ... A ...
else if (!p) ... B ...

End of branch

b



Divergence (cont.)

* Pre-Volta GPUs use a single PC shared amongst all 32
threads of a warp, combined with an active mask that
specifies which threads of the warp are active at any
given time

— Leaves threads that are not executing a branch inactive

* Since Volta, each thread features its own PC, which allows
threads of the same warp to execute different branches
of a divergent section simultaneously

Pre-Volta
Program

councer () (SR AR R AR R R R RR R RA R AR RAREY

and Stack (S)
32 thread warp

5595359555355595559550555035608

32 thread warp with independent scheduling || ’;Eti
https://www.icl.utk.edu/files/publications/2018/icl-utk-1080-2018.pdf 4
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Two-phase Execution[p ]

* Compilation workflow

— Source code =2 virtual
instruction (PTX or HSAIL)

— Virtual inst = real inst (SASS
or GCN)

o NVCC et
* .cu: CUDA source file, : ‘l“”
containing host code and I N e
device functions [ (P Generation ]
- .ptx: PTX intermediate K T SO
assembly file . ;""'("”"A“;”‘"": """"""""""
2 I tage :
o . é (Cubin Generation) ]
* .cubin: CUDA device code g |
binary file (CUBIN) for a 1 F
single GPU architecture b R Boowe




Multi-chip Module

* Aggregating multiple GPU modules within a single
package, as opposed to a single monolithic die.

* AMD: Chiplet GPUs

- MI200: 220 compute units, 14K streaming cores
- MI1100: 120 compute units, 7680 streaming cores

* Nvidia: Multi-Chip-Module (MCM) GPUs
- Hopper (Ampere -> Lovelace): 300+ SMs, 40K+ CUDA cores
— A100: 128 SMs, 8192 CUDA cores

' . | SYSH/O

CCCC ORAM i
GPU GPU
Stacked Module ' Module
DEAM i’ B ORAM acked Stacked
Monolilthic = oA
L : L I MCM
A S GPU
Stacked acked «
ORAM = R = DRAM H\.\' [’ :
' GPU - GPU
Package Module Module
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High-speed Links[mi#i% ]

* GPUs are of high compute capability, being bottlenecked
on data movement

* High-speed interconnect to achieve significantly higher
data movement
— Nvidia: NVLink
— AMD: Infinity Fabric
- Intel: Compute eXpress Link (CXL)

CPU-GPU Systems Connected NVLink Enables Fast Unified Memory Access
via PCl-e between CPU & GPU Memories
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Summary of DLP/GPU 4]

* Data level parallelism

— SIMD: operates on multiple data with on single instruction
o AVX-512 on Intel CPU is the typical example

— SIMT: consists of multiple scalar threads executing in a SIMD
manner
o GPU is the example with threads executing the same instruction

* GPU hardware and thread organization

— Device =2 SM - SIMD/Partition = Core ' mlem
— Grid = Block = Warp = Thread T w B
* GPU programming _’m

— Streams to support concurrency
— Memory hierarchy and usage (thread, cache/smem, global)
— Advanced topics: virtualization, profiling/tuning, divergence, etc
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Flynn’s Taxonomy[43

3]

 SISD: single instruction, single data
- A serial (non-parallel) computer

* SIMD: single instruction, multiple data

— Best suited for specialized problems characterized by a high
degree of regularity, such as graphics/image processing

* MISD: multiple instruction, single data

- Few (if any) actual examples of this class have ever existed

* MIMD: multiple instruction, multiple data

- Examples: supercomputers, multi-core PCs, VLIW
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MIMD £ 454 2 #i)

* Machines using MIMD have a number of processors that
function asynchronously and independently

* Each processor fetches its own instructions and operates
on its own data

* At any time, different processors may be executing
different instructions on different pieces of data

Memory Controller

EE

4 Intel Xeon CPUs 4 FT Matrix-2000 2 Compute Nodes

Sharéd L3 Cache: :

. 13 e
https://www.slideshare.net/abshinde/multiprocessor-74969041 UH
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Multiprocessor(£ 4b# 28]

* Multi-processor
— Multiple CPUs tightly coupled to cooperate on a problem
— Each CPU may be a multicore design

* Multicore processor

- Multiprocessor where the CPU cores coexist on a single
processor chip (i.e., single CPU w/ multi cores)

Processor 0 Processor 0 Processor |

Core 0 Core | Core 0 Core | Core 0 Core |

CPU CPU CcPU | cPU cPU CcPU

L1 Cache | [ L1 Cache | ILICachc | | L1 Cache ||| [|f L1 Cache | | L1 Cache |

4
t System Memory System Memory
i —4 System Bus Jl >
Multi-Core Processor with Shared [.2 Multi-Processor System with Cores that share
Cache L2 Cache

Prd -



Why Multiprocessor? & f i J 1A E A

* Not that long ago, multiprocessors were expensive, exotic
machines

* Reason #1: running out of ILP that we can exploit[ILPA[R]
— Can’t get much better performance out of a single core that’s
running a single program at a time

* Reason #2: power/thermal constraints[GE#E/E1 R R #1l]

- Even if we wanted to just build fancier single cores at higher
clock speeds, we’d run into power and thermal obstacles

e Reason #3: Moore’s Law[EE /K 5E 4]

— Lots of transistors = what else are we going to do with them?

— Historically: use transistors to make more complicated cores
with bigger and bigger caches

— But we just saw that this strategy has run into problems

ﬂrlﬁi

http://people.ee.duke.edu/~sorin/ecel52/lectures/multicore-1.pdf
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How to Keep Multiprocessor Busy?

* Single core processors exploit ILP
— Multiprocessors exploit TLP: thread-level parallelism

e What’s a thread?

— A program can have one or more threads of control
— Each thread has its own PC and own arch registers
— All threads in a given program share resources (e.g., memory)

* OK, so where do we find more than one thread?
— Option #1: Multiprogrammed workloads
o Run multiple single-threaded programs at same time

— Option #2: Explicitly multithreaded programs

o Create a single program that has multiple threads that work together to
solve a problem
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Thread-Level Parallelism & #2425 34T

* Thread-Level parallelism[347]

- Have multiple program counters
- Uses MIMD model

— Targeted for tightly-coupled shared-memory multiprocessors
e Why TLP?[J7 [H]

- Hard to further increase core performance (e.g., clock speed)
- Hard to find and exploit more ILP

* Implementation[3Z#]
— Multiprocessor[Z 47 3]
o Multicore processor[Z #Z AL ¥ 28]
o Multi-processor[Z£ /ML H 23]
— Multithreaded processor|[£ 275 4b i 28]
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Multithreading[£ 4]

* Basic idea: processor resources are expensive and should
not be left idle

* On uniprocessor, multithreading occurs by time-division
multiplexing[i} 73 8 ]
— Processor switches between different threads

— Context switching happens frequently enough user perceives
threads as running at the same time

* Multithreaded processor: single CPU core that can
execute multiple threads simultaneously

- Switching
— Simultaneous multithreading (SMT) = “hyperthreading” (Intel)

NG
https://inst.eecs.berkeley.edu/~cs61c/resources/sul8 lec/Lecturel8.pdf #r '(G &



https://inst.eecs.berkeley.edu/~cs61c/resources/su18_lec/Lecture18.pdf
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Classitying Multiprocessors[43

* Interconnection networ <SIFLH9§H%’%1

— BUS rrrrrrrr . Processor cpu / \ M
- Network 1 I t \ /
Cache Cache Cache Cpu [~ 1M
* Memory topology[NF] — P —— = Ll S e
- UMA ! ! ; / \ ,
- N U MA Hemery "o cpu \_/ M
* Programming model[ZmfE =]
— Shared memory[ZL = N 17]: every processor can name every
address location
— Message passing[iH S £i#]: each processor can name only it’s
local memory. Communication is through explicit messages
' i i i W:Ei

https://cseweb.ucsd.edu/classes/wil3/csel141-b/slides/10-Multithreading.pdf
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SMP [F F5 78]

e Symmetric (shared-memory) multiprocessors (SMPs)
- A.k.a., centralized shared-memory multiprocessors
- A.k.a., uniform memory access (UMA) multiprocessors
- Small number of cores (typically <= 8)

— Share a single centralized memory that all processors have
equal access to, hence “symmetric”
o Uniform access Iatency

more
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morel els
of ca che
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Shared cache
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DSM 73 A 3L = A 7]

* Distributed shared memory (DSM)
- Memory distributed among processors

— Non-uniform memory access/latency (NUMA)
o The access time depends on the location of a data word in memory

— Processors connected via direct (switched) and non-direct
(multi-hop) interconnection networks

,b/iultlcore Ir{ulnoore /(ulbcore |t{ulboore
\ MP \ MP MP MP

e T T () T =T =)

Interconnection network
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Shared Memory[3:= R 17

* The term “shared memory” associated with both SMP
and DSM refers to the fact that the address space is
shared

— Communication among threads occurs through the shared
address space

— Thus, a memory reference can be made by any processor to any

memory location
/w) B
MP

L MP P
o _( o '_{ Vo .

M
=T

One On
mor eve more levels more
of cache ofc

Interconnection network

Shared cache
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There Exist Caches

* Recall memory hierarchy, with cache being provided to
shorten access latency

— Each core of multiprocessors has a cache (or multiple caches)

* Caching complicates the data sharing

Smallest Size- Fastext- Costliest

i 1
u O—— l A
¥ § ‘ Register
vl !
: %: |
| <4 /Cache (SRAM\
_§_ : Primary Memory (DRAM)
Lol
: . v Secondary Memory
"5 . < ,
Size Speed

Largest Size- Slowest- Cheapest

2 b



Data Caching ¥k 2217)

* Private data: used by a single processor

* Shared data: used by multiple processors

— Essentially providing communication among the
processors through reads and writes of the
shared data -

Corel Core 2 Core 3

| u | u | [u | | u|
o ol nle e
* Caching private data L;J :
- Migrated to cache, reducing access time

L3

- No other processor uses the data (identical to
uniprocessor) *
. Main Memory (DRAM)
* Caching shared data

— Replicated in multiple caches
o Reduced access latency, reduced contention

- Introduces a new problem: cache coherence

e Al Y
@ tuxs 24 D




Cache Coherence[ZEf7—sh )

* Processors may see different values of the same data

— The view of memory held by two different processors is through
their individual caches, which, without any additional
precautions, could end up seeing two different values

 Cache coherence problem[ZE47— 2 v i)

— Conflicts between global state (main memory) and local state
(private cache)

— At time 4, what if processor B reads X?

Cache contents for Cache contents for Memory contents for
A Time Event processor A processor B location X
C

ache| - '

| Processor A reads X | |

2 Processor B reads X 1 1 1

3 Processor A stores 0 | 0
0 into X

”*’T: ) r W
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A memory system is coherent, it

* A read by processor P to location X that follows a write by
P to X, with no writes of X by another processor occurring
between the write and the read by P, always return the
value written by P

— Preserves program order

* A read by a processor to location X that follows a write by
another processor to X returns the written value if the
read and write are and no
other writes to X occur between the two accesses

— Defines the notion of what it means to have a coherent view of
memory

* Writes to the same location are serialized; that is, two
writes to the same location by any two processors are
seen in the same order by all processors

— Write serialization
Tux® 26 0 g




Consistency also Matters[i 1z — ]

* The three properties are sufficient to ensure coherence

* However, when a written value will be seen is also
important
— A write of X on one processor precedes a read of X on another
processor by a very small time, it may be impossible to ensure

that the read returns the value of the data written, since the
written data may not even have left the processor at that point

* Memory consistency: when a written value must been
seen by a reader

A and B are initially both 0

Thread 1 Thread 2

What this program can output?
WA =T BB =1 o 01: (1)(2)(3)(4) or (3)(4)(1)(2)
2 print(B) 4 print(A) o 11:(1)(3)(2)(4) or (1)(3)(4)(2)

o 007?

‘.[3
https://www.cs.utexas.edu/~bornholt/post/memory-models.html 4
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Coherence

Conherence vs. Consistency 3 H] - o

that all the ideas in a

paragraph flow smoothly
from one sentence to the

¢ CO 1erence[é§ﬁ—‘§&‘r$] next sentence.

With coherence, the reader
has an easy time

— Defines what values can be returned by a read understanding the ideas

that you wish to express.

— All reads by any processor must return the most recently
written value

— Writes to the same location by any two processors are seen in
the same order by all processors

* Consistency[ N7 — 4]

— Determines when a written value will be returned by a read

- Consistency insures that writes to different locations will be
seen in an order that makes sense, given the source code

— If a processor writes location A followed by location B, any
processor that sees the new value of B must also see the new
value of A

(D) F b % & 28 NG
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Enforcing Coherence[ffiE— ]

* Coherent caches provide

— Migration: movement of data[#tiz]

o A data item can be moved to a local cache and used there in a
transparent fashion

— Replication: multiple copies of data[& 1]

o Make a copy of the data item in the local cache, so that shared data can
be simultaneously read

* Whose responsibility? Software?

— Can programmer ensure coherence if caches invisible to sw?

— What if the ISA provided a cache flush instruction?

o FLUSH-LOCAL A: flushes/invalidates the cache block containing address
A from a processor’s local cache

o FLUSH-GLOBAL A: flushes/invalidates the cache block containing
address A from all other processors’ caches

o FLUSH-CACHE X: flushes/invalidates all blocks in cache X




Enforcing Coherence (cont.)

e Software solutions are of high overheads
— And, programming burden

* Multiprocessors adopt a hardware solution to maintain
coherent caches[f#i {45 %]

— Supporting the migration and replication is critical to
performance in accessing shared data

* For the example,
- Invalidate all other copies of X when B writes to it

Cache contents for Cache contents for Memory contents for
A Time Event processor A processor B location X
C

ache| - '

WT | Processor A reads X | |

2 Processor B reads X | | |
3 Processor A stores 0 | 0
0 mto X

(& "e Al y
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Coherence Protocols[&2 i — &bl

* Cache coherence protocols: the rules to maintain
coherence for multiple processors

— Key is to track the state of any sharing of a data block

* Two classes of protocols

— Snooping[F K]
o Each core tracks sharing status of each block

— Directory based[% T H 3]

o Sharing status of each block kept in one location

o %1 ------ ;
Bs Snoop |ntercg\nngctnon Network ™ \‘\\
g / ¢ o 0 ~
L |
[ v

~lo]ololo 410l ck)
Nol1lolo ofelo]ck+1)

ololTolol T Tolol1]ciks

.| 1 modified bit for each cache block in memory

31 _7 1 presence bit for each processor, each cache block in memory "E
PN
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Snooping Coherence Protocols[#i#]

* Write invalidation protocol[E Jtx%]
— Ensure that a processor has exclusive access to a data item
before it writes that item

— Exclusive access ensure that no other readable or writable
copies of an item exist when the write occurs
o All other cached copies of the item are invalidated (<= that’s the name)

* Write update/broadcast protocol[ 5 5 #7]

— Update all the cached copies of data item when that item is
written

— Must broadcast all writes to shared cache lines, and thus
consumes considerably more bandwidth

* Write invalidation protocol is by far the most common
- We’'ll focus on it
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Write Invalidation Protocol [5x4

 Write invalidate
— On write, invalidate all other copies
— Use bus itself to serialize

* Example

- Invalidation protocol working on a snooping bus for a single
block (X) with write-back caches

Contents of processor Contents of processor  Contents of memory

Processor activity Bus activity A’s cache B's cache location X
Neither cache initially holds X and the value of X in memoryis0 0 |
Processor A reads X  Cache miss 0 0
for X Processor A reads X, migrating from memory to the local cache
Processor B reads X Cache miss 0 0 0
for X Processor B reads X, migrating from memory to the local cache
Processor A writes a  Invalidation 1 _ o 0
1 to X for X Processor A writes X, invalidating the copy on B
Processor B reads X Cache miss | ) 1 . 1
for X Processor B reads X, A responds with the value canceling the mem response
and updates both B’s cache and memory

33 D




Snoopy Implementation(#i#x sz

* Key is to use bus, or another broadcast medium, to
perform invalidates

e To perform an invalidate

— The processor simply acquires bus access and broadcasts the
address to be invalidated on the bus[3k75 5.2k, | #%H#hk]

— All processors continuously snoop on the bus, watching the
addresses[FIiR L2k, YT Hihk)

— The processors check whether the address on the bus is in their
cache. If so, the corresponding data in the cache is invalidated|

foa ik, AR R ]
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Snoopy Implementation (cont.)

* When a write to a block that is shared occurs,[5 2|3t = ]

— The writing processor must acquire bus access to broadcast its
invalidation

* If two processors attempt to write shared blocks at the
same time, [~ Ab i 2% [F] i 5 31 3t = B

- Their attempts to broadcast an invalidate operation will be
serialized when they arbitrate for the bus[# 1T ‘T3’ #4E]

— The first processor to obtain bus access will cause any other
copies of the block it is writing to be invalidated[fE [k %]

- If the processors were attempting to write the same block, the
serialization enforced by the bus also serializes their writes[H 1T

5 #RAE]
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Snoopy Implementation (cont.)

* Locate a data item when a cache miss occurs, [#& F| %3]

- For write-through cache, easy to find the recent value[5i#]
o All written data are always sent to the memory
— For write-back cache, harder to find the most recent value[5 [7]]

o The newest value can be in a private cache rather than in the shared
cache or memory

* Happily, write-back caches can use the same snooping

scheme both for cache misses and for writes[[G]F£ 8 5]
— Each processor snoops every address placed on the shared bus|
B AP A BEAR RS ]
— If a processor finds that it has a dirty copy of the requested
cache block, it provides that block in response to the read

request and causes the memory (or L3) access to be aborted[}:
AN AE AR I M EAE > i ]
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